Outline

- Basic Ideas of OWL
- Some OWL Examples
- Future Extensions
- Constructing Ontologies Manually
- Common Errors & How to Avoid Them
- Reusing Existing Ontologies
- Fundamental Research Challenges

sem

seme

Requirements for Ontology Languages

Ontology languages allow users to write explicit, formal conceptualizations of domain models.

The main requirements are:

- a well-defined syntax
- efficient reasoning support
- a formal semantics
- sufficient expressive power
- convenience of expression

Why OWL?

3

The Semantic Web is a vision for the future of the Web [...] information is given explicit meaning, [...] machines automatically process and integrate information available on the Web.

Semi-Automatic Information

and Knowledge Systems

OWL - Ontology Web Language

Ontology Engineering

Monika Lanzenberger

If machines are expected to perform useful reasoning tasks on these documents, the language must go beyond the basic semantics Data of RDF Schema. Self-

ML

4

- The richer the language is, the more inefficient the reasoning support becomes.
- Sometimes it crosses the border of noncomputability.
- We need a compromise:

A language supported by reasonably efficient reasoners. A language that can express large classes of ontologies and knowledge.

weba	[Antoniou and van Harmelen, 2004]	ML
Reasoning About Kn	owledge in Ontology Languages	7

Consistency

Consider ${\bf X}$ being an instance of classes ${\bf A}$ and ${\bf B},$

but \boldsymbol{A} and \boldsymbol{B} are disjoint.

--> Indication of an error in the ontology.

• Classification

Certain property-value pairs are a sufficient condition for membership in a class \mathbf{A} ; if an individual \mathbf{X} satisfies such conditions, we can conclude that \mathbf{X} must be an instance of \mathbf{A} .

- Class membership
 If x is an instance of a class C,
 and C is a subclass of D,
 then we can infer that x is an instance of D.
- Equivalence of classes If class **A** is equivalent to class **B**, and class **B** is equivalent to class **C**, then **A** is equivalent to **C**, too.

se	
We	be

sem

[Antoniou and van Harmelen, 2004]

Reasoning in Practice

ML

6

Reasoning support is important for...

- ... checking the consistency of the ontology and the knowledge.
- ... checking for unintended relationships between classes.
- ... automatically classifying instances in classes.

Checks like the preceding ones are valuable for...

- ... designing large ontologies, where multiple authors are involved.
- ... integrating and sharing ontologies from various sources.

- Semantics is a prerequisite for reasoning support
- Formal semantics and reasoning support are usually provided by...

... mapping an ontology language to a known logical formalism. ... using automated reasoners that already exist for those formalisms.

- OWL is (partially) mapped on a description logic, and makes use of reasoners such as FaCT++, RacerPro, Pellet.
- Description logics are a subset of predicate logic for which efficient reasoning support is possible.

webe	[Antoniou and van Harmelen, 2004]	ML
Limitations of Exp	pressive Power of RDF Schema	11

Disjointness of classes:

• Sometimes we wish to say that classes are disjoint (e.g., child and adult).

Boolean combinations of classes:

- Sometimes we wish to build new classes by combining other classes using union, intersection, and complement.
- E.g., human is the disjoint union of the classes child and adult.

Local scope of properties

- rdfs:range defines the range of a property (e.g. eats) for all classes .
- In RDF Schema we cannot declare range restrictions that apply to some classes only.
- E.g., we cannot say that cows eat only plants, while other animals may eat meat, too.

webe

[Antoniou and van Harmelen, 2004]

ML

10

Limitations of Expressive Power of RDF Schema 12

Cardinality restrictions:

• E.g., a person has exactly two parents, a course is taught by at least one lecturer.

Special characteristics of properties:

- Transitive property (like "greater than")
- Unique property (like "has postcode")
- A property is the inverse of another property (like "eats" and "is eaten by").

_

• But simply extending RDF Schema would work against obtaining expressive power and efficient reasoning:

Combining RDF Schema with logic leads to uncontrollable computational properties. Restrictions are required.

