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Abstract

Addressing visual concept similarity as the central theme, we present in this deliverable

our works of constructing visual concepts under unsupervised and weak-supervised settings,

given the unlimited data availability from the Web. Three perspectives are under investigation.

First, Concept Map is proposed to discover representative image groups of visual concepts

from a noise-contaminated Web image collection. Second, FAME is a refinement method that

iteratively builds up visual concepts of face identities from Web images. Third, deep learning

is applied to learn a large amount of visual concepts from noise Web images. Promising results

obtained in our experiments demonstrate the applicability of using weakly labeled data to build

visual concepts as well as mechanisms to measure concept similarity.

Credibility Models for Multimedia Streams 3
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1 INTRODUCTION

The need for manually labelled data continues to be one of the most important limitations in large

scale recognition. Alternatively, images are available on the Web in huge amounts. This fact recently

attracted many researchers to build (semi-)automatic methods to learn from web data collected for

a given concept. However, there are several challenges that makes the data collections gathered

from web different from the hand crafted datasets. Images on the web are ”in the wild” inheriting

all types of challenges due to variations and effects. Since usually images are gathered based on the

surrounding text, the collection is very noisy with several visually irrelevant images as well as images

corresponding to different characteristic properties of the concept (Figure 1).

For the queried data for automatic learning of concepts, we propose in Section 2 a novel method

to obtain a representative groups with irrelevant images removed. 1Our intuition is that, given

a concept category by a query, although the list of images returned include irrelevant ones, there

will be common characteristics shared among subset of images. Our main idea is to obtain visually

coherent subsets, that are possibly corresponding to semantic sub-categories, through clustering and

to build models for each sub-category (see Figure 2). The model for each concept category is then

a collection of multiple models, each representing a different aspect.

To retain only the relevant images that describe the concept category correctly, during clustering

we need to remove outliers, i.e. irrelevant ones. The outliers may resemble to each other while not

being similar to the correct category resulting in a outlier cluster. Alternatively, outlier images

could be mixed with correct category images inside salient clusters corresponding to relevant ones.

These images, that we refer to as outlier elements, should also be removed for the quality data

for learning.

A novel method Concept Maps (CMAP) for which organises the data by purifying it not only

from outlier clusters but also from outlier elements in salient clusters. CMAP captures category

characteristics through organising the set of given instances into sub-categories pruned from irrel-

evant instances. In Section3 we present the application of CMAP into the problem of builing face

classifiers for public faces.

The keep-growing content of Web images is also the indispensable data source to scale up

scalable semi-supervised algorithms. Recent successes of deep neural networks have demonstrated

the power of training process based on huge amount of data. While current deep networks are

performant the supervised learning regime, harnessing Web images requires learning methods are

capable of learning from weakly labeled images and noisy data. In the second part of this chapter,

we propose to use convnet in order to leverage semi-supervised representation learning. We present

in Section 4 the approach that uses massive amounts of unlabeled and noisy Web images to train

convnets as general feature detectors despite challenges coming from data such as high level of

mislabeled data, outliers, and data biases. Extensive experiments were conducted at several data

scales, different network architectures, and data reranking techniques. The learned representations

are evaluated on nine public datasets of various topics. The best results obtained by our convnets,

Credibility Models for Multimedia Streams 4
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FIGURE 1: EXAMPLE WEB IMAGES FOR (A) SPOTTED, (B) OFFICE, (C) MOTORBIKES,

(D) ANGELINA JOLIE.

trained on 3.14 million Web images, outperforms AlexNet [37] trained on 1.2 million clean images

of ILSVRC 2012 and is closing the gap with VGG-16 [65]. These prominent results suggest a good

solution to use deep learning as an efficient tool to build large-scale visual concepts.

2 CONCEPT MAP

We propose CMAP which is inspired from the well-known Self Organizing Maps (SOM) [35]. In the

following, SOM will be revisited briefly, and then CMAP will be described.

Revisiting Self Organizing Maps (SOM): Intrinsic dynamics of SOM are inspired from

developed animal brain where each part is known to be receptive to different sensory inputs and

which has a topographically organized structure[35]. This phenomena, i.e. "receptive field" in visual

neural systems [32], is simulated with SOM, where neurons are represented by weights calibrated

to make neurons sensitive to different type of inputs. Elicitation of this structure is furnished by

competitive learning approach.

Consider input X = {x1, .., xM} with M instances. Let N = {n1, ..., nK} be the locations

of neuron units on the SOM map and W = {w1, ..., wK} be the associated weights. The neuron

whose weight vector is most similar to the input instance xi is called as the winner and denoted by

v̂. Weights of the winner and units in the neighbourhood are adjusted towards the input at each

iteration t with delta learning rule.

wtj = wt−1j + h(ni, nv̂ : ε
t, σt)[xi − wt−1j ] (1)

Update step is scaled by the window function h(ni, nv̂ : εt, σt) for each SOM unit, inversely propor-

tional to the distance to the winner (Eq.2). Learning rate ε is a gradually decreasing value, resulting

in larger updates at the beginning and finer updates as the algorithm evolves. σt defines the neigh-

bouring effect so with the decreasing σ, neighbour update steps are getting smaller in each epoch.

Note that, there are different alternatives for update and windows functions in SOM literature.

h(ni, nv̂ : ε
t, σt) = εt exp

−||nj − nv̂||2

2σt2
(2)

Credibility Models for Multimedia Streams 5
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FIGURE 2: OVERVIEW OF OUR FRAMEWORK FOR CONCEPT LEARNING SHOWN ON EX-

AMPLE CONCEPT "RED". CONCEPT MAP (CMAP) ORGANISES THE IMAGES COLLECTED

FROM WEB FOR THE GIVEN TEXT QUERY INTO CLUSTERS WHICH ARE PRUNED FROM

OUTLIER ELEMENTS INSIDE SALIENT CLUSTERS AND OUTLIER CLUSTERS. EACH CLUS-

TER IS THEN USED AS A SUB-MODEL FOR LEARNING AND LOCALISING THE CONCEPT

IN A NOVEL IMAGE.

Clustering and outlier detection with CMAP:We introduce excitation scoresE = {e1, e2, . . . , eK}
where ej, the score for neuron unit j, is updated as in Eq.3.

etj = et−1j + ρt(βj + zj) (3)

As in SOM, window function is getting smaller with each iteration. zj is the activation or win count

for the unit j, for one epoch. ρ is learning solidity scalar that represents the decisiveness of learning

with dynamically increasing value, assuming that later stages of the algorithm has more impact on

the definition of salient SOM units. ρ is equal to the inverse of the learning rate ε. βj is the total

measure of the activation of jth unit in an epoch, caused by all the winners of the epoch but the

neuron itself (Eq.4).

βj =
u∑
v̂=1

h(nj, nv̂)zv̂ (4)

At the end of the iterations, normalized ej is a quality value of a unit j. Higher value of ej
indicates that total amount of excitation of the unit j in whole learning period is high thus it is

responsive to the given class of instances and it captures notable amount of data. Low excitation

values indicate the contrary. CMAP is capable of detecting outlier units via a threshold θ in the

range [0, 1].

Let C = {c1, c2, . . . , cK} be the cluster centres corresponding to each unit. cj is considered to

be a salient cluster if ej ≥ θ, and an outlier cluster otherwise.
Credibility Models for Multimedia Streams 6
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The excitation scores E are the measure for saliency of neuron units in CMAP. Given the data

belonging to a category, we expect that data is composed of sub-categories that share common

properties. For instance red images might include tones to be captured by clusters but they are

supposed to share a common characteristics of being red. For the calculation of the excitation scores

we use individual activations of the units as well as the neighboring activations. Individual activations

measure being a salient cluster corresponding to a particular sub-category, such as lighter red.

Neighborhood activations count the saliency in terms of the shared regularity between sub-categories.

If we don’t count the neighborhood effect, some unrelated clusters would be called salient, e.g. noisy

white background patches in red images.

Outlier instances in salient clusters (outlier elements) should also be detected. After the de-

tection of outlier neurons, statistics of the distances between neuron weight wi and its corresponding

instance vectors is used as a measure of instance divergence. If the distance between the instance

vector xj and its winner’s weight ŵi is more than the distances of other instances having the same

winner, xj is raised as an outlier element. We exploit box plot statistics, similar to [49]. If the

distance of the instance to its cluster’s weight is more than the upper-quartile value, then it is an

outlier. The portion of the data, covered by the upper whisker is decided by τ .

CMAP provides good basis of cleansing of poor instances whereas computing cost is relatively

smaller since an additional iteration after clustering phase is not required. All the necessary informa-

tion (excitation scores, box plot statistics) for outliers is calculated at runtime of learning. Hence,

CMAP is suitable for large scale problems.

CMAP is also able to estimate number of intrinsic clusters of the data. We use PCA as a simple

heuristic for that purpose, with defined variance ν to be retained by the selected first principle

components. Given data, principle components describing the data with variance ν is used as the

number of clusters for the further processing of CMAP. If we increase ν, CMAP latches more clusters.

Num.Clusters = max
q

(∑q
i=1 λi∑p
j=1 λj

≤ ν
)

(5)

q is the number of top principle components selected after PCA and p is the dimension of

instance vectors. λ is the eigenvalue of corresponding component.

2.1 CONCEPT LEARNING WITH CMAP

We utilise the clusters, that are obtained through CMAP as presented above, for learning sub-models

in concepts. We exploit the proposed framework for learning of attributes, scenes, objects and faces.

Each task requires the collection of data, clustering and outlier detection with CMAP, and training of

sub-models from the resulting clusters. In the following, first we will describe the attribute learning,

and then describe the differences in learning other concepts. Implementation details are presented

in Section2.2

Learning low-level attributes: Most of the methods require learning of visual attributes

from labelled data, and cannot eliminate human effort. Here, we describe our method in learning
Credibility Models for Multimedia Streams 7
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In the real code we use vectorized implementation whereas we write down iterative

pseudo-code for the favour of simplicity.

