Communicating Continuous Integration Servers for
Increasing Effectiveness of Automated Testing

Stefan Désinger, Richard Mordinyi, Stefan Biffl
Christian Doppler Laboratory "Software Engineering Integration for Flexible Automation Systems"
Vienna University of Technology
_ Vienna, Austria)
{firsthname.lastname}@qse.ifs.tuwien.ac.at

ABSTRACT

Automated testing and continuous integration are estab-
lished concepts in today’s software engineering landscape,
but they work in a kind of isolated environment as they do
not fully take into consideration the complexity of dependen-
cies between code artifacts in different projects. In this pa-
per, we demonstrate the Continuous Change Impact Analy-
sis Process (CCIP) that breaks up the isolation by actively
taking into account project dependencies. The implemented
CCIP approach extends the traditional continuous integra-
tion (CI) process by enforcing communication between CI
servers whenever new artifact updates are available. We
show that the exchange of CI process results contribute to
improving effectiveness of automated testing.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; D.2.2 [Software Engineering]: Design Tools
and Techniques—Software libraries

General Terms

Experimentation

Keywords

Software testing; test coverage; software libraries; software
project dependency; dependency management

1. INTRODUCTION

Typical software engineering projects take advantage of
the continuous integration (CI) process as an approach to
automate certain tasks for the purpose of improving software
quality, like the execution of tests. However, testing mainly
focuses on the code artifacts which were implemented ac-
cording to project requirements without taking into account
imported code artifacts from other projects which may be
developed outside the organization or engineering domain.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASE’12, September 3-7, 2012, Essen, Germany

Copyright 2012 ACM 978-1-4503-1204-2/12/09 ...$15.00

374

Therefore, projects’ code artifacts are tested in a kind of
isolated environment as they do not fully take into account
the complex dependencies between different projects. While
project dependencies (i.e. projects a project depends on)
are implicitly handled by build management mechanisms,
project dependents (i.e. projects which depend on a project)
on the other hand are hardly considered if at all.

However, a dependency implies that changes in a project’s
code artifact affects the implementation of dependent pro-
jects as well, resulting in potentially failing tests there. Up-
grading dependencies, finding problems and reporting them
to their authors is done manually and is a time-consuming
task. Likewise, getting feedback from dependent projects is
slow. Often problems are not detected until after a change
has been completed and integrated into the live system,
which leads to problems for developers and users of libraries
alike [4].

In this paper, we will demonstrate the Continuous Change
Impact Analysis Process (CCIP) as an approach that fully
takes into account the complexity of dependencies between
code artifacts of various software engineering projects to im-
prove the effectiveness of automated tests. CCIP automati-
cally collects feedback from dependent projects due to local
code artifacts changes for further quality improvements be-
fore those updates become public. The approach relies on
Continuous Integration servers exchanging information (e.g.,
about available updates or failed tests on potential releases)
which allows the software engineers to analyze the impact
of artifact changes on depending projects beforehand, and
helps detect software development problems like regressions
early and bring them to the developers’ attention. This
will automate routine communication between interdepen-
dent projects, increase software development quality, and
decrease manual testing effort.

2. RELATED WORK

In this section we summarize related work on the contin-
uous integration approach, impact analysis definitions and
approaches, and software dependencies.

2.1 Continuous Integration Process

The strength of the Continuous Integration (CI) work-
flow [5] is the automation of sequential build process steps
for the purpose of improving software quality and minimiz-
ing the time to delivery. Whenever a software engineer com-
mits changes, the CI server checks out the code, builds the
artifact, runs tests, and deploys the produced artifacts if con-
figured (e.g., to provide nightly builds on an FTP server).

Regardless of the outcome of the workflow, the CI server
may send notifications with the final result to software en-
gineers. In case a step in the process fails, further process
steps are skipped and an error notification is sent. There are
a number of requirements to fulfill for running an efficient
CI: the build process has to be fully automated, a revision
control system is required, and an automated test-suite is
necessary. Software engineers should commit their changes
regularly and early. The build process and tests have to
complete quickly enough to allow the CI server to keep up
with the changes and return feedback to the software en-
gineers while their memory of the changes is still fresh [6].
Nevertheless, testing in the CI process focuses only on ”local”
projects and does not take into account project dependents
and their test scenarios to increase test coverage. Popular CI
implementations like Jenkins', Hudson? and Buildbot® have
rudimentary support for dependency tracking, but this only
works between projects that are built on the same server and
without the ability to communicate with other CI servers.

