Semi-Automatic Information and Knowledge Systems

Ontology Mapping & Alignment

Monika Lanzenberger

- Introduction
- Similarity Layers
- General Alignment Process
- Application Scenarios
- Complexity & Evaluation
- Using Mappings

- Ontology Mapping: for each ontological entity in the first ontology, we try to locate a corresponding entity in the second ontology, with the same or the closest semantics. It constitutes a fragment of more ambitious tasks such as the alignment of ontologies.
- Ontology Alignment: bringing two ontologies into mutual agreement, making them consistent and coherent with one and another. It may often include a transformation of the source ontologies removing the unnecessary information and integrating missing information.
- Whereas alignment merely identifies the relation between ontologies, mappings focus on the representation and the execution of the relations for a certain task.

- Entities are the same, if their features are the same or similar enough.
- Features represent a certain meaning
- Low similarity may not give evidence for alignments
- High similarity may give strong evidence for alignments
- Not every similarity is of equal importance

Introduction: Relations Among Concepts

OWL Ontology Construct	Comparison Relationship	Description
Concept	Equal	URI's equal.
		Class member instances equal.
	Syntactically equal	Labels are the same.
	Similar	Superclasses are the same.
		Subclasses are the same.
		Data properties are the same.
		Object properties are the same.
		Similar low/high fraction of instances.
	Broader than	Subclass superclass comparison.
	Narrower than	Superclass subclass comparison.
	Different	Class is different from all classes of the second ontology.

Instances	Equal	URI's equal.
	Syntactically Equal	Labels are the same.
	Similar	Instances of the same concept.
		Property members are the same.
		Two instances linked via the same property to another instance.
	Different	Instance is different from all instances of the second ontology.

OWL Ontology Construct	Comparison Relationship	Description
Data Properties	Equal	URI's equal.
	Syntactically Equal	Labels are the same.
	Similar	Data property domains are the same.
		Data super properties are the same.
		Data sub properties are the same.
		Data properties members are the same.
	Different	Data property is different from all data properties of the second ontology.

Object Properties	Equal	URI's equal.
	Syntactically Equal	Labels are the same.
	Similar	Object property domains are the same.
		Object super properties are the same.
		Object sub properties are the same.
		Object properties members are the same.
	Different	Object property is different from all object properties of the second ontology.

- Introduction
- Similarity Layers
- General Alignment Process
- Application Scenarios
- Complexity & Evaluation
- Using Mappings

$$sim: \mathfrak{P}(E) \times \mathfrak{P}(E) \times O \times O \to [0,1]$$

Positiveness

$$\forall e, f \in \mathfrak{P}(E), O_1, O_2 \in O, sim(e, f, O_1, O_2) \ge 0$$

Maximality

 $\forall e, f, g \in \mathfrak{P}(E), O_1, O_2 \in O, sim(e, e, O_1, O_2) \ge sim(f, g, O_1, O_2)$

Symmetry

$$\forall e, f \in \mathfrak{P}(E), O_1, O_2 \in O, sim(e, f, O_1, O_2) = sim(f, e, O_2, O_1)$$

[Ehrig 2007]

$$sim: \mathfrak{P}(E) \times \mathfrak{P}(E) \times O \times O \to [0,1]$$

Two entity sets are identical

$$\forall e, f \in \mathfrak{P}(E), O_1, O_2 \in O, sim(e, f, O_1, O_2) = 1 \Leftrightarrow e = f$$

Two entity sets are similar / different to a certain degree

$$\forall e, f \in \mathfrak{P}(E), O_1, O_2 \in O, 0 < sim(e, f, O_1, O_2) < 1$$

Two entity sets are different and have no common characteristics

$$\forall e, f \in \mathfrak{P}(E), O_1, O_2 \in O, sim(e, f, O_1, O_2) = 0 \Leftrightarrow e \neq f$$

Data types such as integers, strings etc. are compared by operations such as relative distance and edit distance

Equal values: $sim_{equality}(v_1, v_2) := \begin{cases} 1 & \text{if } v_1 = v_2, \\ 0 & \text{otherwise.} \end{cases}$ String similarity: $sim_{string}(v_1, v_2) := \max(0, \frac{\min(|v_1|, |v_2|) - ed(v_1, v_2)}{\min(|v_1|, |v_2|)})$ **Relative distance:** $sim_{diff}(v_1, v_2) := 1 - \frac{|v_1 - v_2|}{maxdiff}$

Object similarity:

Object Equality

$$sim_{object}(e, f) := \begin{cases} 1 & align(e) = f, \\ 0 & otherwise. \end{cases}$$

