
Monika Lanzenberger

Semi-Automatic Information
and Knowledge Systems

:
OWL - Ontology Web Language 

& 

Ontology Engineering

ML

2

• Basic Ideas of OWL

• Some OWL Examples

• Future Extensions

• Constructing Ontologies Manually

• Common Errors & How to Avoid Them

• Reusing Existing Ontologies

• Fundamental Research Challenges

Outline

ML

The Semantic Web is a vision for the future of the Web [...] 
information is given explicit meaning, [... ] machines 
automatically process and integrate information available on 
the Web.

If machines are expected to perform useful 

reasoning tasks on these documents, 

the language must go beyond
the basic semantics
of RDF Schema.

[W3Ca, Miller]

Why OWL? 3

ML

Ontology languages allow users to write explicit, formal 
conceptualizations of domain models.

The main requirements are:
• a well-defined syntax 

• efficient reasoning support 

• a formal semantics 

• sufficient expressive power 

• convenience of expression

Requirements for Ontology Languages 4

[Antoniou and van Harmelen, 2004]



ML

• The richer the language is, the more inefficient the 
reasoning support becomes.

• Sometimes it crosses the border of noncomputability.

• We need a compromise:
A language supported by reasonably efficient reasoners. 

A language that can express large classes of ontologies and 
knowledge.

Expressive Power or Efficient Reasoning Support 5

[Antoniou and van Harmelen, 2004] ML

• Class membership 

If x is an instance of a class C,

and C is a subclass of D,

then we can infer that x is an instance of D.

• Equivalence of classes 

If class A is equivalent to class B,

and class B is equivalent to class C,

then A is equivalent to C, too.

Reasoning About Knowledge  in Ontology Languages 6

[Antoniou and van Harmelen, 2004]

ML

• Consistency

Consider x being an instance of classes A and B, 

but A and B are disjoint.

--> Indication of an error in the ontology.

• Classification
Certain property-value pairs are a sufficient condition for membership 

in a class A; if an individual x satisfies such conditions, we can 

conclude that x must be an instance of A.

7Reasoning About Knowledge  in Ontology Languages

[Antoniou and van Harmelen, 2004] ML

Reasoning support is important for...

... checking the consistency of the ontology and the knowledge.

... checking for unintended relationships between classes.

... automatically classifying instances in classes.

Checks like the preceding ones are valuable for...

... designing large ontologies, where multiple authors are involved.

... integrating and sharing ontologies from various sources.

8

[Antoniou and van Harmelen, 2004]

Reasoning in Practice



ML

• Semantics is a prerequisite for reasoning support

• Formal semantics and reasoning support are usually 
provided by...

... mapping an ontology language to a known logical formalism.

... using automated reasoners that already exist for those formalisms.

• OWL is (partially) mapped on a description logic, and 
makes use of reasoners such as FaCT++, RacerPro, 
Pellet.

• Description logics are a subset of predicate logic for 
which efficient reasoning support is possible.

9

[Antoniou and van Harmelen, 2004]

Reasoning Support for OWL

ML

Local scope of properties
• rdfs:range defines the range of a property (e.g. eats) for all classes .

• In RDF Schema we cannot declare range restrictions that apply to 
some classes only.

• E.g. , we cannot say that cows eat only plants, while other animals 
may eat meat, too.

Limitations of Expressive Power of RDF Schema 10

[Antoniou and van Harmelen, 2004]

ML

Disjointness of classes:
• Sometimes we wish to say that classes are disjoint (e.g., child and 

adult).

Boolean combinations of classes:
• Sometimes we wish to build new classes by combining other 

classes using union, intersection, and complement.

• E.g., human is  the disjoint union of the classes child and adult.

Limitations of Expressive Power of RDF Schema 11

[Antoniou and van Harmelen, 2004] ML

Cardinality restrictions:
• E.g., a person has exactly two parents, a course is taught by at least 

one lecturer.

Special characteristics of properties:
• Transitive property (like “greater than”)

• Unique property (like “has postcode”)

• A property is the inverse of another property (like “eats” and “is 
eaten by”).

Limitations of Expressive Power of RDF Schema 12

[Antoniou and van Harmelen, 2004]



ML

• Ideally, OWL would extend RDF Schema, consistent 
with the layered architecture of the Semantic Web.