Input: X, θ, τ , K, T , ν, σinit, εinit

Output: OutlierUnits,Mapping,W

set each item zi in Z to 0

u← estimateUnitNumber(X, variation)

W ← randomInit(u)

while t ≤ T do

εt ← computeLearningRate(t, εinit)

ρt ← 1/εt

set each item βi in B to 0

select a batch set X t ⊂ X with K instances

for each xi ∈ X do

ŵti ← findWinner(xi,W )

v̂ ← minj(||xi − wj||)
increase win count zŵt ← zŵt

i
+ 1

increase win count zv̂ ← zv̂ + 1

for each wk ∈ W do

βtk = βtk + h(nk, nv̂)

wk = wk + h(nk, nv̂)||xi − wv̂||
end

end

for each wj ∈ W do
etj = et−1j + ρt(βtj + zj)

end

t← t+ 1

end

Wout ← thresholding(E, θ)

Win ← W \Wout

Mapping ← findMapping(Win, X)

Whiskers← findUpperWhiskers(Win, X)

Xout ← findOutlierIns(X,Win,Whiskers, τ)

return Wout, Xout,Mapping,W

Algorithm 1: CMAP

attributes from web data without any supervision.

We collect web images through querying colour and texture names. The data is weakly labelled,

with the labels given by queries. Hence, there are irrelevant images in the collection, as well as

images with a tiny portion corresponding to the query keyword.

Credibility Models for Multimedia Streams 8
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Each image is densely divided into non-overlapping fixed-size patches to sufficiently capture the

required information. We assume that the large volume of the data itself is sufficient to provide

instances at various scales and illuminations, thus we did not perform any scaling or normalization.

The collection of patches extracted from all images for a single attribute is then given to CMAP to

obtain clusters which are likely to capture different characteristics of the attribute as removing the

irrelevant ones.

Each cluster obtained through CMAP is used to train a separate classifier. Positive examples

are selected as the members of the cluster and negative instances are selected among the outliers

removed by CMAP and also elements from other categories.

Learning scene categories: To show CMAP capability on higher level concepts, we target

scene categories. In this case, we use the entire images as instances, and aim to discover groups

of images each representing a different property of the scene, at the same time by eliminating the

images that are either spurious. These clusters are then used as models similar to the attribute

learning.

Learning object categories: In the case of objects, we detect salient regions on each image

via [17], to eliminate background noise. Then these salient regions are fed into CMAP framework

for clustering.

Learning faces: We address the problem of learning faces associated with a name -which is

generally referred to face naming in the literature-, through finding salient clusters in the set of

images collected from web through querying the name. Here, the clusters are likely to correspond

to different poses and possibly different hair and make-up style differences as well as ageing effects.

Note that this task is not the detection of faces, but recognition of faces for a given name. We

detect the faces in the images, and only use a single face with the highest confidence for each image.

2.2 EXPERIMENTS

2.2.1 QUALITATIVE EVALUATION OF CLUSTERS

As Figure 3 depicts, CMAP captures different characteristics of concepts in separate salient clusters,

while eliminating outlier clusters that group irrelevant images coherent among themselves, as well

as outlier elements wrongly mixed with the elements of salient clusters . On more difficult tasks

of grouping objects and faces, CMAP is again successful in eliminating outlier elements and outlier

clusters as shown in Figure 4.

2.2.2 ATTRIBUTE LEARNING

Datasets and representation: We collected images from Google for 11 distinct colours as in [74]

and 13 textures. We included the terms "colour" and "texture" in the queries, such as ”red colour",

or "wooden texture". For each attribute, 500 images are collected. In total we have 12000 web

images. Each image is divided into 100x100 non-overlapping patches. Unlike [74], we didn’t apply

Credibility Models for Multimedia Streams 9
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FIGURE 3: FOR COLOUR AND TEXTURE ATTRIBUTES BROWN AND VEGETATION AND

SCENE CONCEPT BEDROOM, RANDOMLY SAMPLED IMAGES DETECTED AS (I) ELE-

MENTS OF SALIENT CLUSTERS, (II) ELEMENTS OF OUTLIER CLUSTERS, AND (III)

OUTLIER ELEMENTS IN SALIENT CLUSTERS. CMAP DETECTS DIFFERENT SHADES OF

"BROWN" AND ELIMINATES SOME SUPERIORS ELEMENTS BELONGING THE DIFFERENT

COLORS. FOR THE "VEGETATION" AND "BEDROOM", CMAP AGAIN DIVIDES THE VISUALS

ELEMENTS WITH RESPECT TO STRUCTURAL AND ANGULAR PROPERTIES. ESPECIALLY

FOR "BEDROOM", EACH CLUSTER IS ABLE TO CAPTURE DIFFERENT VIEW-ANGLE OF

THE IMAGES AS IT SUCCESSFULLY REMOVES OUTLIER INSTANCES WITH SOME OF LIT-

TLE MISTAKES THAT ARE BELONGING TO THE LABEL BUT NOT REPRESENTATIVE (CIR-

CULAR BED IN VERY SHINY ROOM) FOR THE CONCEPT PART.

Credibility Models for Multimedia Streams 10
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FIGURE 4: CMAP RESULTS FOR OBJECT AND FACE EXAMPLES. LEFT COLUMNS SHOWS

ONE EXAMPLE OF SALIENT CLUSTER. MIDDLE COLUMN SHOWS OUTLIER INSTANCES

CAPTURED FROM SALIENT CLUSTERS. RIGHT COLUMN IS THE DETECTED OUTLIER

CLUSTERS.

gamma correction. For colour concepts we use 10x20x20 bins Lab colour histograms and for texture

concepts we use BoW representation for densely sampled SIFT [45] features with 4000 words. We

keep the feature dimensions high to utilise from the over-complete representations of the instances

with L1 norm linear SVM classifier.

Attribute recognition on novel images: The goal of this task is to label a given image with

a single attribute name. Although there may be multiple attributes in a single image, for being

able to compare our results on benchmark data-sets we consider one attribute label per image. For

this purpose, first we divide the test images into grids in three levels using spatial pyramiding [39].

Non-overlapping patches (with the same size of training patches) are extracted from each grid of all

three levels. Recall that, we have multiple classifiers for each attribute trained on different salient

clusters. We run all the classifiers on each grid for all patches. Then, we have a vector of confidence

values for each patch, corresponding to each particular cluster classifier. We sum those confidence

vectors of each patch in the same grid. Each grid at each level is labelled by the maximum confidence

classifier among all the outputs for the patches. All of those confidence values are then merged with

a weighted sum to a label for the entire image. Di =
∑3

l=1

∑Nl

n=1
1

23−lhie
−(x̂−x)/2σ2 Here, Nl is the

grid number for level l and hi is the confidence value for grid i. We include a Gaussian filter, where

x̂ is center of the image and x is location of the spatial pyramid grid, to give more priority to the

detections around the center of the image for reducing noisy background effect.

For evaluation we use three different datasets. The first dataset is Bing Search Images curated

by ourselves from the top 35 images returned with the same queries we used for initial images. This

set includes 840 images in total for testing. Second dataset is Google Colour Images [74] previously

Credibility Models for Multimedia Streams 11



01/03/2015

used by [74] for learning colour attributes. Google Colour Images includes 100 images for each color

name. We used the whole data-sets only for testing of our models learned on a possibly different

set that we collected from Google, contrary to [74]. The last dataset is sample annotated images

from ImageNet [64] for 25 attributes. To test the results on a human labelled dataset, we use Ebay

dataset provided by [74] which has labels for the pixels in cropped regions. It includes 40 images for

each colour name.

Figure 5 compares the overall accuracy of the proposed method (CMAP) with three other

methods on the task of attribute learning. As the baseline (BL), we use all the images returned for

the concept query to train a single model. As expected, the performance is very low suggesting that

a single model trained by crude noisy web images performs poorly and the data should be organised

to train at least some qualified models from coherent clusters in which representative images are

grouped. As two other methods for clustering the data, we used k-means (KM) and original SOM

algorithm (SOM) with optimal cluster number, decided by cross-validation of whole pipeline, and

again train a model for each cluster. The low results support the need for pruning of the data

through outlier elimination. Results show that, CMAP’s clusters are able to detect coherent and

clean representative data groups so we train less number of classifiers by eliminating outlier clusters

but those classifiers better in quality and also, on novel test sets with images having different

characteristics than the images used in training, CMAP can still perform very well on learning of

attributes.

Our method is also utilised for retrieving images on EBAY dataset as in [74]. [74] learns the

models from web images and apply the models to another set so both method study a similar

problem. We utilise CMAP with patches obtained from the entire images (CMAP) as well as from

the masks provided by [74] (CMAP-M). As shown in Figure 5 Right, even without masks CMAP

is comparable to the performance of the PLSA based method of [74], and with the same setting

CMAP outperforms the PLSA based method with significant performance difference.

On ImageNet, we obtained 37.4% accuracy compared to 36.8% of [64]. It is also seen that,

our models trained from different source of information are better to generalize for some of worse

performance classes (rough, spotted, striped, wood) of [64]. Recall that we globally learn the

attribute models from web images, not from any partition of the ImageNet. Thus, it is encouraging to

observe better results in such a large data-set against [64]’s attribute models trained by a sufficiently

large training subset.

Attribute based scene recognition: While the results on different datasets support the ability of

our approach to be generalised to different datasets, we also perform experiments to understand the

effect of the learned attributes on a different task, namely for classification of scenes using entirely

different collections. Experiments are performed on MIT-indoor [59], and Scene-15 [39] datasets.