Explicit Equality

$$sim_{explicit}(e, f) := \begin{cases} 1 & statement(e, "sameAs", f), \\ 0 & otherwise. \end{cases}$$

Similarity between sets of entities:

Dice Coefficient
$$sim_{dice}(E,F) := \frac{2 \cdot |E \cap F|}{|E| + |F|}$$

• Jacquard Coefficient $sim_{jacquard}(E,F) := \frac{|E|+|F|}{|E \cup F|}$

Label similarity:

 $sim_{label}(e, f) := sim_{string}(label(e), label(f))$

Taxonomic Similarity for Concepts: Extensional

$$sim_{taxonomic}(c_1, c_2) := \begin{cases} e^{-\alpha l} \cdot \frac{e^{\beta h} - e^{-\beta h}}{e^{\beta h} + e^{-\beta h}} & \text{if } c_1 \neq c_2, \\ 1 & \text{otherwise.} \end{cases}$$

Extensional Concept Similarity:

 $sim_{extension}(c_1, c_2) := sim_{set}(\iota_C(c_1), \iota_C(c_2))$

Domain and Range Similarity:

 $sim_{domran}(r_1, r_2) := 0.5 \cdot (sim_{object}(ran(r_1), ran(r_2)) + sim_{object}(dom(r_1), dom(r_2)))$

Concept Similarity of Instances:

$$sim_{parent}(i_1, i_2) := sim_{object}(c_1, c_2)$$

with $i_1 \in \iota_C(c_1), i_2 \in \iota_C(c_2)$

Frequency of usage of an entity or its characteristics in a certain context Context Layer Ontology Layer Data Layer

 $sim_{use}(e, f) := sim_{diff}(Usage(e, con), Usage(f, con))$

Example: Two books may be similar if their authors have many coauthored publications.

- Introduction
- Similarity Layers
- General Alignment Process
- Application Scenarios
- Complexity & Evaluation
- Using Mappings

General Alignment Process

 $\begin{aligned} align: E \times O \times O \rightharpoonup E, \\ \forall e \in E_{O_1} \quad \exists f \in E_{O_2}, O_1 \in O, O_2 \in O: \\ align(e, O_1, O_2) = f \\ \lor align(e, O_1, O_2) = \bot \end{aligned}$

$$feat: O \times O \to \mathfrak{P}(F)$$

Determine a list of features F: Extract characteristics of both ontologies, i.e. the features of their ontological entities (concepts C, relations R, and instances I) from intensional and extensional ontology definitions

Ontology Alignment Example

Ontology Alignment Example: Step 1

Feature

Engineering

Search Step

Selection

Similarity

Computation

Similarity

Aggregation

Interpretation

- The Car concept of ontology 1 is described by its label: Car, its superclass (subclassOf Vehicle), its concept sibling: boat, the direct property: hasSpeed, and its instance Porsche KA-123
- The relation hasSpeed is described by the domain: Car and the range: Speed
- The instance Porsche KA-123 is characterized by the instantiated property instance: belongsTo: Marc and property instance: hasSpeed: 300 km/h

Possible features:

- Identifiers: i.e. strings with dedicated formats, such as unified resource identifiers (URIs) or RDF labels.
- RDF/S Primitives: such as properties or subclass relations
- OWL Primitives: such as an entity being the sameAs another entity
- Derived Features: which constrain or extend simple RDFS primitives (e.g. most-specific-class-of-instance)
- Aggregated Features: i.e. aggregating more than one simple RDFS primitive, e.g. a sibling is every instance-of the parent-concept of an instance
- Domain Specific Features for instance, in an application where files are represented as instances and the relation hashcode-of-file is defined, we use this feature to compare representations of concrete files
- Ontology External Features: Any kind of information not directly encoded in the ontology, such as a bag-of-words from a document describing an instance

Features and Similarity Measures

Comparing

Concepts

Relations

Instances

Relation-

Instances

No.