• But simply extending RDF Schema would work 
against obtaining expressive power and efficient 
reasoning: 

Combining RDF Schema with logic leads to uncontrollable 
computational properties. 

Restrictions are required.

• Three Species of OWL defined by the W3C’s Web 
Ontology Working Group.

Combining OWL with RDF Schema 13

[Antoniou and van Harmelen, 2004] ML

OWL Lite ... 

... for classification hierarchies with simple constraints, 

... supports cardinality constraints, (only 0 or 1),

... simpler to provide tool support,

... provides a quick migration path for thesauri and other taxonomies,

... has a lower formal complexity than OWL DL.

... restricted: excludes for instance disjointness statements and enumerated 
classes.

OWL DL ...

... offers maximum expressiveness while retaining computational completeness 
and decidability. 

... includes all OWL language constructs, used under certain restrictions (for 
example, while a class may be a subclass of many classes, a class cannot be an 
instance of another class). 

14OWL Sublanguages: Lite & DL

[W3Ca]

OWL
FULL

OWL
DL

OWL
Lite

ML

OWL Full ... 

... offers maximum expressiveness and the syntactic freedom of RDF with no 
computational guarantees. For example, in OWL Full a class can be treated 
simultaneously as a collection of individuals and as an individual. 

... allows an ontology to augment the meaning of the pre-defined (RDF or OWL) 
vocabulary. 

... is unlikely that any reasoning software will be able to support complete 
reasoning for every feature of OWL Full.

... is fully compatible with RDF (syntactially and semantically) and can be viewed 
as an extension of RDF, while OWL Lite and OWL DL can be seen as extensions 
of a restricted view of RDF:  Every OWL (Lite, DL, Full) document is an RDF 
document, and every RDF document is an OWL Full document, but only some 
RDF documents will be a legal OWL Lite or OWL DL document.

15

[W3Ca]

OWL Sublanguages: Full

OWL
FULL

OWL
DL

OWL
Lite

ML

16

Each of these sublanguages is an extension of its 
predecessor, both in what can be legally expressed and 
in what can be validly concluded.

The following set of relations hold:
• Every legal OWL Lite ontology is a legal OWL DL ontology.

• Every legal OWL DL ontology is a legal OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

• Their inverses do not!

[W3Ca]

OWL Sublanguages



ML

17

• All varieties of OWL use 
RDF for their syntax

• Instances are declared 
as in RDF, using RDF 
descriptions 

• and typing information 
OWL constructors are 
specialisations of their 
RDF counterparts 

OWL Compatibility with RDF Schema

[Antoniou and van Harmelen, 2004] ML

• XML provides a surface syntax for structured documents, but imposes 
no semantic constraints on the meaning of these documents.

• XML Schema is a language for restricting the structure of XML 
documents and also extends XML with data types.

• RDF is a data model for objects ("resources") and relations between 
them, provides a simple semantics for this data model, and these data 
models can be represented in an XML syntax.

• RDF Schema is a vocabulary for describing properties and classes of RDF 
resources, with a semantics for generalization-hierarchies of such 
properties and classes.

• OWL adds more vocabulary for describing properties and classes: 
among others, relations between classes (e.g. disjointness), cardinality 
(e.g. "exactly one"), equality, richer typing of properties, characteristics of 
properties (e.g. symmetry), and enumerated classes.

Summary: Why OWL? 18

[W3Ca]

ML

19

• Basic Ideas of OWL

• Some OWL Examples

• Future Extensions

• Constructing Ontologies Manually

• Common Errors & How to Avoid Them

• Reusing Existing Ontologies

• Fundamental Research Challenges

Outline

ML

20An African Wildlife Ontology – Class Hierarchy

[Antoniou and van Harmelen, 2004]



ML

21An African Wildlife Ontology – Schematic Representation

[Antoniou and van Harmelen, 2004] ML

22

<owl:TransitiveProperty rdf:ID="is-part-of"/>

<owl:ObjectProperty rdf:ID="eats">

! <rdfs:domain rdf:resource="#animal"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="eaten-by">

! <owl:inverseOf rdf:resource="#eats"/>

</owl:ObjectProperty>

An African Wildlife Ontology – Properties

[Antoniou and van Harmelen, 2004]

ML

23

<owl:Class rdf:ID="plant">

<rdfs:comment>Plants are disjoint from animals. 