MIT-indoor has 67 different indoor scene with 15620 images with at least 100 images for each

category and we use 100 images from each class to test our results. Scene-15 is composed by 15

different scene categories. We use 200 images from each category for our testing. MIT-indoor is

Credibility Models for Multimedia Streams 12
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FIGURE 5: LEFT: ATTRIBUTE RECOGNITION PERFORMANCES ON NOVEL IMAGES COM-

PARED TO OTHER METHODS. RIGHT: EQUAL ERROR RATES ON EBAY DATASET FOR

IMAGE RETRIEVAL USING THE CONFIGURATION OF [?]. CMAP DOES NOT UTILIZE THE

IMAGE MASKS USED IN [?], WHILE CMAP-M DOES.

extended and even harder version of Scene-15 with many additional categories.

We again get the confidence values for each grid in three levels of the spatial pyramid on the

test images. However, rather than using a single value for the maximum classifier output, we keep

the confidence values for all the classifiers for each grid. We concatenate these vectors for all grids

in all levels to get a single feature vector of size 3xNxK for the image, which is then used for

scene classification. Here N is the number of grids at each level, and K is the number of different

concepts. Note that, while the attributes are learned in an unsupervised way, in this experiment

scene classifiers are trained on the datasets provided (see next section for automatic scene concept

learning).

As shown in Table 1, our method for scene recognition with learned attributes (CMAP-A),

performs competitively with [43] while using shorter feature vectors in relatively cheaper environment,

and outperforms the others. Comparisons with [59] show that using the visual information acquired

from attributes is more descriptive in the cluttered nature of MIT-indoor scenes. For instance,

"bookstore" images has very similar structural layout to "clothing store" images, but they are more

distinct with colour and texture information around the scene. Attribute level features do not create

this much difference for Scene-15 data-set since images include some obvious statistical differences.

2.2.3 LEARNING CONCEPTS FOR SCENE CATEGORIES

Alternative to recognising scenes through the learned attributes, we directly learn higher level con-

cepts for scene categories. We call this method as CMAP-S. Specifically, we perform testing for

scene classification for 15 scene categories on [39] and MIT-indoor [59] data-sets, but learn the

scene concepts directly from the images collected from Web through querying for the names of the

Credibility Models for Multimedia Streams 13



01/03/2015

- CMAP-A CMAP-S CMAP-S+HM Li et al. [43] VQ Pandey et al. [56] Kwitt et al. [38] Lazebnik et al. [39] Singh et al. [67]

MIT-indoor [59] 46.2% 40.8% 41.7% 47.6% 43.1% 44% - 38%

Scene-15 [39] 82.7% 80.7% 81.3% 82.1% - 82.3% 81% 77%

TABLE 1: COMPARISON OF OUR METHODS ON SCENE RECOGNITION IN RELATION TO

STATE-OF-THE-ART STUDIES ON MIT-INDOOR AND SCENE-15 DATASETS.

scene concepts used in these datasets. That is, we do not use any manually labelled training set (or

training subset of the benchmark data-sets), but directly the crude web images which are pruned and

organised by CMAP, in contrast to comparable fully supervised methods. As shown in Table 1, our

method is competitive with the state-of-the-art studies without requiring any supervised training.

We then made a slight change on our original CMAP-S implementation by using the hard-

negatives of previous iteration as a negative set of next iteration (we refer to this new method as

CMAP-S-HM). We relax the memory needs with less but strong negative instances. As the results

in Table 1 and Figure 6 show, we achieve better performances in Scene-15 than the state-of-the-art

studies with this simple addition, still without requiring any supervisory input. However, on a harder

MIT-indoor dataset, without using attribute information, low-level features are not very distinctive.

In order to understand the effect of discriminative visual features, which aim to capture repre-

sentative and discriminative mid-level features, we also compare our method with the work of Singh

et al. [67]. As seen in Table 1, our performances are better than both their reported results on

MIT-indoor [59], and our implementation on Scene-15 [39].

2.2.4 LEARNING CONCEPTS OF OBJECT CATEGORIES

We learn object concepts from Google web images [21] and compare our results with [21] and

[42] (Figure 6 Right). [21] provides a data-set from Google with 7 classes and total 4088 gray scale

images, 584 images in average for each class with many "junk" images in each class as they indicated.

They test their results in a manually selected subset of Caltech Object data-set. Because of its raw

nature of the Google images and adaptation to the Caltech subset, it is a good experimental ground

for our pipeline.

Salient regions extracted from images are represented with 500 word quantized SIFT [45] vector

with additional 256 dimension LBP [53] vector. In total we aggregated a 756 dimension vector

representation for each salient region. At the final stage of learning with CMAP, we learn L2 norm,

linear SVM classifiers for each cluster with negatives are gathered from other classes and the global

outliers. For each learning iteration, we also apply hard mining to cull highest rank negative instances

in the amount 10 times of salient instances in the cluster. All pipeline hyper-parameters are tuned

via the validation set provided by [21]. Given a novel image, learned classifiers are passed over the

image with gradually increasing scales, up to a point where the maximum class confidences are

stable. Among class confidences, maximum confidence indicates the final prediction for that image.

We observe 6.3 salient clusters in average for all classes and 69.4 instances for each salient clusters.

That is, CMAP eliminates 147 instances for each class as supposedly outlier instances. Results
Credibility Models for Multimedia Streams 14
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1 CMAP [39]

CMAP [21] [42] CMAP [21] [42]

airplane 0.63 0.51 0.76 car 0.97 0.98 0.94

face 0.67 0.52 0.82 guitar 0.89 0.81 0.60

leopard 0.76 0.74 0.89 motorbike 0.98 0.98 0.67

watch 0.55 0.48 0.53 overall 0.78 0.72 0.75

FIGURE 6: TOP: COMPARISONS ON SCENE-15 DATASET. OVERALL ACCURACY IS 81.3%

FOR CMAP-S+HM , VERSUS 81% FOR LAZEBNIK ET AL [39]. CLASSES "INDUSTRIAL",

"INSIDECITY", "OPENCOUNTRY" RESULTS VERY NOISY SET OF WEB IMAGES, HENCE

TRAINED MODELS ARE NOT STRONG ENOUGH AS MIGHT BE OBSERVED FROM THE

CHART. BOTTOM: CLASSIFICATION ACCURACIES OF OUR METHOD IN RELATION TO

FERGUS ET AL. [21] AND LI ET AL [42].

support that elimination of "junk" images gives significant improvements, especially for the noisy

classes in [21].

2.2.5 LEARNING FACES

We use FAN-large [55] face data-set for testing our method in face recognition problem. We use

Easy and Hard subsets with the names accommodating more than 100 images (to have fair testing

results). Our models are trained over web images queried from Bing Image search engine for the

same names. All the data preprocessing and the feature extraction flow follow the same line of [55],

that is owned from [20]. However, [55] trains the models and evaluates the results at the same

collection.

We retrieve the top 1000 images from Bing results. Face are detected and face with the highest

confidence is extracted from each image to be fed into CMAP. Face instances are clustered and

spurious face instances are pruned. Salient clusters are used for learning SVM models for each

cluster in the same settings of the object categories. For our experiments we used two different face

detectors. One is cascade classifier of [76] implemented in OpenCV library [7] and another is [87]

with more precise detection results, even the OpenCV implementation is very fast relatively. Results
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Method GBC+CF(half)[55] CMAP-1 CMAP-2 BaseLine

Easy 0.58 0.63 0.66 0.31

Hard 0.32 0.34 0.38 0.18

TABLE 2: FACE LEARNING RESULTS WITH DETECTING FACES USING OPENCV(CMAP-1)

AND ZHU ET AL. [87](CMAP-2).

are depicted at Table 2 with two different face detection method and baseline result with models

trained on raw Bing images for each person.

3 ASSOCIATION AS MODEL EVOLUTION

As a special case for learning concepts, we attack the problem of building classifiers for public

faces from web images collected through querying a name.Constituting an important portion of the

queries, searching for people requires to manage large number of face images piling up on the web.

With the recent advances, especially for celebrities and politicians, the returned results -even with

a query based on the textual content- provide a large pool of positive instances. This suggests

the use of returned results for building models automatically in developing large-scale systems and

eliminating the human effort.

Although queries for the popular people are likely to provide more promising results compared

to the others (see Figure 7), famous people tend to change their make-up, hair style/color, and

accessories more often, and they are photographed in unconstrained environments and conditions

with a diverse set of sources, resulting in a large variety in their visual appearances. They are also

likely to be captured with others, and their names are mentioned in stories related to others, causing

irrelevant faces to be retrieved.

For the query results to be helpful in building models, faces corresponding to other people should

be eliminated and discriminative as well as diverse set of faces for the queried individuals should be

selected.

In this study, we address the problem of building models for identification of faces through

exploiting the weakly labeled web data. We propose a new method, Face Association through

Model Evolution (FAME), that utilizes the noisy results obtained through a name query to

construct models. Our models evolve through consecutive iterations to associate the query name

with the correct set of faces. These models are then used to label faces on novel datasets. FAME

removes the outlier faces in constructing models, while retaining the diversity as much as possible.

Figure 8 depicts the overview of FAME. Details will follow the review of the relevant studies and

the benchmark datasets used in the experiments.
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FIGURE 7: THE SEARCH RESULTS FOR ANGELINA JOLIE ARE MORE SATISFACTORY

THAN THE ONES FOR AILEEN QUINN SINCE THERE ARE MORE INSTANCES ENCOUN-

TERED ON THEWEB. ON THE OTHER HAND, ANGELINA JOLIE IS PICTUREDMORE OFTEN

IN A DIVERSE SET OF CONDITIONS AND OUTFITS, CAUSING LARGER VARIETY IN HER

LOOKS COMPARED TO AILEEN QUINN WHOSE PICTURES ARE MOSTLY TAKEN FROM

THE MOVIE ANNIE. IN BOTH CASES, IT IS LIKELY FOR THE RETURNED IMAGES TO IN-

CLUDE MORE THAN A SINGLE PERSON: EITHER IRRELEVANT PEOPLE DUE TO THE TEXT

MENTIONING THE NAME IN A DIFFERENT STORY, OR THE OTHERS IN RELATION WITH

THE QUERIED PERSON.
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FIGURE 8: OVERVIEW OF THE PROPOSED METHOD. THE DATA IS PRUNED FROM SPU-

RIOUS INSTANCES THROUGH ELIMINATING THE OUTLIERS. THEN, THE MOST CONFI-

DENT IN-CLASS EXAMPLES ARE UTILIZED TO BUILD THE MODELS. THESE SUCCESSIVE

STEPS ARE REPEATED TO CONSTRUCT THE FINAL MODEL.

