
Multimedia and User Credibility Knowledge Extraction

Deliverable 1.2

Report on New Data Collection

Document Information

Delivery date: 31/09/2013

Lead partner: UAIC

Author(s): Lenuta Alboaie, Mihai Lupu, Adrian Popescu,
Adrian Iftene, Pinar Sahin, Allan Hanbury

Participant(s): TUW, CEA, Bilkent

Workpackage: 1

Workpackage title: Data collection

Workpackage leader: UAIC

Dissemination Level: PU – Public

History of Versions

Version Date Status Author (Partner) Description/Approval Level

0.1 18/06/2013 Draft UAIC First draft

0.2 29/09/2013 Draft UAIC Second Draft

Abstract
This document identifies the existing data collections for image search and associated meta-
data. It also looks beyond the set of existing collections at tools or resources that will allow us to
collect the data necessary for the project.

Deliverable Context
/*CHIST-ERA Full Proposal Form page 12 of 39 */

WP1 – Data Collection
The objectives of this work package are to create a data collection framework which will fuel concerned work
packages (WP2 to WP6) with necessary raw data and, given that many of the data used are personal, to establish
clear ethical rules concerning the information processing in order to preserve users' privacy.

Task T1.2 - New Data Collection -
The complex nature of the project objectives requires the mobilization of different multimedia data sources in order to
mine all necessary user-related knowledge. Since the data access policies of social networks change frequently, the
first task will be to evaluate which are the available sources at the beginning of the project. With over 6 billion photos
available (http://news.softpedia.com/newsImage/Flickr-Boasts-6-Billion-
Photo-Uploads-2.jpg/), Flickr is one of the largest photo repositories on the Web and will constitute the main source of
visual information used in the project. CEA LIST has extensive experience in crawling this data source and, will work
in close collaboration with BILKENT in order to download images and textual metadata for as many as 1,000,000
Flickr users.
The output of this task is a data collection module that crawls data sources and pre-processes them into a common
format, usable for the different information extraction tasks. Given the dynamic nature of social networks data,
emphasis will be put on creating a data collection framework, which updates the information needed. The amount of
data collected is calibrated in order for the consortium to test the extraction of new knowledge from large amounts of
heterogeneous data.
UAIC will coordinate the data collection effort but, in order to speed up the process, it will be distributed among all
partners. Interchangeable XML based formats will be used in this process.

Table	 of	 Contents	

1.	 Introduction	 ...	 3	
2.	 New	 data	 collection	 ..	 3	
2.1.	 Architecture	 ..	 3	
2.2.	 Data	 downloading	 ...	 4	
2.3.	 Data	 source	 ..	 5	
2.4.	 Task	 Distribution	 Service	 (TDS)	 ...	 6	
2.4.1.	 Get	 new	 task	 ...	 7	
2.4.2.	 Indicate	 task	 completion	 ...	 7	
2.4.3.	 Putting	 it	 all	 together	 ..	 8	
2.4.4.	 Moving	 and	 verification	 ..	 8	

2.5.	 Data	 Download	 Tool	 Description	 ...	 9	

3.	 MUCKE	 Corpus	 ...	 11	
3.1.	 File	 description	 ...	 11	
3.2.	 Mucke	 Corpus	 Directory	 Structure	 ...	 11	

4.	 Conclusion	 ...	 12	
	

1. Introduction
The output of this task is a data collection module that crawls data sources and pre-processes
them into a common format, usable for the different information extraction tasks. Because Flickr
is one of the largest photo repositories on the Web, it is used in MUCKE as the main source of
visual information.
In Section 2 we will present how information collection was a coordinate effort of all consortium
members in order to speed the whole process. Details regarding the technical process are given
in Sections 2.4 and 2.5. In Section 3 we describe the links between concepts (Wikipedia
concepts) used for image annotation and the downloaded images in order to obtain a flexible
corpus directory structure for MUCKE.
The data was collected using Flickr’s public APIs and conforming with the Flickr Community
Guidelines.

2. New data collection
The complex nature of the project objectives requires the mobilization of different multimedia
data sources in order to mine all necessary user-related knowledge. With over 6 billion of photo
uploads, Flickr is one of the largest photo repositories on the Web and will constitute our main
source of visual information. Consortium members have extensive experience in crawling this
data source and will download images and textual metadata for as many as 1,000,000 Flickr
users. Given that Flickr contains a mix of personal and social relevant data, focus will be put on
downloading the latter type, which is useful for information extraction tasks. UAIC coordinates
the data collection effort but, in order to speed up the process, it will be distributed among all
partners.