</rdfs:comment>

<owl:disjointWith="#animal"/>

</owl:Class>

<owl:Class rdf:ID="tree">

<rdfs:comment>Trees are a type of plant.</rdfs:comment>

<rdfs:subClassOf rdf:resource="#plant"/>

</owl:Class> 

An African Wildlife Ontology – Plants and Trees

[Antoniou and van Harmelen, 2004] ML

24

<owl:Class rdf:ID="branch">

! <rdfs:comment>Branches are parts of trees.</rdfs:comment>

! <rdfs:subClassOf>

! <owl:Restriction>

! ! ! <owl:onProperty rdf:resource="#is-part-of"/>

! ! ! <owl:allValuesFrom rdf:resource="#tree"/>

! ! </owl:Restriction>

! </rdfs:subClassOf>

</owl:Class>

An African Wildlife Ontology – Branches

[Antoniou and van Harmelen, 2004]



ML

25

<owl:Class rdf:ID="leaf">

! <rdfs:comment>Leaves are parts of branches. </rdfs:comment>

! <rdfs:subClassOf>

! ! <owl:Restriction>

! ! ! <owl:onProperty rdf:resource="#is-part-of"/>

! ! ! <owl:allValuesFrom rdf:resource="#branch"/>

! ! </owl:Restriction>

! </rdfs:subClassOf>

</owl:Class>

An African Wildlife Ontology – Leaves

[Antoniou and van Harmelen, 2004] ML

26

<owl:Class rdf:ID="carnivore">

! <rdfs:comment>Carnivores are exactly those animals

! that eat also animals.</rdfs:comment>

! <owl:intersectionOf rdf:parsetype="Collection">

! <owl:Class rdf:about="#animal"/>

! <owl:Restriction>

! ! ! <owl:onProperty rdf:resource="#eats"/>

! ! ! <owl:someValuesFrom rdf:resource="#animal"/>

! ! </owl:Restriction>

! </owl:intersectionOf>

</owl:Class>

An African Wildlife Ontology – Carnivores

[Antoniou and van Harmelen, 2004]

ML

27

<owl:Class rdf:ID="herbivore">

<rdfs:comment>Herbivores are exactly those animals that 

eat only plants or parts of plants.</rdfs:comment>

...

</owl:Class>

An African Wildlife Ontology – Herbivores

[Antoniou and van Harmelen, 2004]

?

ML

28

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#animal"/> 

<owl:Restriction> 

<owl:onProperty rdf:resource="#eats"/> 

<owl:allValuesFrom> 

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#plant"/>

<owl:Restriction> 

<owl:onProperty rdf:resource="#is_part_of"/> 

<owl:allValuesFrom rdf:resource="#plant"/> 

</owl:Restriction>

</owl:unionOf>

</owl:Class>

</owl:allValuesFrom> 

</owl:Restriction> 

</owl:intersectionOf> 

An African Wildlife Ontology – Herbivores

[Antoniou and van Harmelen, 2004]

!



ML

29An African Wildlife Ontology – Herbivores

[Protégé 3.3.1] ML

30

<owl:Class rdf:ID="giraffe">

! <rdfs:comment>Giraffes are herbivores, and they

! eat only leaves.</rdfs:comment>

! <rdfs:subClassOf rdf:type="#herbivore"/>

! <rdfs:subClassOf>

! ! <owl:Restriction>

! ! ! <owl:onProperty rdf:resource="#eats"/>

! ! ! <owl:allValuesFrom rdf:resource="#leaf"/>

! ! </owl:Restriction>

! </rdfs:subClassOf>

</owl:Class>

An African Wildlife Ontology – Giraffes

[Antoniou and van Harmelen, 2004]

ML

31

<owl:Class rdf:ID="lion">

! <rdfs:comment>Lions are animals that eat

! herbivores.</rdfs:comment>

! <rdfs:subClassOf rdf:type="#animal"/>

! <rdfs:subClassOf>

! ! <owl:Restriction>

! ! ! <owl:onProperty rdf:resource="#eats"/>

! ! ! <owl:someValuesFrom rdf:resource="#herbivore"/>

! ! </owl:Restriction>

! </rdfs:subClassOf>

</owl:Class>

An African Wildlife Ontology – Lions

[Antoniou and van Harmelen, 2004] ML

?