Feature	Similarity Measure	Footuro
$(label, X_1)$	$string(X_1, X_2)$	reature
(identifier, X_1)	$explicit(X_1, X_2)$	Engineering
$(X_1, sameAs, X_2)$ relation	$object(X_1, X_2)$	
(direct relations, Y_1)	$set(Y_1, Y_2)$	
all (inherited relations, Y_1)	$set(Y_1, Y_2)$	
all (superconcepts, Y_1)	$set(Y_1, Y_2)$	
all (subconcepts, Y_1)	$set(Y_1, Y_2)$	Search Step
$(subconc., Y_1) / (superconc., Y_2)$	$set(Y_1, Y_2)$	Soloction
$(\text{superconc.}, Y_1) / (\text{subconc.}, Y_2)$	$set(Y_1, Y_2)$	Selection
(concept siblings, Y_1)	$set(Y_1, Y_2)$	
$(instances, Y_1)$	$set(Y_1, Y_2)$	
$(label, X_1)$	$string(X_1, X_2)$	
(identifier, X_1)	$explicit(X_1, X_2)$	Similarity
$(X_1, \text{sameAs}, X_2)$ relation	$object(X_1, X_2)$	
(domain, X_{d1}) and (range, X_{r1})	$object(X_{d1}, X_{d2}), (X_{r1}, X_{r2})$	Computation
all (superrelations, Y_1)	$set(Y_1, Y_2)$	
all (subrelations, Y_1)	$set(Y_1, Y_2)$	
(relation siblings, Y_1)	$set(Y_1, Y_2)$	
(relation instances, Y_1)	$set(Y_1, Y_2)$	Similarity
$(label, X_1)$	$string(X_1, X_2)$	Similarity
(identifier, X_1)	$explicit(X_1, X_2)$	Aggregation
$(X_1, sameAs, X_2)$ relation	$object(X_1, X_2)$	
all (parent-concepts, Y_1)	$set(Y_1, Y_2)$	
(relation instances, Y_1)	$set(Y_1, Y_2)$	
(domain, D_1) and (range, R_1)	$object(D_1, D_2), (R_1, R_2)$	
(parent relation, Y_1)	$set(Y_1, Y_2)$	Interpretation

$$select: O \times O \to \mathfrak{P}(E \times E)$$

Most common methods:

• compare all entities of O₁ with all entities of O₂:

 $e, f \in E_1 \times E_2$

any pair is treated as a candidate mapping

• or only compare entities of the same type

 $e, f \in (C_1 \times C_2) \cup (R_1 \times R_2) \cup (I_1 \times I_2)$

• or use heuristics to lower the number of candidate mappings (e.g., applied in QOM) using strategies such as random or label, or change propagation

Ontology Alignment Example: Step 2

27

Compare all entities of the same type:

55 candidate alignments:

- 42 concept pairs (6x7)
- 4 relation pairs (2x2)
- 9 instance pairs (3x3)

e.g., comparing o₁: belongsTo with o₂:hasProperty and with o₂:hasMotor

/olkswagen

300 km/l

[Ehrig 2007]

Object

Boat

Features and Similarity Measures

Comparing	No.	Feature	Similarity Measure	
Concepts	1	$(label, X_1)$	$string(X_1, X_2)$	Feature
	2	(identifier, X_1)	$explicit(X_1, X_2)$	Engineering
	3	$(X_1, sameAs, X_2)$ relation	$\operatorname{object}(X_1, X_2)$	Engineering
	4	(direct relations, Y_1)	$set(Y_1, Y_2)$	
	5	all (inherited relations, Y_1)	$set(Y_1, Y_2)$	
	6	all (superconcepts, Y_1)	$set(Y_1, Y_2)$	
	7	all (subconcepts, Y_1)	$set(Y_1, Y_2)$	Search Step
	8	$(subconc., Y_1) / (superconc., Y_2)$	$set(Y_1, Y_2)$	Soloction
	9	$(\text{superconc.}, Y_1) / (\text{subconc.}, Y_2)$	$set(Y_1, Y_2)$	Selection
	10	(concept siblings, Y_1)	$set(Y_1, Y_2)$	
	11	$(instances, Y_1)$	$set(Y_1, Y_2)$	
Relations	1	$(label, X_1)$	$string(X_1, X_2)$	
	2	(identifier, X_1)	$explicit(X_1, X_2)$	Similarity
	3	$(X_1, sameAs, X_2)$ relation	$\operatorname{object}(X_1, X_2)$	
	4	(domain, X_{d1}) and (range, X_{r1})	$object(X_{d1}, X_{d2}), (X_{r1}, X_{r2})$	Computation
	5	all (superrelations, Y_1)	$set(Y_1, Y_2)$	
	6	all (subrelations, Y_1)	$set(Y_1, Y_2)$	
	7	(relation siblings, Y_1)	$set(Y_1, Y_2)$	
	8	(relation instances, Y_1)	$set(Y_1, Y_2)$	Cimilarity
Instances	1	$(label, X_1)$	$string(X_1, X_2)$	Similarity
	2	(identifier, X_1)	$explicit(X_1, X_2)$	Aggregation
	3	$(X_1, sameAs, X_2)$ relation	$\operatorname{object}(X_1, X_2)$	
	4	all (parent-concepts, Y_1)	$set(Y_1, Y_2)$	
	5	(relation instances, Y_1)	$set(Y_1, Y_2)$	
Relation-	1	(domain, D_1) and (range, R_1)	$object(D_1, D_2), (R_1, R_2)$	
Instances	2	(parent relation, Y_1)	$set(Y_1, Y_2)$	Interpretation