2.2 Impact Analysis

Impact analysis is defined either as "The activity of identi-
fying what to modify to accomplish a change”, or "the activ-
ity of identifying the potential consequences of a change” [1].
The former definition has been investigated by Canfora and
Cerulo who developed a concept [2] and tool implementa-
tion [3] to predict which code files have to be changed to
implement a change request. The tool evaluates resolved
change requests and the changes that resolved them to iso-
late keywords which are used on new change requests to
predict the code areas that need changes to resolve the new
change requests. They demonstrated the approach using
the change request and code history of a few selected open
source projects. The latter usually comes down to identify-
ing which parts of a program might be affected by a code
change. The aim is to help the software engineer identify
potential unintended side effects and to identify which test
cases need to be rerun [10]. The shortcoming of these tech-
niques is that they are only tools for a manual analysis of
the impact of a change.

2.3 Software Dependencies

Reuse of software components, libraries etc. is a common
software engineering practice. As a consequence, dependen-
cies have to be provided in the correct version to the system,
since dealing with dependency upgrades can be a major cost
factor in software evolution [13]. While closed source oper-
ating systems are developed and controlled by companies,
open source systems consist of many independently devel-
oped components [9]. Assembling the individual compo-
nents results in complex dependency relationships, which
have been analyzed in scientific studies [7,8]. A formal model
for software dependencies has been proposed by Podgurski
and Clarke [11]. Various tools have been developed to aid
dependency tracking (e.g., [12]). The concept of dependency
relationships provides a scientific base for our approach.

"http://www.jenkins-ci.org
'thtp://Www.hudson-ci.org
Shttp://trac.buildbot.net

375

3. SOLUTION APPROACH FOR DEMON-

STRATION

This section describes the concept of the CCIP and de-
scribes our tool implementation.

3.1 Conceptual Overview

Jegqe/\eq

Jedojereg

Jadojeneg
Jadojenag

Figure 1: Flow of Communication in CCIP

Figure 1 presents the conceptual overview of the CCIP ap-
proach, which is based on the generic CI concept. The core
difference to the traditional CI approach is that CI servers
enter a two-way communication. The CI servers of the de-
pendent projects register themselves with the CI servers of
their dependencies. In this example setup, code artifact
0(CArt0) depends on CArtl and CArt2. CArt3 in turn de-
pends on CArt0. 1-a: CI Servers of project dependencies
report new code releases after they have passed their own
tests. Those new versions could be manually tagged num-
bered releases, they could be automated nightly builds or
snapshots updated for each commit to the revision control
system. 1-b: When the CI servers of the dependent projects
receive a notification, they run their tests with the new ver-
sion of the dependency in a cloned environment and report
their test results back to the CI servers of the dependency.
1-c: Because the process is cascading, CArt0 can report its
new build to its dependent projects and forward test results
to the originator of the change.

The intended effect is that the tests of dependent projects
are automatically used to increase the test coverage of the
dependency and improve communication between the pro-
jects’ development teams.

Figure 2 outlines the CCIP workflow. At the core of the
CCIP is a publish-subscribe message system to send up-
date notifications and feedbacks. It introduces the following
changes to the standard CI workflow:

1. Merge: In addition to changes to the project’s own
source code, the CCIP workflow can be triggered by
dependency update notifications. The dependencies
have to be integrated into the build environment. For

Project boundary

Notification
Topic

Feedback Channel ¢

O ©
2 o
& — X CArt1
oS! | o
2 y - ‘ Nol‘t'ilzidcaatt?on
e Build ID
v e Artifact name
Report e Location
Merge @
Feedback g
I 2
(2) Build
@)
2 I 2
I3 Yes
@ Test
R oy
Report
Deplo
f@'ﬁ -
Store
. «r—Yes Success
build ID
Feedback W
« BuildID . <«No
o Testresults notlfy @
Y

Notification
Topic

Project boundary:

4
Feedback Channel 1

Figure 2: The CCIP workflow

more details please refer to section 3.3. The CI server
has to keep track of the origin of the change to be able
to send the feedback to the correct destination.