32

<owl:Class rdf:ID="tasty-plant">

<rdfs:comment>Plants eaten both by herbivores and 

carnivores </rdfs:comment>

!

! ! ...

</owl:Class>

An African Wildlife Ontology – Tasty Plants

[Antoniou and van Harmelen, 2004]



ML

!

33

<rdfs:subClassOf rdf:resource="#plant"/> 

<rdfs:subClassOf> 

<owl:Restriction> 

<owl:onProperty rdf:resource="#eaten_by"/> 

<owl:someValuesFrom> 

<owl:Class rdf:about="#herbivore"/> 

</owl:someValuesFrom> 

</owl:Restriction> 

</rdfs:subClassOf> 

<rdfs:subClassOf> 

<owl:Restriction> 

<owl:onProperty rdf:resource="#eaten_by"/> 

<owl:someValuesFrom> 

<owl:Class rdf:about="#carnivore"/> 

</owl:someValuesFrom> 

</owl:Restriction> 

</rdfs:subClassOf>

An African Wildlife Ontology – Tasty Plants

[Antoniou and van Harmelen, 2004] ML

34An African Wildlife Ontology – Tasty Plants

[Protégé 3.3.1]

ML

35

What problem would emerge if we replace 

owl:someValuesFrom   by

owl:allValuesFrom 
in the definition of carnivores?

An African Wildlife Ontology

[Antoniou and van Harmelen, 2004] ML

36An African Wildlife Ontology – Tasty Plants

[Protégé 3.3.1]



ML

37A Printer Ontology: Class Hierarchy

[Antoniou and van Harmelen, 2004] ML

38

<owl:Class rdf:ID="product">

! <rdfs:comment>Products form a class. </rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="padid">

! <rdfs:comment>Printing and digital imaging devices

! form a subclass of products.</rdfs:comment>

! <rdfs:label>Device</rdfs:label>

! <rdfs:subClassOf rdf:resource="#product"/>

</owl:Class>

A Printer Ontology: Products and Devices

[Antoniou and van Harmelen, 2004]

ML

39

<owl:DatatypeProperty rdf:ID="manufactured-by">

! <rdfs:domain rdf:resource="#product"/>

! <rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="printingTechnology">

! <rdfs:domain rdf:resource="#printer"/>

! <rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

A Printer Ontology: Properties

[Antoniou and van Harmelen, 2004] ML

40

<owl:Class rdf:ID="hpProduct">

! <owl:intersectionOf>

! ! <owl:Class rdf:about="#product"/>

! ! <owl:Restriction>

! !    <owl:onProperty rdf:resource="#manufactured-by"/>

! !    <owl:hasValue>

! ! ! <xsd:string rdf:value="Hewlett Packard"/>

! !    </owl:hasValue>

! ! </owl:Restriction>

! </owl:intersectionOf>

</owl:Class>

A Printer Ontology: HP Products

[Antoniou and van Harmelen, 2004]



ML

41

<owl:Class rdf:ID="printer">

! <rdfs:comment>Printers are printing and digital imaging 

! devices.</rdfs:comment>

! <rdfs:subClassOf rdf:resource="#padid"/>

</owl:Class>

<owl:Class rdf:ID="personalPrinter">

! <rdfs:comment>Printers for personal use form

! a subclass of printers.</rdfs:comment>

! <rdfs:subClassOf rdf:resource="#printer"/>

</owl:Class>

A Printer Ontology: Printers and Personal Printers

[Antoniou and van Harmelen, 2004] ML

42

<owl:Class rdf:ID="1100se">

! <rdfs:comment>1100se printers belong to the 1100 series

! ! and cost $450.</rdfs:comment>

! <rdfs:subClassOf rdf:resource="#1100series"/>

! <rdfs:subClassOf>

! ! <owl:Restriction>

! ! ! <owl:onProperty rdf:resource="#price"/>

! ! ! <owl:hasValue><xsd:integer rdf:value="450"/>

! ! ! </owl:hasValue>

! ! </owl:Restriction>

! </rdfs:subClassOf>

</owl:Class>

A Printer Ontology: HP LaserJet 1100se Printers

[Antoniou and van Harmelen, 2004]