Ontology Alignment Example: Step 3

Computing the similarity of the candidate alignment: o_1 :Car and o_2 :Automobile

For every feature we compute a similarity. E.g.,

sim_{label}(o₁:Car,o₂:Automobile) =
sim_{string}('Car', 'Automobile') = 0.0

 $sim_{superconcept}$ (o₁:Car,o₂:Automobile) = $sim_{set}({o_1:Vehicle}, {o_2:Vehicle}) = 1.0$

ML

$$agg: [0,1]^k \to [0,1]$$

The individual similarity measures are weighted and combined

$$sim_{aggs}(e,f) := \frac{\sum_{k=1..n} w_k \cdot adj_k(sim_k(e,f))}{\sum_{k=1..n} w_k}$$

Some approaches for aggregation: **Averaging:**

$$w_k = 1, adj_k(x) = id(x)$$

Linear Summation:

 w_k learned or manually assigned, $adj_k(x) = id(x)$

Linear Summation with negative evidence: w_k : can have a negative value (e.g., superconcepts of the first entity have a high similarity with subconcepts of the second entity)

Sigmoid Function: emphasize high similarity and de-emphasize low similarity: adi(a) = aia(a) = 0.5

$$adj_{k}(x) = sig_{k}(x - 0.5),$$

$$sig_{k}(x) = \frac{1}{1 + e^{-a_{k}x}}$$
[Ebric 2007]

$$inter: [0,1] \rightharpoonup \{alignment\}$$

Aggregated similarity is compared to a threshold: every value above indicates an alignment

Determine the threshold:

- constant,
- $max(sim_{agg}(e, f)) constant$,
- $max(sim_{agg}(e,f))(1-p)$

General Alignment Process: Step 6

- Entities are similar if their position in the structure is similar
- Structure similarity is expressed through the similarity of the other entities in the structure
- Calculating the similarity for one entity pair, the similarity of the neighboring entity pairs are needed
- In a first round only basic comparison methods (e.g. string similarity) is applied (or pre-given alignments are used)
- In further rounds already computed pairs and use more sophisticated structural similarity measures
- When to stop the iteration:
 - 1. fixed number of iterations
 - 2. fixed time constraint
 - 3. changes of alignments compared to a threshold

- Introduction
- Similarity Layers
- General Alignment Process
- Application Scenarios
- Complexity & Evaluation
- Using Mappings

- Two ore more ontologies are combined into one target ontology
- By establishing alignments among entities we identify equal entities which we can merge
- Time resources are less critical
- Human post-processing is required
- Finally high quality requirements

- Agents or web service often use different representations of their domains resulting in different expressions on their goals, and their input or output
- Collaborate despite the heterogeneous representations
- Standard upper-level ontologies or ontology alignment
- Alignment needs to be fast, reliable, and correct
- Wrong results can lead to unjustified costs
- Sometimes user checks are possible
- Example: combine a booking service of an air carrier and a hotel reservation network

- Users formulate a query in a specific query language based on a specific ontology
- Query is sent to a query engine
- To access heterogeneous information sources the query needs to be re-written for the target ontologie(s)
- For the presentation of the answers the results have to be transformed back again
- Rewriting / Mapping should be fast and fully automatic
- Users may tolerate wrong results as long as the correct results are returned as well

- New information is inferred from distributed and heterogeneous ontologies
- Time constraints are not critical (for both, alignment and inference tools)
- Quality of the alignments is very important
- Alignment needs to be done automatically
- Wrong results may trigger additional wrong results in a cascading manner
- Detection of conflicting inconsistencies is required
- Many unsolved research issues

- Introduction
- Similarity Layers
- General Alignment Process
- Application Scenarios
- Complexity & Evaluation
- Using Mappings

Standard information retrieval metrics

Precision
$$p = \frac{\#correct_found_mapping}{\#found_mappings}$$

Recall $r = \frac{\#correct_found_mappings}{\#existing_mappings}$
F-Measure $f_1 = \frac{2pr}{p+r}$

- Compliance measure
 quality of identified alignments
- Performance measure quality of algorithm in terms of computational resources
- User-related measure overall subjective user satisfaction, e.g., how much user effort is needed
- Task-related measure quality of alignment for a certain use case or application scenario