. Build Database: In order to handle feedback correctly,
the CI server has to store information about old builds,
most importantly which change triggered the build.
Most CI servers already do this for other reasons, like
allowing the user to look up the build history.

. Extended notification: On successful builds a notifica-
tion message is sent via the update notification topic.
Other CI servers can subscribe to this topic to re-
ceive them. If the build fails, no public notification
is sent, but the regular project-internal build report is
still generated. See section 3.2 for details about these
messages.

. Feedback handling: If a build was triggered by an up-
date notification, the builds result(positive or nega-
tive) is sent to the feedback queue of the CI server
that sent the update notification. For details see sec-
tion 3.2.

To initiate the process, the CI server of the dependent
code artifact has to make contact to the CI servers of its
dependencies. Ideally, the necessary information can be ex-
tracted from the existing build system configuration if the
build system supports dependency management and auto-
matic dependency downloading. Otherwise the administra-
tor of the CI server has to provide the necessary information
manually.

376

3.2 Communication Protocol

As described before, the CCIP relies on communicating
CI servers. Therefore, it is necessary to clarify the type
and amount of information exchanged between the various
servers. An update notification needs at least the following
information:

e A unique build ID. This is necessary to relate feedback
to builds.

e The artifact name, unless a unique topic is used for
each artifact.

e Information where to obtain the artifact. This infor-
mation depends on the build system and cannot be
generalized. Considerations regarding artifact transfer
and merging are described in 3.3.

To improve the usability, a few optional fields can be
added:

e Whether new build or test failures are expected com-
pared to the previous version, e.g. if the API was
changed.

e What kind of build it is, e.g. an automated snapshot
build, a release candidate, a minor release or a major
release. This allows the recipients to limit test runs to
builds they are interested in.

e Human readable version and release notes.
A feedback message from project dependents contains:

e The build ID to which this feedback is a response to.

e The build result: Build failure, test failure, success,
failure in a dependent project.

e Debugging information like logging output in the case
of a failed build.

e Contact information of the feedback sender.

In publish-subscribe communication pattern the publisher
does not know the subscribers. This basically works for the
CCIP too, but for better usability and improved evaluation
metrics additional information in accordance with project’s
policies can be sent when the subscription is initiated:

e Identity of the subscriber and contact information.
e Which notifications the subscriber will act upon.
e Whether the subscriber intends to provide feedback.

e Expected response time.

Obviously it is up to the receiver of an update notification
which information he sends or if he sends feedback at all.
Privacy may be a concern here as test names or test output
may reveal confidential information.

3.3 Artifact Transfer and Merging

How artifacts are transfered and integrated depends on
the kind of the artifact and the build system the project
uses. Some build systems like Apache Maven® download
dependencies automatically. In this case the only necessary
information is the new version. To merge the new version
into the dependent project, the merge step merely has to
adjust the version information in the Maven configuration
files. On the other hand, a dependency like an operating
system kernel or device driver may make a reboot of the
test machine necessary.

As a consequence, it is not possible to define the layout
of the download information and the merge step in a way
that will work for every software artifact. To keep the setup
effort low for average projects it may be conceivable to pro-
vide templates for popular build systems and handle the
remaining cases with user-written scripts.

4. DISCUSSION

As mentioned before, the CCIP is an extension of the CI
process. It provides an easy way to extend test coverage for
more effective testing and improved communication between
dependencies and their dependent projects. The amount of
improvement depends on the involved projects, especially
the quality of the testsuite in the dependent projects and
the heterogenity of environments where the dependency is
used. The CCIP is not intended to replace manual impact
analysis, but to augment them. The CCIP can provide de-
velopers with automated testing results for faster defect de-
tection and localisation. On the other hand, CCIP imple-
mentations can use existing impact analysis techniques and
network metrics to prevent unnecessary test runs.