ML

43A Printer Ontology: Class Hierarchy

[Antoniou and van Harmelen, 2004] ML

44

• Basic Ideas of OWL

• Some OWL Examples

• Future Extensions

• Constructing Ontologies Manually

• Common Errors & How to Avoid Them

• Reusing Existing Ontologies

• Fundamental Research Challenges

Outline



ML

45

... Modules and Imports

... Defaults

... Closed World Assumption

... Unique Names Assumption

... Procedural Attachments

... Rules for Property Chaining

Future Extensions of OWL

[Antoniou and van Harmelen, 2004] ML

46

• The importing facility of OWL is very trivial: 
It only allows importing of an entire ontology, not 
parts of it.

• Modules in programming languages based on 
information hiding (state functionality, hide 
implementation details):
Open question how to define appropriate module 
mechanism for Web ontology languages.

Modules and Imports

[Antoniou and van Harmelen, 2004]

ML

47

• Many practical knowledge representation systems 
allow inherited values to be overridden by more 
specific classes in the hierarchy.
 (Treat inherited values as defaults.)

• No consensus has been reached on the right 
formalization for the nonmonotonic behaviour of 
default values.

Defaults

[Antoniou and van Harmelen, 2004] ML

48

• OWL currently adopts the open-world assumption: 
A statement cannot be assumed true on the basis of a 
failure to prove it. On the huge and only partially 
knowable WWW, this is a correct assumption.

• Closed-world assumption: a statement is true when its 
negation cannot be proved:
tied to the notion of defaults, leads to nonmonotonic 
behaviour.

Closed World Assumption

[Antoniou and van Harmelen, 2004]



ML

49

• Typical database applications assume that individuals 
with different names are indeed different individuals.

• OWL follows the usual logical paradigm where this is 
not the case. (Plausible on the WWW.)

• One may want to indicate portions of the ontology for 
which the assumption does or does not hold.

Unique Names Assumption

[Antoniou and van Harmelen, 2004] ML

50

• A common concept in knowledge representation is to 
define the meaning of a term by attaching a piece of 
code to be executed for computing the meaning of 
the term, instead of through explicit definitions in the 
language.

• Although widely used, this concept does not lend 
itself very well to integration in a system with a formal 
semantics, and it has not been included in OWL.

Procedural Attachments 

[Antoniou and van Harmelen, 2004]

ML

51

• OWL does not allow the composition of properties for 
reasons of decidability.

• Integration of rule-based knowledge representation 
and DL-style knowledge representation is currently an 
active area. (E.g., W3C's Rule Interchange Format 
Working Group)

Rules for Property Chaining

[Antoniou and van Harmelen, 2004] ML

52

• Basic Ideas of OWL

• Some OWL Examples

• Future Extensions

• Constructing Ontologies Manually

• Common Errors

• Reusing Existing Ontologies

• Fundamental Research Challenges

Outline



ML

53

• Determine scope

• Consider reuse

• Enumerate terms

• Define classes and a taxonomy

• Define properties

• Define constraints

• Create instances

• Check for anomalies

Not a linear process!

Main Stages in Ontology Development 

[Antoniou and van Harmelen, 2004; Noy and McGuinness] ML

54

• There is no correct ontology of a specific 
domain: 
An ontology is an abstraction of a 
particular domain, and there are always 
viable alternatives.

• What is included in this abstraction 
should be determined by ...

... the use to which the ontology will be put.

... by future extensions that are already anticipated.

Determine Scope 

[Antoniou and van Harmelen, 2004; Noy and McGuinness]

• Determine 
scope

• Consider 
reuse

• Enumerate 
terms

• Define 
classes and 
a taxonomy

• Define 
properties

• Define 
constraints

• Create 
instances

• Check for 
anomalies

ML

55

Basic questions to be answered at this stage are: 

• What is the domain that the ontology will cover? 