3.1 MODEL EVOLUTION

An important caveat in learning models from weakly-labeled data is the impurity of the collection.

Spurious instances in the collection should be eliminated before generating models for the categories.

We present an approach for learning better models through iteratively pruning the data (see Figure 2).

The proposed method allows the models to evolve through eliminating the outlier instances and

separating the most confident instances from the others with successive linear classifiers.

First, we learn a hyperplane that separates the initial set of candidate class instances from

the large set of global negatives representing the rest of the world against the class of interest.

Then, we select some fraction of the class instances distant from the separating hyperplane and use

them as the category references as they are confidently classified against the rest of the world.

We consider the rest of the class instances as possible spurious instances.

We then learn another model to capture in-class dissimilarities between the category references

and possible spurious instances. We combine the confidence scores of the first and the second

models as a measure of instance saliency. This combination allows us to benefit both from being

different from the rest of the world, and in-class affinity of the instance. We detect instances with

the lowest confidence scores as the outliers for that iteration. These steps are iterated multiple times

up to a desired level of pruning (see Figure 9).

The large dimensional representation used (see Section 3.1.2) allows the diverse set of positive

examples to be kept in the final model, but might cause computational burden with complicated

learning models. Therefore, we leverage simple linear regression (LR) models with L1 norm regular-
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FIGURE 9: ONE STEP OF MODEL EVOLUTION. FIRST, A MODEL M1 IS LEARNED TO

SEPARATE CANDIDATE CATEGORY INSTANCES FROM GLOBAL NEGATIVES. THEN, THE

MOST CONFIDENTLY CLASSIFIED EXAMPLES ARE CONSIDERED AS CATEGORY REFER-

ENCES. ANOTHER MODEL M2 IS LEARNED TO SEPARATE THE CATEGORY REFERENCES

FROM THE OTHER CANDIDATES. SPURIOUS INSTANCES THAT LIE FARTHEST FROM THE

HYPERPLANE ARE ELIMINATED.

ization performing sparse feature selection as the learning evolves.

Note that, our focus is to eliminate the outliers and purify the data while keeping most of the

positives, and therefore it is not sufficient to only select most confident instances.

3.1.1 ITERATIVE DATA ELIMINATION

Algorithm 2 summarizes our data elimination procedure. Here, C = {c1, c2, . . . cm} refers to the

example face images collected for a class and N = {n1, n2, ..., nl} refers to the vast numbers of

global negatives. Each vector is a d dimensional representation of a single face image.

At each iteration t, the first LR model M1 learns a hyperplane between the candidate class

instances C and global negatives N . Then, C is divided into two subsets: p instances in C that are

farthest from the hyperplane are kept as the candidate positive set (C+) and the rest is considered

as the negative set (C−) for the next model. C+ is the set of salient instances representing the
Credibility Models for Multimedia Streams 19
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C0 ← C

t← 1

while stoppingConditionNotSatisfied() do

M1
t ← LogisticRegression(Ct−1, N)

C+
t ← selectTopPositives(Ct−1,M

1
t , p)

C−t ← Ct−1 − C+
t

M2
t ← LogisticRegresstion(C+

t , C
−
t )

[S−1 , S
−
2 ]← getConfidenceScores(C−t ,M

1
tM

2
t )

Ot ← selectOutliers(C−t , S
−
1 , S

−
2 , o)

Ct ← Ct−1 −Ot

t← t+ 1

end

C ← Ct

return C
Algorithm 2: FAME

category references for the class and C− is the set of possible spurious instances.

The second LR model M2 uses C+ as positive and C− as the negative set to learn the best

possible hyperplane separating them. For each instance in C−, by aggregating the confidence values

of both models, o instances with the lowest scores are eliminated as the outliers.

This iterative procedure continues until it satisfies a stopping condition. We use M1’s objective

as the measure of data quality. As we incrementally remove poor instances, we expect to have

better separation against the negative instances. If it saturates after a small number of iterations,

we guarantee that at least 0.1 of the initial data is removed.

3.1.2 REPRESENTATION

Being effective, variants of Locally Binary Patterns (LBP) have been heavily utilized in the literature

[1, 80, 10, 62].

Following the same direction we exploit LBP features.

To represent face images we learn two distinct set of filters by an unsupervised method as in [12]

(Figure 10). First set is learned from the raw-pixel random patches extracted from grey-scale images.

The second set is learned from LBP encoded images [1].

First set is receptive to edge- and corner-like structural points and the second set is sensitive

to textural commonalities of the LBP histogram statistics. LBP encoded images are invariant to

illumination since the intensity relations between pixels are considered instead of pixel values. We use

rotation invariant LBP encoding [52] that gives binary codes for each pixel. We convert these binary

codes into corresponding integer values. A Gaussian filter is used to smooth out the heavy-tailed

locations.
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(a) (b) (c) (d)

FIGURE 10: RANDOM SET OF FILTERS LEARNED FROM (A) WHITENED RAW IMAGE

PIXELS, (B) LBP ENCODED IMAGES. (C) OUTLIERS FOR RAW-IMAGE FILTERS. (D) LBP

ENCODING FOR AN RGB IMAGE. WE MIGHT OBSERVE EYE OR MOUNT SHAPED FILTERS

FROM THE RAW IMAGE FILTERS AND MORE TEXTURAL INFORMATION FROM THE LBP

ENCODED FILTERS. OUTLIER FILTERS ARE VERY CLUTTERED AND OBSERVE LOW NUM-

BER OF ACTIVATIONS MOSTLY FROM BACKGROUND PATCHES.

First, we extract a set of randomly sampled patches in the size of predefined receptive field.

Then, contrast normalization is applied to each patch (for only raw-image filters) and patches are

whitened to reduce the correlations among dimensions. These patches are clustered into K groups

using k-means. We perform thresholding to centroids with box-plot statistics over the activations

counts to remove the outlier centroids. After the learning phase, centroid activations are collected

from receptive fields with small striding. We applied spatial average pooling onto five different grids

(center and four quadrants). This yields a 5xK dimensional representation for each face, for each

different set of filters. We use triangular activation function to map each receptive field to learned

centroids. Assuming the patches assigned to outlier centroids are not relevant, we avoid them in

pooling.

3.2 EXPERIMENTS

For web-scale face verification, the task of given two face images deciding whether both belong to

the same person, performances are closely approaching to human level [71]. We are interested in

face identification, i.e. inferring the identity of people from their face images, and thus the setup is

different than face verification.

3.2.1 DATASETS

Training images are collected from Bing, and benchmark datasets FANlarge [54] and PubFig83 [57]

are used to test.

Bing collection: For each name, 500 images are gathered using Bing image search1. Categories

are chosen as the people having more than 50 annotated face images in FAN-large or PubFig83

datasets. In total, 22,6691 images are collected corresponding to 365 names in FAN-large, and

83 names in PubFig83. Additional 2,500 face images for queries “female face”, “male face”,‘ ‘face
1https : //www.bing.com/
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images” are collected to construct the global negatives. Face detector of [87] is used for detecting

faces. Only the most confident detection is selected from each image to be put into the initial pool

of faces associated with the name. This process results in 450 faces on the average per category.

Other detections are added to global negatives. Note that, this process assumes that the queried

person appears as the largest and most visible face in the image, although this is not true in most

of the cases and it may result in additional noise.

Test collections: EASY and ALL sets from FAN-large face dataset are used [54]. EASY subset

includes faces larger than 60x70 pixels. ALL includes all faces without any size constraint. There are

138 names from EASY, and 365 from ALL subsets, with 23,952 and 199,295 images respectively. On

the average there are 541 images for each name. PubFig83 [57] dataset, the subset of well-known

PugFig dataset with 83 different celebrities having at least 100 images, is also used in testing. In

this set, near-duplicates and the ones that are no longer available at Internet are removed [4].

3.2.2 EVALUATIONS

As seen in Figure 11, at each iteration of model evolution, dataset is divided into candidate positives

(the most representative class instances), and possible negatives (where outliers are likely to be

found). As Figure 12 shows, FAME is able to learn models from noisy datasets, while eliminating

the outliers at successive steps for a variety of people.

We evaluate the performance of FAME on PubFig83 dataset to test the effectiveness of some

implementation details. As Figure 13-(a) shows with the increasing number of iterations, more

outliers are eliminated. Although some correct instances are also eliminated, the ratio is very low

compared to the spurious instances. Moreover, observations show that the eliminated positive

examples are usually not in good quality and thus their elimination from the final model is not

harmful but rather helpful as supported with the results in Figure 13-(b). As seen in Figure 13-(c)

, we can achieve accuracies up to 75.2 on FAN-Large (EASY) and 79.8 on PubFig83 by removing

one outlier at each iteration while we prefer to eliminate five outliers for the efficiency.

We also compared the performances obtained with different features on PubFig83 dataset with

the models learned from web. While LBP filters alone have the accuracy 60.7 and raw-pixel filters

reach up to 71.6, the combination of both gives the highest performance of 79.3. As the results

suggests, although LBP filters are not competitive with raw-pixel filters, its textural information is

subsidiary to raw-pixel filters with increasing performance.