2.1. Architecture
The download process was planned as follows:
● CEA generated lists of files that need to be downloaded, and a copy of these lists resided on

each machine that did the download;
● When a new list is provided, TUW updates the Task Distribution Service (TDS) to respond to

requests for this list;
● For each list, the downloader queries the TDS and receives back a task id, and a pair of

numbers indicating the start and end position in the list;
● Then, it passes these parameters to the download script (perl) provided by CEA and, after

the download is over, creates an archive with the images indicated in the download task;
● After the download task is finished, the resulted archive is verified in order to ensure that no

error has occurred and that it contains the 10000 images that had to be obtained in the
corresponding task;

● When all download tasks are finished and verified, the archives from all four partners are
collected and stored on the server provided by UAIC.

 Figure 1. How the download process works

2.2. Data downloading
Each member of the consortium set up several machines to handle the download process. The
list of files generated by CEA to be downloaded is called “imageListBigUnique”. It has a size of
5.95 GB and each line contains the name and the URL of an image to be downloaded from
Flickr. This list was present on every machine and was used by the download scripts in order to
find the images corresponding to a task. For example, the images for task 111 were found in the
list at the lines numbered 1110000 through 1119999.

During the download process, some statistics were provided at
http://stutomcat.ifs.tuwien.ac.at:8080/MuckeDownloadTasker in the form of two charts: one for
ongoing and one for completed tasks. These charts were dynamically updated, thus enabling us
to check our tasks and see the overall status of the download process at any time.

Figure 2. Sample of image download statistics during the download process.

2.1. Data source
Flickr is an image and video hosting website, web services suite, and online community. It
boasts more than 6 billion images being hosted on its servers. Flickr provides a filtering system
that enables its members to mention the types of the photographs they upload, and it also lets
users search for pictures in the same manner. It comes with a complex API
(http://www.flickr.com/services/api), which can be accessed through REST as well as SOAP,
with a vast documentation and API Kits for every modern programming language.

One of the great features of Flickr is how it organizes the images that its users submit. They are
asked to add tags to their photos, enabling other users to easily find images related to a
particular topic. Flickr was one of the early implementers of tag clouds and is also considered a
good example of effective use of folksonomy. Other than tags, a Flickr image also has some
other metadata, such as title, owner, date taken, date uploaded, views. There is also the
possibility to access the Exif data of an image, which includes, but is not limited to, camera,
exposure, aperture, focal length, date and time it was created, orientation, color space.

Both private and public image storage are provided and there is the posibility to either release
images under certain common usage licenses (http://www.flickr.com/creativecommons) or label
them as “all rights reserved”. The images we have downloaded are all public and fall under a
Creative Commons license.

http://stutomcat.ifs.tuwien.ac.at:8080/MuckeDownloadTasker/

2.2. Task Distribution Service (TDS)
For downloading all the data needed for MUCKE image repository, a Task Distribution Service
(TDS) was created. The images were filtered according to a list of Wikipedia concepts ranked
by frequency of occurrence in Flickr. For test purposes, a 200 concept list was used, called
imagelistSmall. The complete Wikipedia concept list used in the download task was used to
generate the imageListBigUnique file.
The final repository has 83.473,358 images, and therefore an incremental download process
needed to be implemented in order to ensure the correctness and completeness of the

algorithm and to be able to monitor the overall task. By correctness we refer to the fact that all
images are successfully transferred from Flickr servers, while completeness stands for ensuring
that all images were downloaded as intended and that the algorithm has stopped when this
condition was met. In order to implement the previously mentioned constraints, the TDS
distributes to each downloading agent a download task. Each download task refers to a total of
10000 images to be transferred from Flickr servers onto the agent’s local storage. After the task
was finished, the agent ensured that the process has ended by marking the task as “done” and
that it complies with the above constraints by marking it as “verified”.
The TDS resides at http://stutomcat.ifs.tuwien.ac.at:8080/MuckeDownloadTasker and has two
main actions: getting new tasks and indicate tasks completion.

2.2.1. Get new task
To reserve a new download task, the following HTTP request needs to be issued to the TDS.
The request requires two parameters, separated by '|':

● username - for recording purposes only; to identify the downloading agent, the institution
acronym (UAIC/TUW/CEA/BU) was used optionally followed by the machine identifier; the IP of
the request was also recorded.