• For what we are going to use the ontology? 

• For what types of questions should the ontology 
provide answers? 

• Who will use and maintain the ontology?

Determine Scope (2)

• Determine 
scope

• Consider 
reuse

• Enumerate 
terms

• Define 
classes and 
a taxonomy

• Define 
properties

• Define 
constraints

• Create 
instances

• Check for 
anomalies

[Antoniou and van Harmelen, 2004; Noy and McGuinness] ML

56

• With the spreading deployment of the 
Semantic Web, ontologies will become 
more widely available. 

• We rarely have to start from scratch when 
defining an ontology.
There is almost always an ontology 
available from a third party that provides 
at least a useful starting point for our own 
ontology.

Consider Reuse

[Antoniou and van Harmelen, 2004; Noy and McGuinness]

• Determine 
scope

• Consider 
reuse

• Enumerate 
terms

• Define 
classes and 
a taxonomy

• Define 
properties

• Define 
constraints

• Create 
instances

• Check for 
anomalies



ML

57

Write down in an unstructured list all the 
relevant terms that are expected to appear 
in the ontology:

• Nouns form the basis for class names.

• Verbs (or verb phrases) form the basis for property 
names.

Traditional knowledge engineering tools 
can be used to obtain:

• the set of terms.

• an initial structure for these terms.

Enumerate Terms

• Determine 
scope

• Consider 
reuse

• Enumerate 
terms

• Define 
classes and 
a taxonomy

• Define 
properties

• Define 
constraints

• Create 
instances

• Check for 
anomalies

[Antoniou and van Harmelen, 2004; Noy and McGuinness] ML

58

• Relevant terms must be organized in a 
taxonomic hierarchy. Opinions differ on 
whether it is more efficient/reliable to do 
this in a top-down or a bottom-up fashion.

• Ensure that hierarchy is indeed a taxonomy:

If A is a subclass of B,

then every instance of A

must also be an instance of B.

Define Classes and a Taxonomy

• Determine 
scope

• Consider 
reuse

• Enumerate 
terms

• Define 
classes and 
a taxonomy

• Define 
properties

• Define 
constraints

• Create 
instances

• Check for 
anomalies

[Antoniou and van Harmelen, 2004; Noy and McGuinness]

ML

59

• Often interleaved with the previous step.

• The semantics of subClassOf demands 

that whenever A is a subclass of B,
every property statement that holds for 

instances of B must also apply to instances 

of A :
It makes sense to attach properties to the 
highest class in the hierarchy to which they 
apply.

Define Properties

• Determine 
scope

• Consider 
reuse

• Enumerate 
terms

• Define 
classes and 
a taxonomy

• Define 
properties

• Define 
constraints

• Create 
instances

• Check for 
anomalies

[Antoniou and van Harmelen, 2004; Noy and McGuinness] ML

60

While attaching properties to classes, it makes 
sense to immediately provide statements about 
the domain and range of these properties.

There is a methodological tension here 
between generality and specificity:

• Flexibility (inheritance to subclasses)

• Detection of inconsistencies and misconceptions

Define Properties (2)

• Determine 
scope

• Consider 
reuse

• Enumerate 
terms

• Define 
classes and 
a taxonomy

• Define 
properties

• Define 
constraints

• Create 
instances

• Check for 
anomalies

[Antoniou and van Harmelen, 2004; Noy and McGuinness]



ML

61

Cardinality restrictions

Required values:
• owl:hasValue 

• owl:allValuesFrom

• owl:someValuesFrom

Relational characteristics:
• symmetry

• transitivity

• inverse properties

• functional values 

Define Constraints

• Determine 
scope

• Consider 
reuse

• Enumerate 
terms

• Define 
classes and 
a taxonomy

• Define 
properties

• Define 
constraints

• Create 
instances

• Check for 
anomalies

[Antoniou and van Harmelen, 2004; Noy and McGuinness] ML

62

• Filling the ontologies with such instances 
is a separate step.

• Number of instances >> number of classes

• Thus populating an ontology with 
instances is not done manually:

... retrieved from legacy data sources.

... extracted automatically from a text corpus.