3.2.3 COMPARISONS

We compare FAME with the baseline method that learns models from the raw collection gathered

through querying the name without any pruning. As seen in Table 3, with one versus all L1 norm

Linear SVM model on the raw data, the performance is very low on all datasets.

We learn the models from web images and test them on the novel datasets (FAN-large and
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FIGURE 11: SOME OF THE INSTANCES SELECTED FOR CONFIDENT POSITIVES C+,

POOR POSITIVES C− AND OUTLIERS O FOR ITERATIONS T = 1 . . . 4.

FIGURE 12: FINAL MODEL FACES AND OUTLIERS IN THE FIRST TWO ITERATIONS.
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PubFig83

FAN−large (EASY)

(a) (b) (c)

FIGURE 13: (A) CORRECT VERSUS FALSE OUTLIER DETECTIONS UNTIL ALL THE OUT-

LIERS ARE FOUND FOR ALL CLASSES. AT EACH ITERATION VALUES ARE AGGREGATED

WITH THOSE OF THE PREVIOUS ONE. (B) CROSS-VALIDATION AND M1 ACCURACIES AS

THE ALGORITHM PROCEEDS. THERE IS A CORRELATION BETWEEN CROSS-VALIDATION

AND M1 MODELS, WITHOUT M1 MODELS INCURRING OVER-FITTING. (C) NUMBER OF

OUTLIERS REMOVED AT EACH ITERATION VERSUS ACCURACY. ELIMINATION AFTER

SOME LIMIT IMPOSES DEGRADATION OF FINAL PERFORMANCE AND ELIMINATING ONE

INSTANCE PER ITERATION IS THE SALIENT SELECTION WITHOUT ANY SANITY CHECK.

PubFig83) for the same categories. To test the effect of training and testing on the same type

of dataset, we perform an experiment by dividing the collected Bing images into two subsets. As

expected results are better on the same type of data, but FAME leads encouraging results even in

the case of domain shift.

As the most similar data handling approach to ours, we compare FAME with the method of

Singh et. al. [?] (Table 3). [?] clusters the data to capture intra-cluster variance and uncover the

representative instances. They require to decide the optimal cluster number in advance and divide

the problem into multiple homologous pieces to be solved separately, increasing the complexity of

the proposed system. We solve intra-class modularity by using large dimensional representations that

supposedly make different classes linearly separable, even if classes include different modularities.

We also find the representative instances by a supervised model which separates representative ones

from the rest. Another difference lies in the philosophy. They aim to discover representative and

discriminative set of instances whereas we aim to prune spurious ones. Hence, they need to keep

all vast negative instances on memory but we can sample different subsets of global negatives and

find corresponding outlier instances. It provides faster and easier way of data pruning. They divide

each class into two sets and apply their scheme by interchanging data after each iteration like in the

case of co-training learning procedure which demands large number of instances for reliable results.

We prefer to use all the class data at once in our particular scheme. Comparisons with [?] show the

superiority of FAME. We use the released code with up-limit settings of our resources.

To test the effectiveness of the proposed linear regression based model learning, we compare our

results by using only the M1 model (FAME-M1) and using SVM for classification (FAME-SVM). As

shown in Table 3, all FAME models outperform the baseline method as well as the method of [?]
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TABLE 3: ACCURACIES ON FAN-LARGE OZCAN ET AL. [54] EASY AND ALL (FANL-E

AND FANL-A), AND PUBFIG83 AS WELL AS ON THE HELD-OUT SET OF BING COLLEC-

TION. FAME-M1 USES ONLY THE MODEL M1 THAT REMOVES INSTANCES REGARDING

GLOBAL NEGATIVES. FAME-SVM USES SVM IN TRAINING AND FAME-LR IS THE PRO-

POSED METHOD USING LINEAR REGRESSION. BASELINE METHOD LEARNS MODELS DI-

RECTLY FROM THE ORIGINAL RESULTS WITHOUT PRUNING. COMPARISONS ARE ALSO

GIVEN FOR [68].

- Bing FANL-E FANL-A PubFig83

Baseline 62.5 56.5 52.7 52.8

Singh et. al.[68] 74.7 65.9 62.3 71.4

FAME-M1 78.6 68.3 60.2 71.7

FAME-SVM 81.4 73.1 65.4 76.8

FAME-LR 83.7 74.3 67.1 79.3

TABLE 4: COMPARISONS WITH OTHER METHODS ON PUBFIG83. [?] HAS SINGLE LAYER

(S) AND MULTI-LAYER (M) ARCHITECTURES. FACE.COM API IS ALSO EXPERIENCED IN [?].

FAME IS TRAINED ON PUBFIG83.

method [57]-S face.com [57] [4] [57]-M FAME

acc. 75.6 82.1 85.9 87.1 90.75
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with a large improvement using the LR model.

Finally, we compare the performance of FAME on the PubFig83 dataset with the other state-of-

the-art studies on face identification. In this case, unlike the previous experiments where we learned

the models from web images, in order to make a fair comparison we learned the models from the

same dataset. As seen in Table 4 FAME achieves the best accuracy in this setting. Referring back

to Table 3, even with the domain adaptation setting where the model is learned from the noisy web

images our results are comparable to the most recent studies on face identification that train and

test on the same dataset. Note that, the method of Pinto et. al. [57] is similar to our classification

pipeline but we prefer to learn the filters in an unsupervised way with the method of Coastes et.

al. [12]. In this setting, we also test the effect of number of centroids K. The accuracy for K=1500,

2000, 2400 are 84.90, 88.60, 90.75 respectively. Even for K=2000, FAME is better than the other

methods.

4 DEEP REPRESENTATION LEARNING

For a long time the vision community has been striving for the quest of creating human-like intelli-

gent vision systems. Recently the resurgence of neural networks [29, 28] has first led to a revolution

in computer vision, for example [11, 37], and then quickly provoked to other areas including rein-

forcement learning [47], speech recognition [25], and natural language processing [46]. The most

successful models are the supervised ones that require lots of labeled data, which is costly to obtain.

In this section we present an alternative to train deep neural networks for representation learning

using massive amounts of unannotated Web images.

The most successful deep learning model is probably convolutional neural networks (i.e. con-

vnet) [22, 41] where its hidden layers transform raw input images into highly discriminative features

once the network is trained from millions of labeled images. Importantly, the generalization of con-

vnet goes beyond the general i.i.d assumption of training and test data. For example the AlexNet [37]

trained on 1.2 million ImageNet images [63] has been used as an off-the-shelf feature detector for

object detection [18], image segmentation [44], and image retrieval [3, 79].

Prior to the success of convnet, a pioneer is [28], where a deep autoencoder can be trained based

on unsupervised layer-wise fashion. This coarsely pretrained model could be converted to a classifier

afterward by adapting it on a labeled dataset. This sophisticated learning process did not appear in

a convnet because linear-rectifer activation [24] replaces conventional activation functions such as

sigmoid and tanh. Model adaptation however is still useful for a convnet if there is a need to adapt

the pretrained convnet to a specific task. This adaptive method (i.e. fine-tuning), is particularly

suitable for fine-grained classification tasks [83, 84, 8].

Does it exists an universal pretrained convnet on which fine-tuning for any problem can be built?

A handful of a convnet architectures [37, 65, 70, 27] have been popularly used but they are far

from the state of universal models for any vision task to based on. As reported in the new Places

database [86], a freshly trained convnet always performs better than a fine-tuned version. In other
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(a) IMAGES FROM BING

(b) IMAGES FROM FLICKR

(c) IMAGES FROM IMAGENET

FIGURE 14: IMAGE EXAMPLES OF THREE SYNSETS AIRFRAME, BAKER, FISHNET OF

WEB IMAGE COLLECTIONS (A-B) AND IMAGENET (C).

words, whenever abundant amount of labeled data is available, training a convnet from scratch is

preferred.

What if labeled data is expensive or scarce? Fine-tuning of a fixed pretrained convnet is still the

best choice? It does not seem so, given that recent work [69] found that fine-tuning becomes less

helpful when the source domain is loosely related to target domains. A fixed recipe for representation

extraction is therefore suboptimal. We re-think an alternative way of representation learning in

which a convnet can be inexpensively trained while retaining most of its expressive power. Such
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an economical model can even serve as an efficient weight initialization for fine-tuning because an

initialization does not need to be a perfect one.

By not prioritizing the task of training an image classifier as the premier goal, we exploit convnet

as a medium to learn a representational mapping with high reusability. We accomplish this task by

optimizing the classification loss of a convnet on massive amounts of unannotated Web images. This

data is not completely unlabeled since some of them were annotated manually or automatically by

either users or search engines. The data is nevertheless heavily corrupted by noises so that the overall

certainty of labeling is low. By training Convnet on this noisy data, the proposed approach benefits

both from the generalization capabilities of convnet and the inexpensive data usage of unsupervised

learning.

Prior to deep learning, there have been some works [72, 78] that use images harvested from

Internet and photo sharing sites such as Flickr to train scalable image classifiers. However there is

a lack of a thoroughly empirical analysis on the effectiveness of using noisy Web images to train

deep networks. This is where our work comes into the context. Working with Web images comes

with both pros and cons. The advantage of Web images easily satisfies the data-hungry property of

convnet, our only concern being the tolerance of convnet against noise.

Lately, we learned that a convnet is surprisingly noise tolerable. The studies presented in [69]

and soon followed by [82] proposed solutions to train deep convolutional networks as classifiers

under noisy condition. In their works, training data is assumed to contain mislabeled images so that

probabilistic frameworks are proposed to estimate conditional mislabeling probabilities. Finally those

probabilities are integrated as an extra label noise layer placed at the top of convnet in order to

improve posterior predictions. Different from [69, 82], we are rather interested in building a robust

representation for general purposes from noisy data. Our experiments show that even without any

of special treatment of noisy images, a convnet already performs pretty well. We aim to further

improve this performance, not just limited to a specific problem.