● image list name - to know from which file were the image ids taken for download

Get new task example:
curl -v -H "Accept: text/plain" -H "Content-type: text/plain" -X POST
-d 'user1|imagelistBigUnique'
http://stutomcat.ifs.tuwien.ac.at:8080/MuckeDownloadTasker/resources/T
ask/getNew

The service replies with 5 parameters, also separated by '|':

● task id - internal number to keep track of tasks - requested when indicating task completion
● start position - the line from which to start reading image identifiers to download
● end position - the line until which to read image identifiers for download
● username - a confirmation of the correct recording of the given username
● image list name - a confirmation of the correct image list identification

Reply to previous request example:
HTTP “1 | 100 | 199 | user1 | imagelistBigUnique”

2.2.2. Indicate task completion
When the download script finished a new archive was created containing the requested 10000
images and an associated log file. The next required step was to notify the TDS of the task
status. This service request contains three parameters:

● username - for recording purposes only
● task id - the task to be marked as completed
● image list name - to know from which file were the image ids taken for download

Example of completions status notification:
curl -v -H "Accept: text/plain" -H "Content-type: text/plain" -X POST
-d 'user1|1|imagelistBigUnique'
http://stutomcat.ifs.tuwien.ac.at:8080/MuckeDownloadTasker/resources/T
ask/done

The response of this request simply states that the task status was updated.

2.2.3. Putting it all together
The download script resided at (File:DownloadImages.sh). The script identifies downloads
based on the task id and the image list used in the download.
File:MyMuckeDownloader.sh uses the above to fetch a new task, download the data, and mark
the task as completed when it is so. It takes three parameters: the image list to use, the folder
where to put the images, the folder where to put the logs. In the end, the archive of all the
images is created in the folder where this script is run.

2.2.4. Moving and verification
The verification step is accomplished using a java jar file
(File:MuckeDownloadFolderMonitor.jar) which can be run:
java -jar MuckeDownloadFolderMonitor.jar <folder>
given that the File:Config.xml is in the same folder as the jar file.
The app is written in Java, using JVM 1.7 and is OS independent. It will attempt to use native
file system monitoring functions, but where the OS rejects that, it will poll the given folder every
10 minutes.
It will monitor the indicated folder and check the zip files in that folder according to three criteria:

1. they conform to the naming convention
(mucke_<listname>_<taskid>_<startno>_<endno>.zip)

2. they contain 10000 entries
3. they are at least 1MB large

If all of the above are satisfied it will move the file to the (newly created) <folder>/verified folder
and will inform the server that the file has been verified.
If any of the above conditions fail it will move the file to the (newly created) <folder>/erroneous
folder and will inform the server that the file has been detected as erroneous. The server will
then release the task corresponding to this file (based on the naming convention) to be
downloaded again.
If the server returns an error (e.g. the task to be marked as verified must be in status 'returned'
then the file is moved to the (newly created) <folder>/limbo folder, as all errors returned by the
server must have an unusual cause.
The server has of course been updated to hand the new verification notification.
The service accepts POST requests with message of type
<user> | <image list name> | <task id> | <verification status>
at the URL

http://stutomcat.ifs.tuwien.ac.at:8080/MuckeDownloadTasker/resources/T
ask/verified
The <verification status> is either 'ok' or 'error'. Anything else will return an error
message from the server.

2.3. Data Download Tool Description
To download the Flickr images, we have used two versions of Perl scripts: one for Windows and
one for Linux machines, the main difference being the way the download is carried out. At
runtime, they receive 6 parameters corresponding to the following fields:

$listFile = @ARGV[0]; #list of images that contains IDs and associated URLs
$taskId = @ARGV[1]; #task id
$minPos = @ARGV[2]; #position of the first image to download
$maxPos = @ARGV[3]; #position of the last image to download
$outDir = @ARGV[4]; #name of the output directory
$logDir = @ARGV[5]; #log directory to store logs of the download

At first, it opens the images list file containing the IDs and associated URLs and it browses to
the line corresponding to the position of the first image to download. After checking whether the
file exists, it downloads the image and it prints the completion status in the task logo file. Further,
it browses to the next line corresponding to a new image and it continues the download process
until the line corresponding to the position of the last image is reached. The script makes sure
that no more than 1 image per second is downloaded in order to comply with Flickr download
policies.

#counter for the list of images
$counter = 0;
#open the list of images open LF, $listFile or die "can’t open $listFile\n";
while(defined($line = <LF>))
{
 if($counter >= $minPos && $counter <= $maxPos)
 {
 chomp($line);
 print "$line\n";
 @parts = split(/\t/, $line);
 $photoFile = "$outDir/@parts[0]";
 #if the file exists, test that it is not empty
 $photoSize = 0;
 if(-e $photoFile)
 {
 $filesize = stat($photoFile)->size;
 #remove the file if it is empty
 if($filesize == 0){unlink($photoFile);}
 }
 #if the file does not exist
 if(!(-e $photoFile))
 {
 #the while loop ensures that an image is searched until it can be
downloaded
 #or until at least $maxTries tries were unsuccessful

