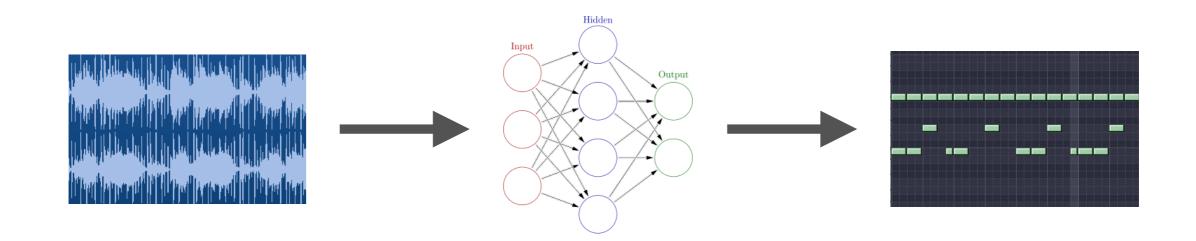
DRUM TRANSCRIPTION FROM POLYPHONIC MUSIC WITH RECURRENT NEURAL NETWORKS

Richard Vogl^{1,2}, Matthias Dorfer¹, Peter Knees²

richard.vogl@tuwien.ac.at, matthias.dorfer@jku.at, peter.kness@tuwien.ac.at

INTRODUCTION

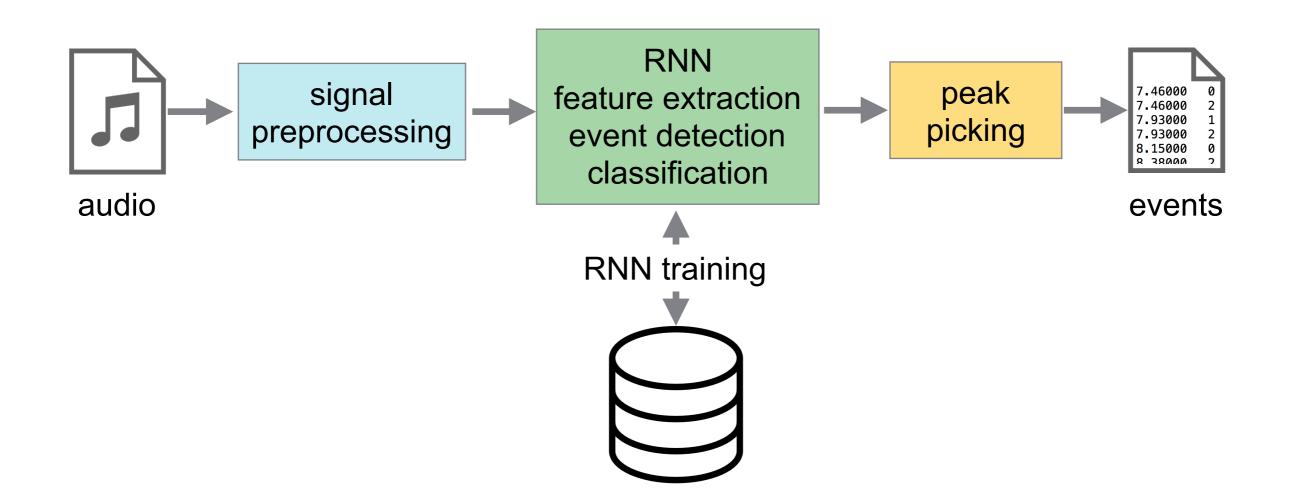


- Goal: model for drum note detection in polyphonic music
 - In: Western popular music containing drums
 - Out: Symbolic representation of notes played by drum instruments
- Focus on three major drum instruments: snare, bass drum, hi-hat

INTRODUCTION

- Wide range of **applications**
 - Sheet music generation
 - Re-synthesis for music production
 - Higher level MIR tasks