At a smaller scale, the contribution of [16] is related to our approach. In this work, a robust

image representation is learned via the classification of each input image patch into its own class. A

good generalization of inner representation can be obtained by training a convnet using unlabeled

images. However, the method is limited to small-size images and can thus not be applied to the

problem scale we tackle.

The contribution of our approach is threefold. First, we train convnets using noisy and unlabeled

Web images retrieved from the image search engine Bing and the photo sharing network Flickr.

Experiments are scaled from a small image collection of a hundred concepts and 400K images to a

larger collection with a thousand concepts, and 3.14 million images. According to both scales, the

learned representations provide good generalized features that lead to promising accuracy on many

classification datasets. Second, we use image reranking techniques to remove noise from training

data and train convnets with a deeper architectures. Results show that the proposed techniques help

improving classification results significantly. The best of our configuration outperforms AlexNet [37]

and closes the gap with VGG-16 [65]. Third, our approach offers an inexpensive, yet effective way
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to initialize refinement training on fine-grained category datasets.

In the remainder of this section, we present related works in Section 4.1, data collection proce-

dures in Section 4.2 and methods in Section 4.3. Section 4.4 presents experiment results.

4.1 RELATED WORK

Sharing many of its aspects to dimensionality reduction and manifold learning, representation learn-

ing means to find a mapping of high dimensional input data into some low dimensional representation

such that the new representation exposes meaningful data dynamics. Different from manifold learn-

ing, where its resulting embedding are best used in data visualization [75, 5], representation learning

is interested in learning discriminating features that exploit categorical properties of data in order to

classify them. The representation to be learned should be not only robust against data perplexity

but also sensitive to intrinsic dimensions of data.

In the previous section, we mentioned that convnets have been the de facto representation

learning method thanks to their excellent generalization. At the heart of a convnet is an end-to-end

feature mapping: starting from raw pixel intensities, then through many hidden layers of different

types, a robust representation can be learned. Giryes et al. [23] proved that deep neural networks

are distance-preserving mappings with a special treatment for intra- and inter-class data.

The distinguishing point of a convnet is that it learns distributed representations [6], the prop-

erty that is absent in shallow networks. Having a distributed representation is indeed much more

expressive than a local representation due to lesser hidden units [15] and much more regions of

linearity [48]. There have been theoretical justifications of deep networks as a class of universal

approximates [14, 30]. A more recent work, [2] proved that a two-layer rectifier network can make

any disjoint data linearly separable. While a distributed representation is common in many deep

networks, shift-invariance [9] and locality preservation, the properties of convolutional and pooling

layers, add to the uniqueness of convnets. In fact, convolution is crucial for convnets to obtain bet-

ter representation than other deep networks such as stacked auto-encoders (e.g. when comparing

results in [40] and [37]).

Representation learning has been conventionally pursued by unsupervised methods such as auto-

encoders [29], deep belief nets [28], and sparse encoding [58]. From our viewpoint, representation

learning should combine advantages of both supervised and unsupervised paradigms. Unsupervised

learning alone lacks a strong data prior. Since label information of training data is unavailable in

an unsupervised setting, the objective function of an unsupervised network [29] uses reconstruction

loss. This loss relies too much on redundant image details (i.e. it tries to reconstruct as much as

possible input images at pixel level), so that an unsupervised model is less capable of generalizing

distinctive features, which are necessary for classification.

In supervised learning, on the contrary, there is access to the labels of training data, thus pro-

viding better guidance. By minimizing the classification loss that penalizes the difference between

predicted labels versus groundtruth, supervised training helps pruning unnecessary details and mag-
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nifying discriminating features. This perspective is also shared in [16, 73, 61]. We notice that this

perspective is different from the known way [28] of combining unsupervised and supervised learning

to train multi-layer networks.

Our method can be classified as semi-supervised learning, where there exists in training data a

non-negligible amount of properly labeled images among lots of noise (i.e. images whose contents are

irrelevant to their labels). While these both unlabeled and labeled images are useful in learning strong

low-level features, properly labeled images could sharpen on the distinctiveness of the representation

to be learned in top layers.

4.2 WEB IMAGE COLLECTIONS

In this section, we present steps to collect and organize training collections. We draw randomly

a subset of synsets from Wordnet. Given a synset, its synonyms are used as keywords to retrieve

images. Thanks to Bing and Flickr APIs, we can retrieve images with zero cost. Data imbalance is

managed by setting a threshold on the total number of images per synset. Downloaded images are

not subjected to manual screening except the removal of duplicating images.

As seen in Fig. 14, Web images pose several challenges. First of all, each data source has its own

bias. Bing seems to have more documentary images and diagrams, while Flickr has many personal

photos with better aesthetic quality. This difference is perhaps rooted from the way images are

contributed to and indexed by those platforms. In particular, Bing Image Search has an underlying

mechanism of text-based search so that images with rich accompanying text are better indexed, thus

appear more in top retrieved results. On the contrary Flickr images are uploaded by users and are

strongly oriented toward a consumer or advanced photographic usage (pro or semi-pro), including

specific groups of interest.

Using images from multiple sources raises both pros and cons. On the positive side, mixing

images leads to better data diversification. On the negative one, mixing images may reduce intra-

class consistency. Experiments have shown us that mixing Flickr and Bing sources always leads to

better results.

There are two image collections used in our experiments. The small one tests our approach in

small-scale problems and also takes less training time, which is convenient to study the influence of

various settings. The large collection validates the proposed hypotheses at large scale and can be

used to compare with state-of-the-art methods.

Flickr-Bing 100 (FB100) consists of 100 synsets. Out of its 416K images, 67% are from Flickr

and 33% from Bing.

Flickr-Bing 1K (FB1K) consists of 1000 synsets used by the classification challenge ILSVRC’12 [63].

Using the same synsets allows us to compare our approach versus state-of-the-art. Out of its 3.14

million images 30% are from Bing and 70% are from Flickr.
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4.3 PROPOSED METHOD

4.3.1 IMAGE RERANKING TECHNIQUES

Will a convnet perform better if it is trained with cleaner data? We convey three reranking techniques

to answer this question. Given that reranking is just a preprocessing step, it is regarded as helpful

if the learned representation produces better classification performance.

In the following, let us denote L = {(xi, yi)}mi=1 the set of labeled examples and U = {zj}nj=1

the set of retrieved Web images with m � n. Here, xi and zj are the vectorial representations of

labeled example i and unlabeled image j. A reranking algorithm aims to select a subset S ⊂ U such

that elements xi ∈ S are more relevant to at least one of the elements in L than to those in U\S.
Cross-Validation (CV) splits U into K equal disjoint subsets. Each subject is scored by a binary

SVM classifier [13] trained on the rest (K − 1) subsets as positive data and 10K irrelevant images

as negative data. Every data point in U is predicted once. Negative-scored data are considered as

noise and rejected. A larger K tends to reject less images.

Kernel Mean Matching (KMM) is a semi-supervised technique [31] that reweights unlabeled

data zi ∈ U w.r.t labeled data xi ∈ L such that the (weighted) arithmetic means of the two sets

are approximately equal, i.e.
∑

xi/m ≈
∑
αizi/ (

∑
αj). If αi ≈ 0 then zi is considered as noise.

The optimal α∗ is the solution of the following convex quadratic program

arg min
α�0

α′1≈n

1

2

∥∥∥∥∥ 1

m

m∑
i=1

xi −
1

n

n∑
j=1

αjzj

∥∥∥∥∥
2

. (6)

Transductive Support Vector Machine (TSVM) The general assumption of TSVM[66] is that

|L| could be much smaller than |U|, which fits to our reranking problem. The inference of TSVM

is optimized w.r.t both training L and test data U . To rerank U the following non-convex program

must be iteratively solved

arg min
w

1

2
‖w‖22 +

α

m

m∑
i=1

`(yiw
′xi) +

β

n

n∑
j=1

`(tjw
′zj), (7)

where α and β control the influences of labeled data {xi} and unlabeled data {zi} on the classifier

w; the loss `(·) penalizes the predicted labels t̂j = sign(w′zj) and x̂i = sign(w′xi) w.r.t temporary

label ti and groundtruth yi, respectively. Here, {tj} is the set of temporary labels of {zj} during

optimization, i.e. {tj}(τ) is assigned by w(τ) at iteration τ -th. The optimal w is found when

{tj}(τ) ≡ {tj}(τ+1). Unlabeled point zj is considered as noise if tj = −1. To avoid a trivial solution,

the ratio of positive labels {tj}+ versus negative labels {tj}− is fixed.

4.3.2 CONVNET ARCHITECTURES

With millions of trainable parameters, dozens of hyperparameters and close to infinite arrangements

of network topology, architecture design of deep neural networks is more an art than science. For-

tunately the architecture of convnet is constrained by some factors such as feedforward topology,
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particularities of layers and their relative orders. So far, just several architectures are perform-

ing seamlessly, for example AlexNet [37], VGG [65], PreLU-nets [27], GoogLeNet [70]. We adopt

AlexNet [37] as the default setting in our experiments due to its popularity, modest time complexity

and lesser memory demanding than others.

In most cases, increasing the depth of convnet leads to performance gain [65, 27, 70]. However,

we encounter some problems when adding more layers. The first one is related to the size of the

minibatch in stochastic gradient descent (SGD), the optimization algorithm used to train convnet.

Given fixed memory resource, reducing the batch size will release memory space enough to add some

extra convolutional layers. While small batch sizes, for example 32 images per patch, still guarantee

the convergence of SGD, this may no longer hold if training data are heavily corrupted by noise.