• Three Species of OWL defined by the W3C's Web Ontology Working Group.

sen	
web	

[Antoniou and van Harmelen, 2004]

OWL Sublanguages: Full

OWL Full ...

- ... offers maximum expressiveness and the syntactic freedom of RDF with no computational guarantees. For example, in OWL Full a class can be treated simultaneously as a collection of individuals and as an individual.
- ... allows an ontology to augment the meaning of the pre-defined (RDF or OWL) vocabulary.
- ... is unlikely that any reasoning software will be able to support complete reasoning for every feature of OWL Full.
- ... is fully compatible with RDF (syntactially and semantically) and can be viewed as an extension of RDF, while OWL Lite and OWL DL can be seen as extensions of a restricted view of RDF: Every OWL (Lite, DL, Full) document is an RDF document, and every RDF document is an OWL Full document, but only some RDF documents will be a legal OWL Lite or OWL DL document.

OWL Lite ...

13

- ... for classification hierarchies with simple constraints,
- ... supports cardinality constraints, (only 0 or 1),
- ... simpler to provide tool support,
- ... provides a quick migration path for thesauri and other taxonomies,
- ... has a lower formal complexity than OWL DL.
- ... restricted: excludes for instance disjointness statements and enumerated classes.

OWL DL ...

- ... offers maximum expressiveness while retaining computational completeness and decidability.
- ... includes all OWL language constructs, used under certain restrictions (for example, while a class may be a subclass of many classes, a class cannot be an instance of another class).

[W3Ca]

webe

ML

15

OWL Sublanguages

16

ML

Each of these sublanguages is an extension of its predecessor, both in what can be legally expressed and in what can be validly concluded.

The following set of relations hold:

- Every legal OWL Lite ontology is a legal OWL DL ontology.
- Every legal OWL DL ontology is a legal OWL Full ontology.
- Every valid OWL Lite conclusion is a valid OWL DL conclusion.
- Every valid OWL DL conclusion is a valid OWL Full conclusion.
- Their inverses do not!

14

web

				<i>,</i>	
 All varieties RDF for the 	s of OWL use ir syntax		 XML provides a no semantic co XML Schema documents and 	a surface syntax for structured document nstraints on the meaning of these docume is a language for restricting the stru l also extends XML with data types.	:s, but imposes ints. icture of XML
 Instances a as in RDF, u description 	re declared sing RDF rdfs:Class	df:Property	 RDF is a data them, provides models can be 	model for objects ("resources") and rela a simple semantics for this data model, a represented in an XML syntax.	tions between and these data
 and typing OWL const 	information ructors are owl:Class owl:ObjectProper	ty owl:DatatypeProperty	 RDF Schema is resources, with properties and 	a vocabulary for describing properties and 1 a semantics for generalization-hierar classes.	l classes of RDF chies of such
specialisati RDF counte	ons of their erparts		 OWL adds mo among others, (e.g. "exactly or properties (e.g. 	ore vocabulary for describing propertie relations between classes (e.g. disjointne e"), equality, richer typing of properties, ch symmetry), and enumerated classes.	s and classes: ess), cardinality naracteristics of
weba	[Antoniou and van Harmelen, 2004]	ML	weba	[W3Ca]	ML
Outline		19	An African Wild	life Ontology – Class Hierarchy	20
			2	animal olar	nt
• Basic Ideas	of OWL		Į.		

17

Summary: Why OWI ?