SYSTEM ARCHITECTURE

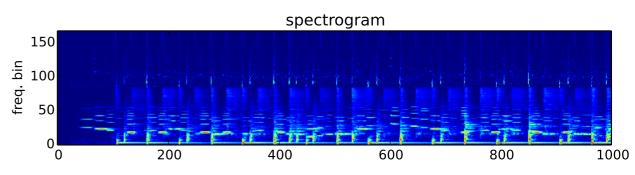


ADVANTAGES OF RNNS

- Relatively easy to fit large and diverse datasets
- Once trained, **computational complexity** of transcription relatively **low**
- Online capable
- Generalize well
- Easy to adapt to new data
- End-to-end: learn features, event detection, and classification at once
- Scale better with number of instruments (rank problem in NMF)
- Trending topic: lots of **theoretical work** to benefit from

DATA PREPARATION

- Signal preprocessing
 - Log magnitude spectrogram @ 100Hz
 - Log frequency scale, 84 frequency bins
 - Additionally 1st order differential
 - 168 value input vector for RNN

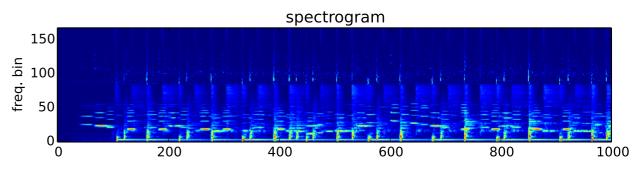


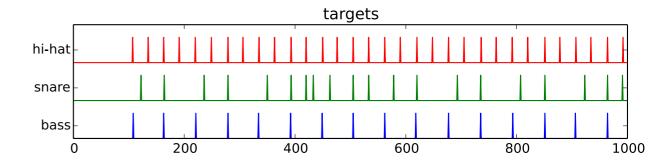
DATA PREPARATION

- Signal preprocessing
 - Log magnitude spectrogram @ 100Hz
 - Log frequency scale, 84 frequency bins
 - Additionally 1st order differential
 - 168 value input vector for RNN
- RNN targets

J⊼∩ 🦲

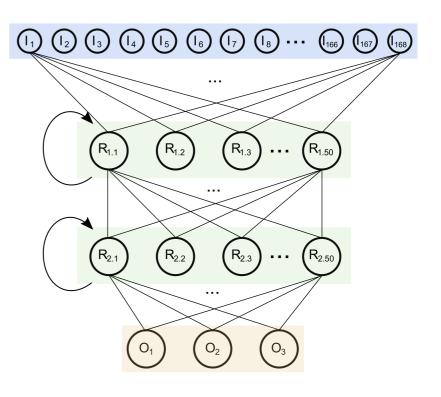
- Annotations from training examples
- Target vectors @ 100Hz frame rate



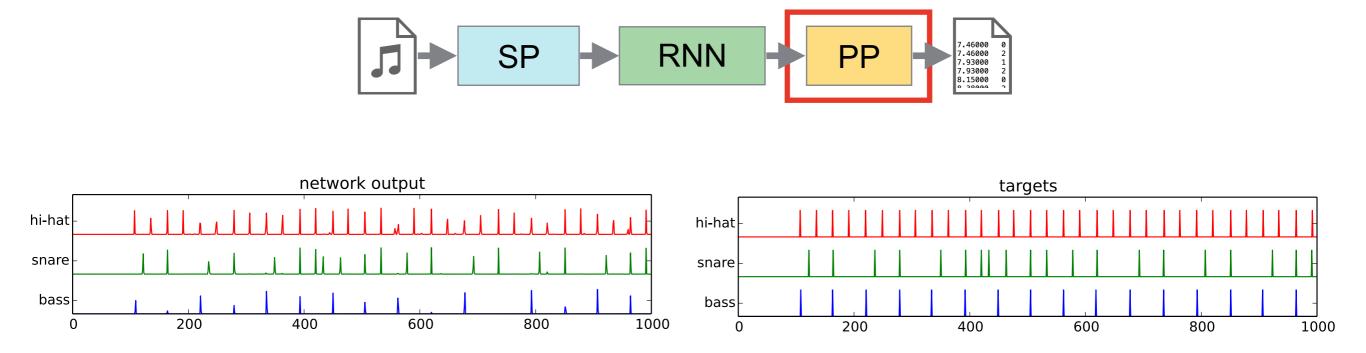


RNN ARCHITECTURE

- Two layers containing 50 GRUs each
 - Recurrent connections
- Output: dense layer with three sigmoid units
 - No softmax: events are independent
 - Value represent certainty/pseudo-probability of drum onset
 - Does not model intensity/velocity