 #this can be useful
 $inWhile = 0;
 $tries = 0;

 while($inWhile == 0 && $tries < $maxTries)
 {
 $timeBefore = time();
 #linux version
 $toExec = "wget -q -t 0 -T 10 -O $photoFile -U IE5
\'@parts[1]\'";
 `$toExec`;
 #windows version
 #$status = is_success(mirror(@parts[1], $photoFile));
 $timeAfter = time();
 $timeDifference = $timeAfter - $timeBefore;
 #make sure that we do not download more than 1 image per
second - to comply with Flickr download policies
 if($timeDifference < 1){sleep 1;}
 $statPhotoFile = stat($photoFile);
 if($statPhotoFile) {
 $filesize = $statPhotoFile->size;
 if($filesize > 0){$inWhile++;}
 }
 $tries++;
 }
 #write to the log file
 if($tries < $maxTries)
 {
 print LOG "@parts[0] ok in $tries tries\n";
 }
 else
 {print LOG "@parts[0] could not be downloaded correctly\n";
 }}
 }
 $counter++;
 }
 close LF;

After all the images from this task have been downloaded, a zip file containing these pictures
and the logo file is being created.

$zip = Archive::Zip->new();
#add all the files to the zip opendir OD, $outDir or die "cant open out dir for
#reading $outDir\n";
@images = readdir(OD);
closedir OD;
foreach $img (@images)
{
 if($img =~ m/\w/){$zip->addFile("$outDir/$img");}
}
$zip->addFile($logFile);
unless ($zip->writeToFileNamed($zipDir) == AZ_OK)
{
 die 'write error';
}

3. MUCKE Corpus
The MUCKE corpus contains metadata and images based on Wikipedia concepts that are often
used to annotated Flickr images.
Wikipedia concepts are ranked using the number of corresponding Flickr images which is
divided by the log of incoming Wikipedia links in order to penalize very common concepts.

3.1. File description
The file conceptsRankedFlickrBig.txt contains a list of Wikipedia concepts ranked by frequency
of occurrence in Flickr. The top 200 concepts of this list are represented in the current corpus.
The file imageListBigUnique.txt contains a list of images that correspond to the Wikipedia
concepts. Names are composed of the image Flickr ID and of the corresponding Flickr user ID,
separated by underscore.

3.2. Mucke Corpus Directory Structure
A. conceptMetadata - directory that contains the Flickr metadata associated to the Wikipedia
concepts. To make sure that there will not be too many subdirectories in conceptMetadata when
all concepts will be represented, intermediary subdirectories were created using the first two
digits from the #CONCEPT_ID in conceptsRankedFlickrBig.txt. In each of these intermediary
subdirectories, we created a final directory dedicated to each Flickr concept. The
#CONCEPT_ID in conceptsRankedFlickrBig.txt is used to names these final directories. For
each concept, downloaded images are taken from the file "1" and their names can be
reconstituted from the "owner" and "id" fields of the XML files.
B. images - directory that contains the image files downloaded from Flickr. To accommodate a
large number of images, subdirectories are created using the first four digits of the image name
from imageList.txt were created. Then, in each of these intermediary subdirectories, images are
stored with their name from imageListBigUnique.txt.

Flickr Metadata File example:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<photos page="1" pages="2" perpage="500" total="896">
 <photo id="4912140037" owner="11201698@N00" secret="5789c5046e"
server="4079" farm="5" title="Hercule Poirot's Chrismas, Agatha
Christie" ispublic="1" isfriend="0" isfamily="0" datetaken="2010-01-15
14:00:20" datetakengranularity="0" tags="collins agathachristie
herculepoirot fontanabooks alexisorloff romanspoliciers
vintagedetectives vintageagathachristiebookcovers"
dateupload="1282383421" views="225" />
 <photo id="4570779334" owner="35524174@N04" secret="3bc942575a"
server="4050" farm="5" title="Hercule Poirot en attendant l' Express
Orient" ispublic="1" isfriend="0" isfamily="0" datetaken="2010-05-01
09:30:32" datetakengranularity="0" tags="man thessaloniki
orientexpress shootingpeople θεσσαλονίκη

herculepoirotenattendantlexpressorient
herculepoirotwaitingtheorientexpress expressorient
authenticorientexpresswagon" dateupload="1272796121" views="201" />
……

The following parameters were extracted using the Flickr public API:

· photo id – unique Flickr id
· owner – unique Flickr uploaded id
· title – Flickr image title
· datetaken – image create date
· tags – Flickr users added tags
· dateupload – Flickr upload date
· views – image number of unique views

4. Conclusion
The objective of this work package was to create a data collection framework that will offer the
necessary resources for next work packages. We have shown in section 2.2, 2.3, 2.4 the
activities and methodologies that were used in order to obtain a large and a well organized
image collection and associated metadata. We also make the observation that the images we
have downloaded are all public and fall under a Creative Commons license.