Create Instances

• Determine 
scope

• Consider 
reuse

• Enumerate 
terms

• Define 
classes and 
a taxonomy

• Define 
properties

• Define 
constraints

• Create 
instances

• Check for 
anomalies

[Antoniou and van Harmelen, 2004; Noy and McGuinness]

ML

63

An important advantage of the use of OWL 
over RDF Schema is the possibility to detect 
inconsistencies in ontology and instances.

Examples of common inconsistencies:

... incompatible domain and range definitions 
for transitive, symmetric, or inverse properties;

... cardinality properties;

... requirements on property values can conflict 
with domain and range restrictions.

Check for Anomalies

• Determine 
scope

• Consider 
reuse

• Enumerate 
terms

• Define 
classes and 
a taxonomy

• Define 
properties

• Define 
constraints

• Create 
instances

• Check for 
anomalies

[Antoniou and van Harmelen, 2004; Noy and McGuinness] ML

64

• Basic Ideas of OWL

• Some OWL Examples

• Future Extensions

• Constructing Ontologies Manually

• Common Errors & How to Avoid Them

• Reusing Existing Ontologies

• Fundamental Research Challenges

Outline



ML

65

• Failure to make all information explicit,
assuming that information implicit in names is 
"represented" and available to the classifier. 

• Mistaken use of universal rather than existential 
restrictions as the default.

• Open world reasoning.

• The effect of range and domain constraints as axioms.

Common Errors

[Rector, et al., 2004] ML

66

•  Trivial satisfiability of universal restrictions – that 
“only” (allValuesFrom) does not imply 
“some” (someValuesFrom). 

• The difference between defined and primitive classes 
and the mechanics of converting one to the other. 

• Errors in understanding common logical constructs. 

• Expecting classes to be disjoint by default. 

• The difficulty of understanding subclass axioms used 
for implication. 

Common Errors (2)

[Rector, et al., 2004]

ML

67

• Always paraphrase a description or definition before 
encoding it in OWL, and record the paraphrase in the 
comment area of the interface. 

• Make all primitives disjoint - which requires that 
primitives form trees.

• Use someValuesFrom as the default qualifier in 
restrictions .

• Be careful to make defined classes defined – the 
default is primitive.

Guidelines

[Rector, et al., 2004] ML

68

• Remember the open world assumption. Insert closure 
restrictions if that is what you mean. 

• Be careful with domain and range constraints.
Check them carefully if classification does not work as 
expected. 

• Be careful about the use of 
"and" and "or" (intersectionOf, unionOf ). 

Guidelines (2)

[Rector, et al., 2004]



ML

69

• To spot trivially satisfiable restrictions early, always 
have an existential (someValuesFrom) restriction 
corresponding to every universal (allValuesFrom) 
restriction, either in the class or one of its superclasses 
(unless you specifically intend the class to be trivially 
satisfiable). 

• Run the classifier frequently; spot errors early.

Guidelines (2)

[Rector, et al., 2004] ML

70

• Basic Ideas of OWL

• Some OWL Examples

• Future Extensions

• Constructing Ontologies Manually

• Common Errors & How to Avoid Them

• Reusing Existing Ontologies

• Fundamental Research Challenges

Outline

ML

71

• Medical domain:
Cancer ontology from the
National Cancer Institute in the United States
http://www.mindswap.org/2003/CancerOntology

• Geographical domain:
Getty Thesaurus of Geographic Names (TGN), 
containing around 1 million entries
http://www.getty.edu/research/conducting_research/vocabularies/tgn

Existing Domain-Specific Ontologies

[Antoniou and van Harmelen, 2004] ML

72

Cultural domain:

• Art and Architecture Thesaurus (AAT)
with 131,000 terms in the cultural domain
http://www.getty.edu/research/conducting_research/vocabularies/aat

• Union List of Artist Names (ULAN)
with 293,000 names and biographical and bibliographic 
information about artists and architects
http://www.getty.edu/research/conducting_research/vocabularies/ulan

Existing Domain-Specific Ontologies (2)

[http://www.getty.edu]



ML

73

• Merge independently developed vocabularies
into a single large resource.