PEAK PICKING



Select onsets at position n in activation function F(n) if:

$$F(n) = max(F(n - m), \cdots, F(n)),$$

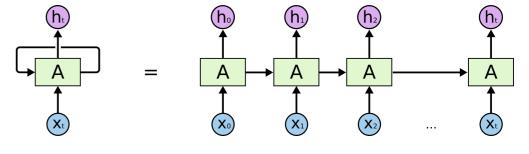
$$F(n) \ge mean(F(n - a), \cdots, F(n)) + \delta,$$

$$n - n_{lp} > w,$$

[Böck et. al 2012]

RNN TRAINING

- Backpropagation through time (BPTT)
- Unfold RNN in time for training



[Olah 2015]

 Loss (L): mean cross-entropy between output (ŷ_n) and targets (y_n) for each instrument

Mean over instruments with **different**

weighting (w_i) per instrument

(~+3% f-measure)

JXN 💽

$$\mathcal{L}(\Theta) = -\frac{1}{N} \sum_{n=1}^{N} \left[y_n \log \hat{y}_n + (1 - y_n) \log(1 - \hat{y}_n) \right]$$

$$\mathcal{L}(\Theta) = \sum_{i=1}^{I} w_i \mathcal{L}_i(\Theta) \qquad \sum_{i=1}^{I} w_i = 1$$

 Update model parameters (θ) using gradient (𝔅) calculated on mini-batch and learn rate (η)

$$\mathcal{G}_t = \nabla_{\Theta} \mathcal{L}(\Theta_t)$$

$$\Theta_{t+1} = \Theta_t - \eta \mathcal{G}_t$$

RNN TRAINING (2)

RMSprop

 uses weight for learn rate based on moving mean squared gradient E[G²]

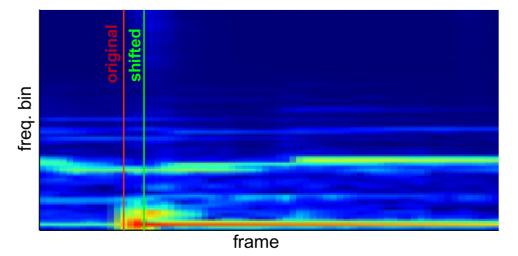
Data augmentation

Random transformations of training samples (pitch shift, time stretch)

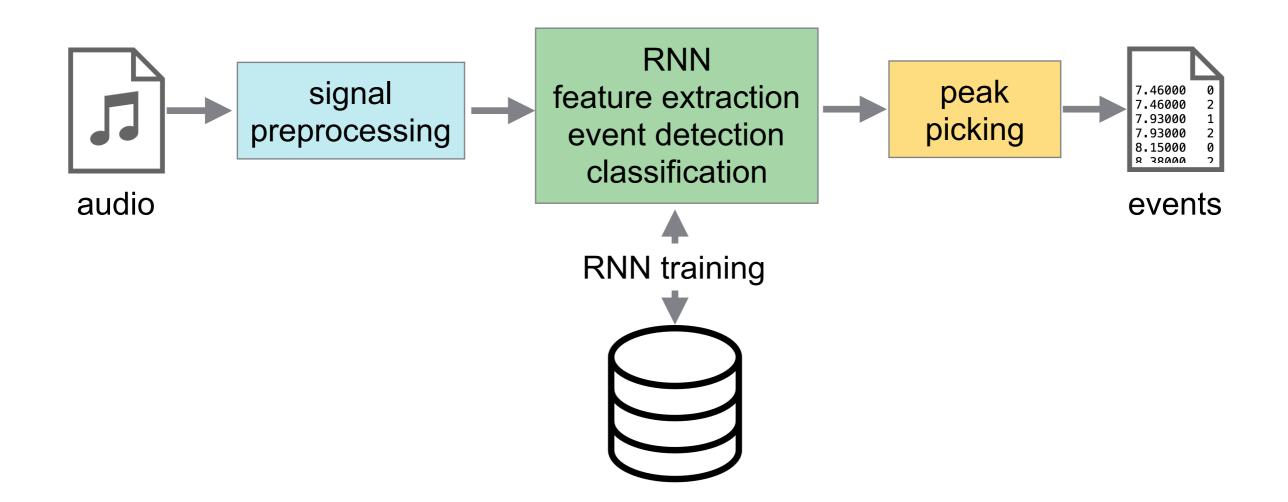
• Drop-out

- Randomly disable connections
 between second GRU layer and dense layer
- Label time shift instead of BDRNN