In practice, we found that with a too small batch size, our convnet could not learn anything after

many thousands of iterations. This is probably the consequence of several factors in combination

such as fluctuating gradient directions, too small gradient magnitude caused by noise-contaminated

minibatch, and random states of many hidden layers at the beginning.

The second problems relates to the size of the convolution filter. Recent works, for example

[65], suggest that small filter sizes such as 3 × 3 and even 1 × 1 tend to improve classification

performance. However, in our experiments small filter sizes, especially at very first convolutional

layers, are not helpful. It is probably due to overcomplex instances of Web images, where objects

in images may appear under any style (e.g. cartoon, diagram, sketch, artistic, etc.), scales and

orientations.

Taking into account all the factors above we propose the architecture FB-13 as described in

Table 5. FB-13 consists of 13 layers, where the first convolutional layer has filter size 7×7. To train

FB-13 we use minibatch of size 196; the training uses up to 11GB RAM on a single GTX Titan-Z

card and takes about 80 minutes for 1000 iterations; the training stops after 350K iterations.

We also test with GoogLeNet [70], denoted FB-GLN, which is very deep. On average it takes

25 minutes for a 1000 iterations with the minibatch size 128. The training stops after 1.2 million

iterations.

4.4 EXPERIMENTS

Learned representations are evaluated by classification tasks on datasets coming from several topics:

indoor scenes - MIT67 [60], outdoor and street scenes - SUN397 [81], human actions - Action40 [85],

object categories - Caltech256 [26] and VOC07 [19]. We are also interested in fine-grained category

datasets: Flowers102 [51], Dogs120 [34], Cars196 [36] and Birds200 [77]. Classification accuracy

is mostly used in evaluations with the exception of mean average precision (MAP), that is used to

evaluate VOC07.
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Layer AlexNet[37] VGG-16[65] FB-13 (Ours)

conv 11× 11, 96, /4 3× 3, 64 7× 7, 96, /2

3× 3, 64

maxpool 3× 3, /2 2× 2, /2

conv 5× 5, 256 3× 3, 128

3× 3, 128

maxpool 3× 3, /2 2× 2, /2 2× 2, /2

conv 3× 3, 384 3× 3, 256 3× 3, 256

3× 3, 256 3× 3, 256

3× 3, 256 3× 3, 256

maxpool 2× 2, /2 2× 2, /2

conv 3× 3, 384 3× 3, 512 3× 3, 512

3× 3, 512 3× 3, 512

3× 3, 512 3× 3, 512

maxpool 2× 2, /2 2× 2, /2

conv 3× 3, 256 3× 3, 512 3× 3, 512

3× 3, 512 3× 3, 512

3× 3, 512 3× 3, 512

maxpool 3× 3, /2 2× 2, /2 2× 2, /2

fc6 4096 4096 4096

fc7 4096 4096 4096

fc8 1000 1000 1000

TABLE 5: THE FEEDFORWARD ARCHITECTURES OF TWO REFERENCES ARCHITEC-

TURES (ALEXNET AND VGG-16) VERSUS OURS (FB-13).

Reranking n/a CV KMM TSVM

FB100 (103) 406.5 291 81.3 98.9

FB1K (106) 3.14 2.52 1.44 2.03

TABLE 6: TRAINING SIZES BEFORE AND AFTER RERANKING.
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4.4.1 EXPERIMENTAL SETUP

Reranking We use the pretrained model AlexNet [37] delivered with Caffe [33] as the feature

extractor. Images forwarded at the input layer will produce 4096-dimensional feature vectors at

fc7 layer; L2-normalization is applied before running reranking methods. For CV, we use the linear

kernel with C = 1 and the number of folds K = 5. For KMM, hyperparameter B is set to 5.

For TSVM the ratio |{tj}+|/|{tj}−| is set to 1000/n so that about 1000 images from each synset

will be selected as clean; hyperparameters α = 1 and β = 10−4. Since both KMM and TSVM are

semi-supervised, m = 10 labeled examples are provided for each synset.

(a) CROSS-VALIDATION (b) KERNEL MEAN MATCH-

ING

(c) TRANSDUCTIVE SVM

FIGURE 15: THE VISUALIZATIONS OF THREE RERANKING TECHNIQUES, CV (A), KMM

(B), AND TSVM (C) ON THE SYNSET SALMON. RED AND GREEN DENOTE IMAGENET

IMAGES WHILE BLACK AND PINK DENOTE WEB IMAGES.

Visualizing Reranking Results Behaviors of reranking algorithms may be partly perceived

through visualization. To do so, we extract fc7 features of images from synset “salmon”, run

the dimensionality reduction method t-SNE [75] and visualize in Fig. 15 the resulting 2D embed-

ding. From the visualization, we see that both CV and TSVM are better KMM in preserving bias of

input data while KMM is better the others in selecting relevant images w.r.t given examples. This

fact helps explaining later results, where KMM often leads to improved classification results when

the test set is drawn from the same distribution of examples.

Convnet Training We denote FB the convnet with AlexNet architecture trained on original Web

images; similarly FBcv, FBkmm and FBtsvm denote the convnets trained on reranked data of methods

CV, KMM and TSVM, respectively. Since the size of training sets may be severely reduced after

reranking (see Table 6) which may cause overfitting, we use convnets trained on FB and FBcv to

additionally do fine-tuning on reranked data. To evaluate representations learned by our convnets we

compare them to a reference, denoted as REF, which is a convnet with AlexNet architecture trained

on equivalent synset sets using ImageNet labeled data. To compare with our convnets on FB100,
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REF is trained on ImageNet100 with 100K labeled images drawn from ImageNet. To compare on

FB1K, REF is trained on ILSVRC’12 training set [63].

The Caffe library [33] is used to train convnets. The learning rate of a fresh training starts at

η = 10−2 and decreases by a magnitude of 1/γ = 10 after each of 104 iterations; the maximum

number of iterations is 450K but an earlier stop could be made if validation accuracy does not

improve anymore. For fine-tuning, the learning rate starts at η = 10−3 and is reduced after each

30K or 50K iterations, depending on the size of data. A fine-tuning process may stop after 150K

iterations.

4.4.2 RESULTS OF FLICKRBING-100

End-to-End Classifiers We show in Table 7a the classification accuracies of our convnets and

the reference configuration on ImageNet100 test set with 100 images per synset. With no surprise,

REF model outperforms at 67.8% accuracy. What is nevertheless surprising is that our best results

for FB†kmm is 58.7% (the fine-tuned version of FB on reranked data FBkmm) and FBcv is 54.3% (the

convnet trained on reranked data FBcv). Although creating end-to-end classifiers is not our premier

goal, these results show that convnet is very capable of achieving good generalization from Web

images, at least on small scale data like FB100.

Results also indicate that image reranking in general improves classification accuracy, given

that the number of images after reranking must be sufficient to avoid overfitting. The convnets

trained on reranked data of KMM and TSVM gives worse results than others due to not satisfying

this requirement (see Table 6). Nevertheless, reranked data are still useful if they are used with

fine-tuning, as done in this experiment.

Representation Learning To evaluate the generalization of the learned representations on new

datasets, we compute L2-norm fc7 image features for each of dataset and train one-vs-rest linear

SVM classifiers. The evaluation protocol for each dataset is strictly followed. Table 7b shows good

generalization performances of our convnets on all of six datasets where our results outperforms REF.

Though interesting, these results need to be verified at larger scales because in this experiment FB100

outnumbers ImageNet100 so that the former may cover better image diversity, which is important

for good generalization of convnets trained on FB.

Remark 1 Data abundance is crucial in training convnets and even more important if the data are

noisy.

4.4.3 RESULTS OF FLICKRBING-1K

This time, we redo experiments in previous section on the large collection FB1K. Since it takes more

training time on FB1K than FB100, we just select the best configurations to evaluate. Furthermore,

image reranking will run on image features produced by the convnet trained on FB1K to make a

fair comparison with the state-of-the-art. To evaluate our results, we compare against the reference
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REF (†)FB (‡)FBcv FBkmm FBtsvm FB†cv FB†kmm FB†tsvm FB‡kmm FB‡tsvm
ImageNet100 68.8 53.6 54.3 48.9 51 55.3 58.7 57.7 58.4 57.6

(a) CONVNETS AS END-TO-END CLASSIFIERS. THE NOTATION FB†CV MEANS IT IS THE FINE-

TUNED VERSION OF FB W.R.T RERANKED DATA FBCV .

REF (†)FB (‡)FBcv FBkmm FBtsvm FB†cv FB†kmm FB†tsvm FB‡kmm FB‡tsvm
VOC07 54.7 57.9 57.9 48.5 54.3 58.2 57.5 58.8 58.2 58.6

Flowers102 72.4 74.2 74.4 64.3 72.4 74.3 75.4 77.7 75.3 76.1

MIT67 31.9 34.1 34 27.2 31.4 34.6 33 38.3 34.9 36.3

Action40 36.8 37.9 38.2 29.1 35.6 39.2 38.9 41.4 38.3 40

Caltech256 42.5 44.7 44.6 36.4 42 44.6 44.5 46.7 44.7 46.7

SUN397 26.9 28.6 28.6 20.8 26.2 28.7 29.1 31.1 28.7 30.7

(b) CONVNETS AS TRANSFERABLE FEATURE DETECTORS

TABLE 7: EVALUATION OF REPRESENTATION LEARNING ON FB100. THE REFERENCE

MODEL REF IS TRAINED ON IMAGENET DATA.

model REF which is the AlexNet trained on ILSVRC12 training set.

End-to-end Classifiers Shown in Table 8a are the results of our convnets on the ILSVRC12

validation set with 100 images per synset. Compared to results obtained with FB100 in Table. 7a,

this time our convnets perform much worse than the reference. The results do not contradict,

however faithfully reflect the nature of Web images, which is noisy and highly biased. While the

impact of noise is less seen with FB100, it severely hurts performance in the case of FB1K. The

results pose a great challenge for unsupervised methods that aim to learn large-scale classifiers from

unlabeled data.