Yearly Contest

Video Satisficing Ontology Mapping

Title:	Satisficing Ontology Mapping
Author:	Steffen Staab (More resources of Steffen Staab)
General Information	
Provider:	Joerg Diederich (L3S Research Center)
Learning Resource Language:	English
Description Language:	English
Description:	This is a one-hour video recording of the presentation of Steffen Staab at the KnowledgeWeb summer school 2005. It comprises either the video synchronized with the slides (but requires Quicktime, hence Windows or MacOS, otherwise the slides have to be switched manually). It provides an in-depth view with concrete example mappings while the presentation Natasha Noy provides the general overview. Table of Contents: Satisficing Ontology Mapping - Step 1 The Semantic Web - Welcome on board the Voyager Let's talk Optimize vs. Satisfice SWAP Use Case: Virtual Organization Knowledge exchange P2P style Individual Situation so we have a problem P2P Generic Process Features Generic Process Features Generic Process Entity Pair Selection Generic Process Similarity Measure Similarity Meas
11	Example

- Random Selection
- Closest Label
- Change Propagation
- Combination

- $c = (feat + select + comp \cdot (\Sigma_k sim_k + agg) + inter) \cdot iter$
- NOM
 - $c = O((n + n^2 + n^2 \cdot (\log^2(n) + 1) + n) \cdot 1)$
 - $= O(n^2 \cdot log^2(n))$
- PROMPT

$$c = O((n + n^2 + n^2 \cdot (1 + 0) + n) \cdot 1)$$

= O(n²)

• QOM

```
c = O((n + n \cdot \log(n) + n \cdot (1 + 1) + n) \cdot 1)
= O(n \cdot log(n))
```


Steffen Staab Video Slide - Scenario 1

[Slides Staab Video]

Results for I3CON Ontology Alignment Experiment

Organization vs. fMeasure

Complexity

* c = (feat + set + camap - (I, sen, + app) = inter) det

24

- Introduction
- Similarity Layers
- General Alignment Process
- Application Scenarios
- Complexity & Evaluation
- Using Mappings

Video Ontology Mapping and Alignment

Title:	Ontology Mapping and Alignment	
Author:	Natasha Noy (More resources of Natasha Noy)	
General Information		
Provider:	Joerg Diederich (L3S Research Center)	
Learning Resource Language:	English	
Description Language:	English	
Description:	This is a one-hour video recording of the presentation of Natasha Noy at the KnowledgeWeb summer school 2005. It comprises either the video synchronized with the slides (but requires Quicktime, hence Windows or MacOS, otherwise the slides have to be switched manually). It provide a high-level overview on ontology mapping while the presentation of Steff Staab provides more details and example systems. Table of Contents: Ontology Mapping and Alignment Lots of Overlapping Ontologies on the Semantic Web Example Definitions of School Creating Correspondences Between Ontologies Semantic Integration Tasks Reasons for Mismatches Types of Mismatches Uanguage-level Mismatches Ontology-level Mismatches Ontology-level Mismatches Categories of Mappings Mapping Discovery: Information Sources Using a Common Reference Ontology Solve the problem before it arises Using reference ontologies: Problems Using Internation Using Ontology Structure Using External Sources User Input Using External Sources User Input Using Composition Using Composition Using Composition	
	Using Corpus of Matches [LEEVE]	

Generation of ontology extensions

webt

SSSW-05, Cercedilla, Spain

[Slides Noy Video]

[Slides Noy Video]

()

[Slides Noy Video]

 Query refomulation using mappings between adjacent peers

SSSW-05, Cercedilla, Spain

SSSW-05, Cercedilla, Spain

- [Ehrig 2007] Marc Ehrig: Ontology Alignment Bridging the Semantic Gap, Dissertation, Springer, New York, 2007.
- [Ehrig, et al. 2004] Marc Ehrig and York Sure: Ontology Mapping An Integrated Approach, In: Proceedings of the First European Semantic Web Symposium. C. Bussler, J. Davis, D. Fensel, R. Studer, eds, 2004.
- [REASE] REASE Repository of EASE for Learning Units, http://rease.semanticweb.org, checked online 15.Jan.2008.
- [Slides Noy Video] Natasha Noy: Ontology Mapping and Alignment, SSSW, 2005, pp. 39- 45, http://dit.unitn.it/~accord/RelatedWork/Matching/Noy-MappingAlignment-SSSW-05.pdf, checked online 15.Jan.2008.
- [Slides Staab Video] Steffen Staab: Satisficing Ontology Mapping, SSSW, 2005, http://rease.semanticweb.org/ubp/PUSH/search@srchDetailsLR?lrID=lr-leardiederich-1165406019525, checked online 15.Jan.2008.