$$\Theta_{t+1} = \Theta_t - \eta \mathcal{G}_t$$
$$E[\mathcal{G}^2]_t = 0.9E[\mathcal{G}^2]_{t-1} + 0.1\mathcal{G}_t^2$$
$$\Theta_{t+1} = \Theta_t - \frac{\eta}{\sqrt{E[\mathcal{G}^2]_t + \epsilon}}\mathcal{G}_t$$



SYSTEM ARCHITECTURE



DATA / EVALUATION

- **IDMT-SMT-Drums** [Dittmar and Gärtner 2014]
 - Three classes (Real, Techno, and Wave / recorded/synthesized/ sampled)
 - 95 simple solo drum tracks (30sec), plus training and single instrument tracks
- ENST-Drums [Gillet and Richard 2006]
 - Drum recordings, three drummers on three different drum kits
 - ~75 min per drummer, training, solo tracks plus accompaniment
- Precision, Recall, F-measure for drum note onsets
- Tolerance: 20ms

EXPERIMENTS

• SMT optimized

- Six fold cross-validation on randomized split of solo drum tracks

• SMT solo

- Three fold cross-validation on different types of solo drum tracks

• ENST solo

 Three fold cross-validation on solo drum tracks of different drummers / drum kits

• ENST accompanied

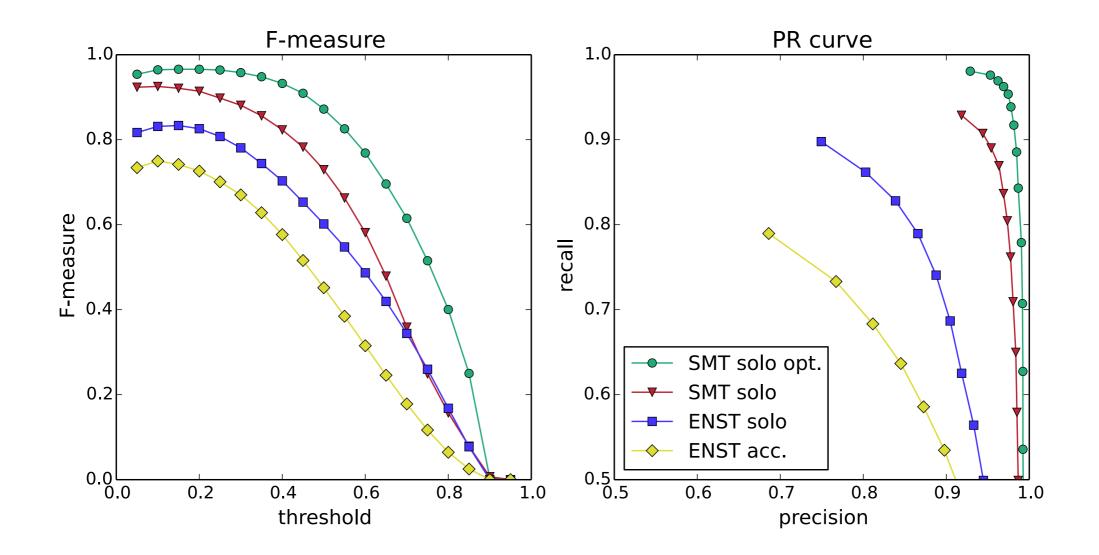
- Three fold cross-validation on tracks with accompaniment