Representation Learning Table 8b shows that our best results are comparable to REF. In par-

ticular, our results on VOC07, Caltech256, and SUN 297 obtained by FB†cv are competitive against

REF. Interestingly, our results on Flower102 slightly outperform REF’s. Results on MIT67 and

Action40 of our convnets are not so good as other cases but still promising. Compared with the

small problem FB100, it is harder for our method to obtain competitive results with REF. Still,

representation learning with good generalization could be achieved by training a deep convolutional

net on unlabeled and noisy Web images.

Image reranking methods also add incremental values to the approach. Among reranking meth-

ods, the unsupervised CV is the best and consistently improves results both on FB100 and FB1K.

Weak-supervised methods, KMM and TSVM, contribute little in this experiment and in some cases

even decrease the performance. This is due to several reasons, such as inconsistent biases between

examples given to reranking algorithms and unlabeled Web images to be ranked, or the number
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REF (†)FB FB†cv FB†kmm FB†tsvm
ILSVRC12 80.4 23.4 23.8 23.1 22.8

(a) CONVNETS AS END-TO-END CLASSIFIERS.

THE NOTATION FB†CV MEANS IT IS THE FINE-

TUNED VERSION OF FB W.R.T RERANKED

DATA FBCV .

REF (†)FB FB†cv FB†kmm FB†tsvm
VOC07 71.7 70.8 71 70.6 70.4

Flowers102 87 87.6 88.4 88.6 89.4

MIT67 56 52.5 53.1 53.7 51.9

Action40 60.2 55.9 56.5 56.1 56.3

Caltech256 70.3 68.6 69.5 68.9 69.7

SUN397 46.1 45.8 46.1 45.4 45.4

(b) CONVNETS AS TRANSFERABLE FEATURE

DETECTORS

TABLE 8: EVALUATION OF REPRESENTATION LEARNING ON FB1K. THE REFERENCE

MODEL REF IS TRAINED ON IMAGENET DATA.

of images after reranking is insufficient. KMM and TSVM would be more useful if the provided

examples are also drawn from Web collections and we consider this case as future work.

4.4.4 RESULTS OF DEEPER ARCHITECTURES

As the power of deep models relies on their depth, we are curious if a deeper convnet trained on

noisy data could learn better representations. We train a 13-layer convnet FB-13 (see Section 4.3.2)

on FB1K data and compare it against the two other architectures: AlexNet (denoted as FB) and

GoogLeNet (denoted as FB-GLN), which are also trained on FB1K. As before, we compare our results

to the state-of-the-art results of AlexNet (denoted as REF) and VGG-16 trained on ImageNet data.

The common problem in training a very deep convnet is the impossibility of SGD convergence.

This is caused by gradient vanishing, i.e. gradients backpropagated from the top loss layer vanish

before they reach bottom layers. Rectified linear activation seems to solve this problem so that [37]

we can train AlexNet in a single pass without using layer-wise pretraining. However this problem

reappears in training convnets which are deeper than AlexNet. To resolve this, we use the solution

of [27] that initializes the Gaussian random weights w.r.t the formula std =
√

2/(k2l cl) in which kl
and cl are the filter dimension and input channels of l-th convolutional layer.

Once convnets are trained, their fc7 features are used to train linear SVM classifiers. Because

the fc7 layer is absent in GoogLeNet, we replace it by concatenating last layers loss1/fc, loss2/fc

and pool5/7x7_s1. Results are presented in Table 9.
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REF VGG-16 FB FB-13 FB-GLN

VOC07 71.7 79.9 70.8 76.6 76.1

Flowers102 87 87.5 87.6 88.8 86.8

MIT67 56 67.1 52.5 61.6 57.2

Action40 60.2 72.6 55.9 63.3 63.8

Caltech256 70.3 77.9 68.6 75.2 71.9

SUN397 46.1 53.8 45.8 51 47.1

TABLE 9: EVALUATION OF REPRESENTATIONS LEARNED FROM FB1K OF CONVNET

ARCHITECTURES WITH VARYING DEPTHS.

FB-13 outperforms REF on all of the six datasets. This means greater depth leads to good gen-

eralization even when training data are noisy. In other words, unlabeled images are underestimated

(due to their lack of labels) but our experiments indicate that their content actually bring more

valuable information than conventionally thought. Also in Table 9 FB-13 is inferior to VGG-16;

however this gap may be narrowed down by increasing FB-13’s depth up to 16 or even more.

Recent theoretical results [48, 2] have proved that the use of rectified linear units (ReLU) is

crucial to the excellent performance of convnets. [2] proved that a neural net of more than two

ReLU layers is capable of linearly separate any disjoint data. According to [48], a deep network

represent a compositional mapping where individual map at each layer shatters input space into a

number of linear regions. The compositional map therefore is able to map portions of each layer’s

input-space to the same output. As the number of layers increases, the compositonal map is capable

of computing more complex functions (i.e. it maps more linear regions to the same output). This

means the convnet may identify better intra-class versus inter-class instances. This explanation

seems appropriate to justify the results of this experiment.

Remark 2 The good generalization of convnets to unseen data is due to their deep architecture

with rectified activators.

Results in Table 8b also reveals that GoogLeNet is not so competitive as conventional archi-

tectures where convolutional layers are followed by three fully connected layers. However this may

depend on the way features are extracted so that other feature extraction techniques, for example

[50], should be attempted.

4.4.5 WEB IMAGES AND FINE-TUNING

Recall that in section 1, we mentioned that fine-tuning requires a sensible weight initialization.

However, it is not clear whether this initialization must come from a well-trained convnet, i.e. using

labeled images. In this section, we answer that question by comparing classification accuracy of

convnets refined based on two initialization points: i) the pretrained AlexNet model of ILSVRC’12

training data and ii) the pretrained AlexNet model of FB1K. Comparisons are made on four fine-

grained category datasets of 200 bird species, 196 car models, 120 dog species and 102 flower
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FIGURE 16: EXAMPLES FROM FINE-GRAINED CATEGORY DATASETS.

FB REF

Birds200 52.7 (47.1) 52.1 (47.1)

Cars196 50.9 (31.4) 51.9 (34.7)

Flowers102 79.6 (87.6) 80.2 (87.0)

Dogs120 62.5 (61.7) 70.5 (73.1)

TABLE 10: RESULTS OF FINE-TUNING BY OUR MODEL (FB) AND THE REFERENCE (REF).

IN BRACKETS ARE RESULTS BEFORE FINE-TUNING.

species. Some example images are illustrated in Fig. 16. The numbers of training images per

category vary from 10, 30, 40 (Flowers, Birds, Cars respectively) to a hundred (Dogs).

Similarly to previous experiments, evaluation of a pretrained convnet is based on the classification

task on third-party datasets in which image features are computed at the fc7 layer of the convnet.

Fine-tuning will discard the last layer of the pretrained convnet, which is fc8 in our case, in order

to learn the new fc8 layer whose outputs match defined classes of the new data. Evaluation of a

fine-tuned model therefore become straightforward: test it as an end-to-end classifier.

Fine-tuning results are listed in Table 10. For three out of four datasets, either initialized by FB

or REF the convnets perform comparably. Their comparative results before fine-tuning are also very

close. This means performance of fine-tuning on fine-grained category problems does not depend

on the quality of weight initialization. However, the result on Dogs120 dataset does not align to our

conclusion, where REF gives superior accuracy. Behind this exception is the fact that i) Dogs120

is drawn from ImageNet, the domain used to train REF, and ii) the training data of REF already

contains a lot of labeled dogs images.

Remark 3 Convnets trained on massive amount of noisy Web images may establish a good initial-

ization for model refinement on fine-grained category data.

Notice that the sufficiency of fine-tuning data must be respected, otherwise the convnet to be

tuned gets easily overfitted. Flowers102 is an example of this case where there are just 10 training

images per category, which makes the accuracy after fine-tuning worse than the pretrained state.

Under such data scarcity of circumstances, the max-margin SVM classifier [13] is more likely to
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perform better than a logistic classifier. Also, fine-tuning is not recommended if the pretrained

convnet was already well trained for the classes to be fine-tuned. This is the case when refining REF

on Dogs120 gives worse results.

5 CONCLUSION

In this deliverable we present the construction of visual concepts from several points of view. First,

Concept Map proposed in Section 2 addresses challenges in acquiring image data from Web; as

a result, a unsupervised Kohonen neural network is proposed to remove outliers and improve the

consistency of image groups that represent visual concepts. However it turns out that a more

sophisticated method is necessary to differentiate subtle changes between fined-grained categories.

Hence the second work in Section 3 proposed the method FAME in order to build face concepts

of celebrities and politicians. In this method, we use LBP features, which is widely used in face

recognition problems, to represent face images. A data elimination algorithm then runs on each of

identity and iteratively removes irrelevant images, thus builds up a stronger identity representation.

In Section 4, we proposed the methodology of deep learning to build a large amount of visual

concepts based on noisy Web images. At some extent, this is similar to what Concept Map does;

however deep representation learning harvests instance images and builds representation for given

visual concepts while Concept Map discovers visual concepts from a given image collection. Instead,

the image acquisition stage of deep representation learning shares objectives with the method FAME.

Benefiting from abundant amount of Web images and the efficiency of image reranking algorithms,

we can collect enough data for deep convolutional networks, the state of the art method for image

classification. Despite of difficulties in training deep networks from weakly labeled and noisy images,

the proposed method shows promising results in most of public datasets with different themes

ranging from ordinary objects, to indoor and outdoor scenes, and even fine-grained categories such

as flowers, dogs, and cars. The works presented in this deliverable can be integrated to build up a

flexible and expandable visual similarity framework in the MUCKE system.
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