• E.g. Unified Medical Language System
integrating 100 biomedical vocabularies  
The UMLS metathesaurus contains 750,000 concepts, 
with over 10 million links between them. 
http://umlsinfo.nlm.nih.gov

• The semantics of a resource that integrates many 
independently developed vocabularies is rather low. 
But very useful in many applications as starting point.

Integrated Vocabularies

[Antoniou and van Harmelen, 2004] ML

74

Some attempts have been made to define very generally 
applicable ontologies. (Not domain-specific)

• Cyc with 60,000 assertions on 6,000 concepts 
http://www.opencyc.org

• Standard Upperlevel Ontology (SUO) 
http://suo.ieee.org

• Basic Formal Ontology (BFO): series of sub-ontologies
http://ontology.buffalo.edu/bfo/BFO.html

• Dolce 
http://www.loa-cnr.it/DOLCE.html

• General Formal Ontology (GFO) 
http://www.onto-med.de/en/theories/gfo/index.html

Upper-Level Ontologies

[Antoniou and van Harmelen, 2004]

ML

75

• Some “ontologies” do not deserve this name:
simply sets of terms, loosely organized in a hierarchy. 

• This hierarchy is typically not a strict taxonomy
but rather mixes different specialization relations 
(e.g., is-a, part-of, contained-in).

• Such resources often very useful as starting point.

• Example: Open Directory hierarchy, containing 
4,830,584 sites hierarchically organized in over 
590,000 categories.
http://dmoz.org

Topic Hierarchies

[Antoniou and van Harmelen, 2004] ML

76

• Some resources were originally built not as 
abstractions of a particular domain, but rather as 
linguistic resources.

• These have been shown to be useful as starting places 
for ontology development.
E.g. ,WordNet, with around 150,000 word senses.
http://wordnet.princeton.edu

Linguistic Resources

[Antoniou and van Harmelen, 2004]



ML

77

• Protégé Ontology Library
Links over 80 Ontologies
http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library

Ontology Collections

ML

78

• Taxonomy Warehouse ... available free to users and 
vocabulary publishers to help organizations maximize 
their information assets and break through today’s 
information overload: 

Links over 670 Taxonomies

Classified by 73 subject domains

Produced by 288 publishers

39 languages

http://www.taxonomywarehouse.com

Taxonomy Collections

ML

79

• Basic Ideas of OWL

• Some OWL Examples

• Future Extensions

• Constructing Ontologies Manually

• Common Errors & How to Avoid Them

• Reusing Existing Ontologies

• Fundamental Research Challenges

Outline

ML

80Fundamental Research Challenges

[REASE]



ML

81

[Antoniou and van Harmelen, 2004] Grigoris Antoniou and Frank van Harmelen, 
A Semantic Web Primer, MIT Press, Massachusetts, 2004.

[Miller] Miller, Eric: W3C Layer Cake,
http://www.w3.org/2001/09/06-ecdl/slide17-0.html
(checked online 6. Jan. 2008)

[Noy and McGuinness] Ontology Development 101: A Guide to Creating Your First Ontology Natalya. F. Noy and 
Deborah L. McGuinness,
http://www.ksl.stanford.edu/people/dlm/papers/ontology101/
             ontology101-noy-mcguinness.html (checked online 6. Jan. 2008).

[REASE] REASE- the EASE repository for learning units,
http://ubp.l3s.uni-hannover.de/ubp/baseapp@home (checked online 6. Jan. 2008).

[Protégé 3.3.1] Stanford Medical Informatics, Protégé-OWL,
http://protege.stanford.edu/download/download.html (checked online 6. Jan. 2008).

[Rector, et al., 2004] Alan Rector,  Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger Knublauch, Robert 
Stevens, Hai Wang, and Chris Wroe, OWL Pizzas:  Practical Experience of Teaching OWL-DL: Common Errors & 
Common Patterns,
http://www.co-ode.org/resources/papers/ekaw2004.pdf (checked online 6. Jan. 2008).

[W3Ca] OWL Web Ontology Language Overview, 
http://www.w3.org/TR/2004/REC-owl-features-20040210/,
W3C Recommendation 10 February 2004, (checked online 6. Jan. 2008)

References & Resources

ML

Thanks to ...

... Grigoris Antoniou and 

... Frank van Harmelen 

for making nice slides of their presentations available.

82