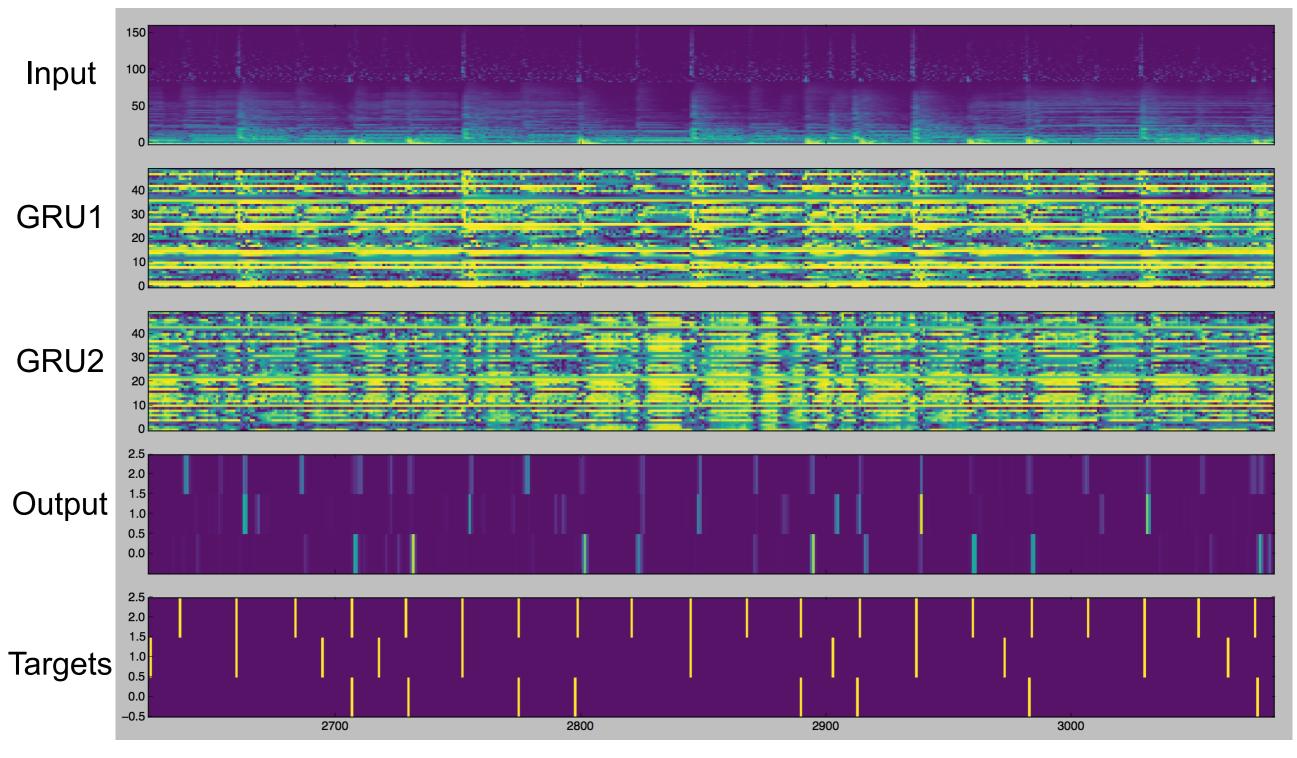
Method	SMT opt.	SMT solo	ENST solo	ENST acc.
NMF-SAB [Dittmar and Gärtner 2014]	95.0			
PFNMF [Wu and Lerch 2015]		81.6	77.9	72.2
HMM [Paulus and Klapuri 2009]			81.5	74.7
BDRNN [Southall et al. 2016]	96.1	83.3	73.2	66.9
tsRNN	96.6	92.5	83.3	75.0
	<i>δ</i> = 0.10	<i>δ</i> = 0.15	<i>δ</i> = 0.15	δ = 0.10

Method	SMT opt.	SMT solo	ENST solo	ENST acc.
NMF-SAB [Dittmar and Gärtner 2014]	95.0			
PFNMF [Wu and Lerch 2015]		81.6	77.9	72.2
HMM [Paulus and Klapuri 2009]	_		81.5	74.7
BDRNN [Southall et al. 2016]	96.1	83.3	73.2	66.9
tsRNN	96.6	92.5	83.3	75.0
	<i>δ</i> = 0.10	<i>δ</i> = 0.15	<i>δ</i> = 0.15	<i>δ</i> = 0.10

