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M End-to-end / activation-function-based

M Neural Networks and NMF-based approaches
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NETWORK MODELS — RNN

M Processing of spectrogram frames as sequential data
B Frame-wise detection of instrument onsets
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NETWORK MODELS — CNN

M Operate on small windows of spectrogram VGG - style architecture:
(current frame + spectral context) ¥

M Acoustic modeling of drum sounds 2 x conv: 32 x 3x3 (batch norm)
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NETWORK MODELS — CRNN

M Low-level CNN for acoustic modeling stacked CNN + RNN architecture:
M High-level RNN for music language model e ¥ ™
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When humans transcribe drums
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Inaudible onsets will be filled in if expected
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B IDMT-SMT-Drums [Dittmar and Gértner 2014] Jj
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NETWORK MODELS
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LIMITATIONS OF CURRENT SYSTEMS
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LIMITATIONS OF CURRENT SYSTEMS

B Do not produce additional information for transcripts QoeK - STRAIGHT 3THe o = 100 \
drum onset detection vs drum transcription @ At
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M Only three instrument classes

Richard Vogl, Gerhard Widmer, and Peter Knees, “Towards multi-instrument drum transcription,”
in Proc. 21th Intl. Conf. on Digital Audio Effects (DAFx18), Aveiro, Portugal, Sep. 2018.
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M Beats are highly correlated with drum patterns
(drum onset locations / repetitive patterns)

B Assume that prior knowledge of beats is helpful for drum transcription
M Use multi-task learning for beats and drums
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MULTI-TASK LEARNING

Training one model to solve multiple related tasks
Improve performance for each subtask = context!

Individual activation functions are already learned using multi-task learning
One network for all instruments
Instrument onsets are not independent
MIREX results show that it works better
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MULTI-TASK EXPERIMENTS

M Three experiments:

B Expected increase in performance for
M Desirable increase in performance for T compared to

>

>

» Training on drum and beat targets as multi-task problem (MT)

Training on drum targets (
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compared to
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NEW DATASETS
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RESULTS

Experiment
T
RNN (S) 598 | 636 | 646
RNN (L) 61.8 | 645 @ 643
S CNN(S) | 662 | 667 = 633
S CNN () 668 | 652 | 648
CRNN(S) | 652 = 661 | 669
CRNN(L) | 67.3 = 684 672

% F-measure for drum onsets, tolerance: +20ms, 3-fold cross-validation
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Experiment G PBM
a a “Poy. ,. 14
5 5 MT q’/}(
| | “Culy,
RNN (S) 508 | 636 | 646 /)
RNN (L) 618 | 645 | 643
S CNN (S) 662 | 667 | 63.3
o i E
= CNN(L) 66.8 | 652 | 64.8
CRNN (S) 652 | 66.1 | 669
CRNN(L) | 673 | 684 | 67.2

% F-measure for drum onsets, tolerance: +20ms, 3-fold cross-validation

... drum transcription
... DT plus beats as input features
MT ... DT and beat detection multi-tasking
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RESULTS: CNNs

Impact of beats for CNNSs:
L] inconsistent
M MT declines for both models

B Expected: CNNs have too
little context for beats
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RESULTS: CRNNs
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HOW DOES IT SOUND?

three instruments + beats
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