5. CONCLUSION AND FUTURE WORK

The continuous integration process implemented in sev-
eral continuous integration servers is a well-accepted ap-
proach in today’s software engineering landscapes. However,
since the process only focuses on local repositories, auto-
mated testing is as powerful as the tests implemented by
the project’s software engineers. In this paper, we demon-
strated the Continuous Change Impact Analysis Process
(CCIP) approach that takes into account project depen-
dents and makes use of test scenarios implemented there.
The approach introduces communicating continuous inte-
gration servers which exchange information about tests re-
sults of potential releases and thus increase the effectiveness
of automated testing. Further work considers extending the
implementation to other build and source control tools and
investigating the behaviour under heavy load and handling
of poor quality feedback. Furthermore, we will investigate
the improvements the CCIP concept provides to the software
development process. Our expectation is that the CCIP can
improve the effectiveness of testing, especially in projects
that are used in heterogeneous environments.

6. ACKNOWLEDGMENT

This work has been supported by the Christian Doppler
Forschnungsgesellschaft and the BMWEFJ, Austria.

“http://maven.apache.org

377

7. REFERENCES

[1] R. Arnold and S. Bohner. Impact analysis-towards a
framework for comparison. In Software Maintenance
,1998. CSM-93, Proc., Conf. on, pages 292 —301, sep
1993.

G. Canfora and L. Cerulo. Impact analysis by mining
software and change request repositories. In Software
Metrics, 2005. 11th IEEE Int. Symposium, pages 9 pp.
—29, sept. 2005.

G. Canfora and L. Cerulo. Jimpa: An eclipse plug-in
for impact analysis. In Software Maintenance and
Reengineering, 2006. CSMR 2006. Proc. of the 10th
FEuropean Conf. on, pages 2 pp. —342, march 2006.

C. R. de Souza, S. Quirk, E. Trainer, and D. F.
Redmiles. Supporting collaborative software
development through the visualization of
socio-technical dependencies. In Proc. of the 2007 int.
ACM conf. on Supporting group work, GROUP ’07,
pages 147-156, New York, NY, USA, 2007. ACM.

P. Duvall, S. Matyas, and A. Glover. Continuous
Integration: Improving Software Quality and Reducing
Risk. Addison-Wesley, 2007.

M. Fowler. Continuous integration.
http://martinfowler.com/articles/
continuousIntegration.html, 2006.

D. German. Using software distributions to
understand the relationship among free and open
source software projects. In Mining Software
Repositories, 2007. ICSE Workshops MSR °07. Fourth
Int. Workshop on, page 24, may 2007.

N. LaBelle and E. Wallingford. Inter-package
dependency networks in open-source software. CoRR,
¢s.SE/0411096, 2004.

F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon,
B. Durak, X. Leroy, and R. Treinen. Managing the
complexity of large free and open source
package-based software distributions. In Automated
Software Engineering, 2006. ASE ’06. 21st
IEEE/ACM Int. Conf. on, pages 199 —208, sept. 2006.
A. Orso, T. Apiwattanapong, J. Law, G. Rothermel,
and M. J. Harrold. An empirical comparison of
dynamic impact analysis algorithms. In Proc. of the
26th Int. Conf. on Software Engineering, ICSE *04,
pages 491-500, Washington, DC, USA, 2004. IEEE
Computer Society.

A. Podgurski and L. Clarke. A formal model of
program dependences and its implications for software
testing, debugging, and maintenance. Software
Engineering, IEEE Transactions on, 16(9):965 979,
sep 1990.

N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using
dependency models to manage complex software
architecture. In Proc. of the 20th annual ACM
SIGPLAN conf. on Object-oriented programming,
systems, languages, and applications, OOPSLA 05,
pages 167-176, New York, NY, USA, 2005. ACM.

H. Sneed. A cost model for software maintenance
evolution. In Software Maintenance, 2004. Proc. 20th
IEEE Int. Conf. on, pages 264 — 273, sept. 2004.

2]

[4]

[5]

[9]

[10]

[11]

[12]

[13]