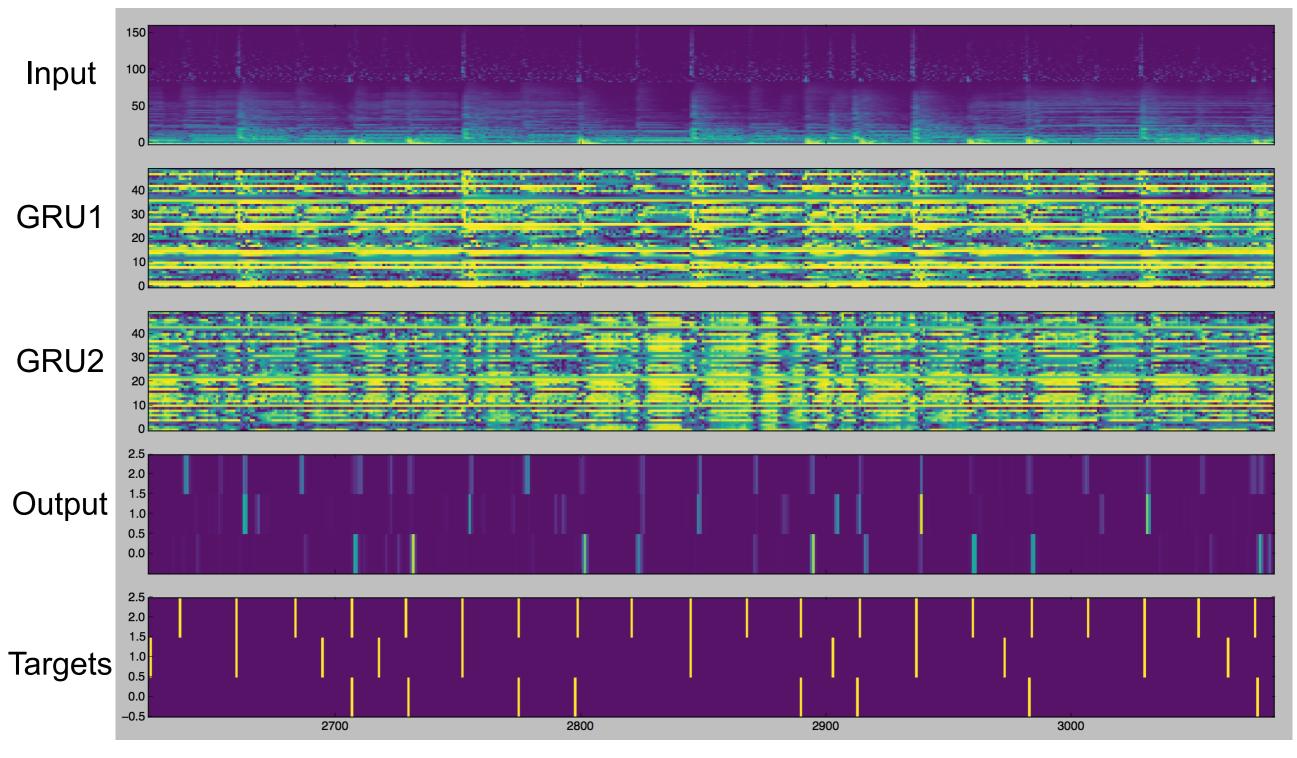
Method	SMT opt.	SMT solo	ENST solo	ENST acc.
NMF-SAB [Dittmar and Gärtner 2014]	95.0			
PFNMF [Wu and Lerch 2015]		81.6	77.9	72.2
HMM [Paulus and Klapuri 2009]			81.5	74.7
BDRNN [Southall et al. 2016]	96.1	83.3	73.2	66.9
tsRNN	96.6	92.5	83.3	75.0
	$\delta = 0.10$	δ = 0.15	$\delta = 0.15$	<i>δ</i> = 0.10

Method	SMT opt.	SMT solo	ENST solo	ENST acc.
NMF-SAB [Dittmar and Gärtner 2014]	95.0			
PFNMF [Wu and Lerch 2015]		81.6	77.9	72.2
HMM [Paulus and Klapuri 2009]			81.5	74.7
BDRNN [Southall et al. 2016]	96.1	83.3	73.2	66.9
tsRNN	96.6	92.5	83.3	75.0
	$\delta = 0.10$	$\delta = 0.15$	<i>δ</i> = 0.15	δ = 0.10

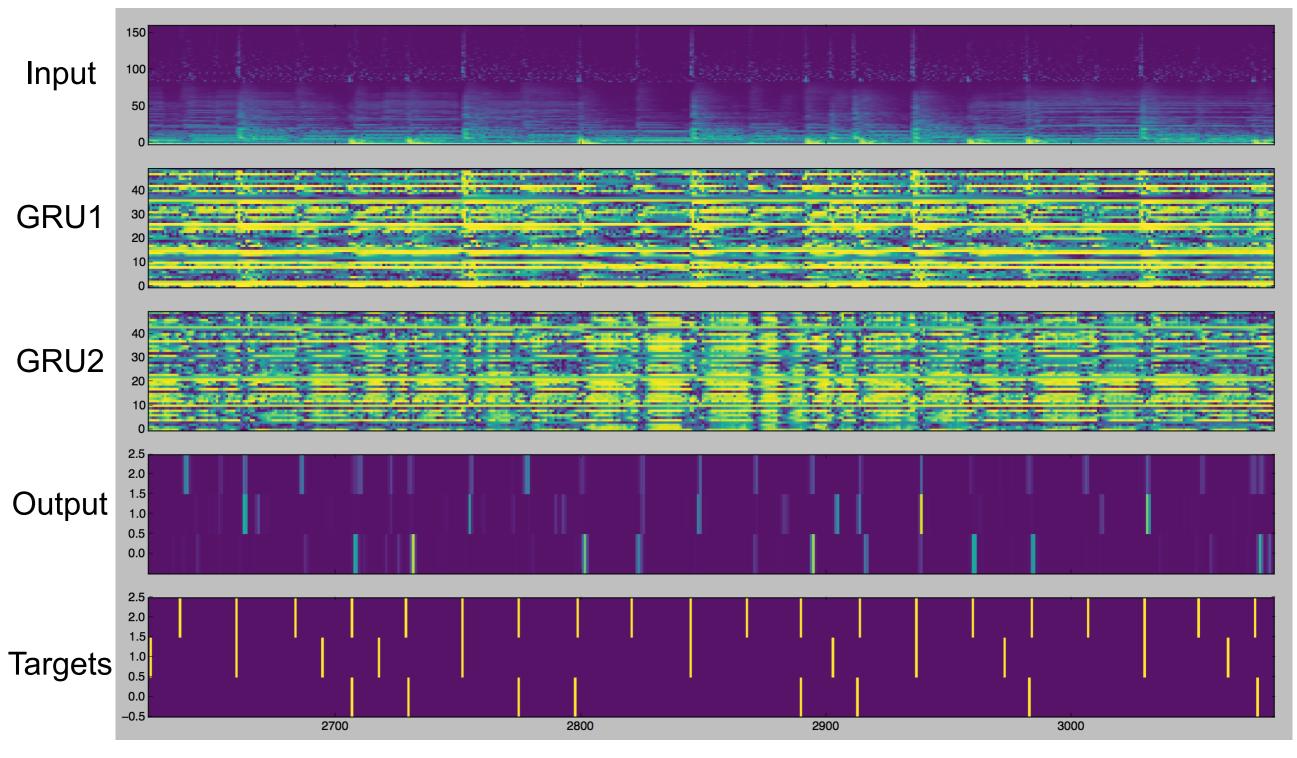




Time ->



Time ->



Time ->

CONCLUSIONS

- Towards a generic end-to-end acoustic model for drum detection using RNNs
- Data augmentation greatly improves generalization
- Weighting loss functions helps to improve detection of difficult instruments
- RNNs with label **time shift** perform equal to BDRNN
- Simple RNN architecture performs better or similarly well as handcrafted techniques
 while using a smaller tolerance window (20ms)