- Some OWL Examples
- Future Extensions
- Constructing Ontologies Manually

OWI Compatibility with RDF Schema

- Common Errors & How to Avoid Them
- Reusing Existing Ontologies
- Fundamental Research Challenges

webs

An African Wil	Idlife Ontology – Plants and Trees	23	An African \	Wildlife Ontology – Branches	24
ene	[Antoniou and van Harmelen, 2004]	ML	sem	[Antoniou and van Harmelen, 2004]	ML
	toClass		<owl:objectpr <owl:inve <th>operty rdf:ID="eaten-by"> rseOf rdf:resource="#eats"/> roperty></th><th></th></owl:inve </owl:objectpr 	operty rdf:ID="eaten-by"> rseOf rdf:resource="#eats"/> roperty>	
branch	onProperty isPartOf		<owl:transiti <owl:objectpr <rdfs:dom <td><pre>veProperty rdf:ID="is-part-of"/> operty rdf:ID="eats"> ainordf:resource="#animal"/> roperty></pre></td><td></td></rdfs:dom </owl:objectpr </owl:transiti 	<pre>veProperty rdf:ID="is-part-of"/> operty rdf:ID="eats"> ainordf:resource="#animal"/> roperty></pre>	

An African Wildlife Ontology - Properties

```
<owl:Class rdf:ID="plant">
                                                                             <owl:Class rdf:ID="branch">
  <rdfs:comment>Plants are disjoint from animals.
                                                                                <rdfs:comment>Branches are parts of trees.</rdfs:comment>
  </rdfs:comment>
                                                                                <rdfs:subClassOf>
  <owl:disjointWith="#animal"/>
                                                                                     <owl:Restriction>
</owl:Class>
                                                                                      <owl:onProperty rdf:resource="#is-part-of"/>
                                                                                      <owl:allValuesFrom rdf:resource="#tree"/>
<owl:Class rdf:ID="tree">
                                                                                    </owl:Restriction>
  <rdfs:comment>Trees are a type of plant.</rdfs:comment>
                                                                                </rdfs:subClassOf>
  <rdfs:subClassOf rdf:resource="#plant"/>
                                                                             </owl:Class>
</owl:Class>
```

sem

<owl:class rdf:id="leaf"></owl:class>
<rdfs:comment>Leaves are parts of branches. </rdfs:comment>
<rdfs:subclassof></rdfs:subclassof>
<owl:restriction></owl:restriction>
<owl:onproperty rdf:resource="#is-part-of"></owl:onproperty>
<pre><owl:allvaluesfrom rdf:resource="#branch"></owl:allvaluesfrom></pre>

<owl:class rdf:id="carnivore"></owl:class>
<rdfs:comment>Carnivores are exactly those animals</rdfs:comment>
that eat also animals.
<pre><owl:intersectionof rdf:parsetype="Collection"></owl:intersectionof></pre>
<pre><owl:class rdf:about="#animal"></owl:class></pre>
<owl:restriction></owl:restriction>
<pre><owl:onproperty rdf:resource="#eats"></owl:onproperty></pre>
<owl:somevaluesfrom rdf:resource="#animal"></owl:somevaluesfrom>

Serre [Antoniou and van Harmelen, 2004]	
---	--

An African Wildlife Ontology – Herbivores

27

ML

25

<owl:Class rdf:ID="herbivore">

<rdfs:comment>Herbivores are exactly those animals that eat only plants or parts of plants.</rdfs:comment>

···· ?

</owl:Class>

An African Wildlife Ontology – Herbivores

```
28
```

ML

<owl:intersectionOf rdf:parseType="Collection"> <owl:Class rdf:about="#animal"/> <owl:Restriction> <owl:onProperty rdf:resource="#eats"/> <owl:allValuesFrom> <owl:Class> <owl:unionOf rdf:parseType="Collection"> <owl:Class rdf:about="#plant"/> <owl:Restriction> <owl:onProperty rdf:resource="#is part of"/> <owl:allValuesFrom rdf:resource="#plant"/> </owl:Restriction> </owl:unionOf> </owl:Class> </owl:allValuesFrom> </owl:Restriction> </owl:intersectionOf>

[Antoniou and van Harmelen, 2004]

webs

sem

SUBCLASS EXPLORER CLASS EDITOR For Project: wildlife For Class: herbivore Secreted Hierarchy Inferred View owtThing Inferred View owtThing Inferred View owtThing Inferred View owtThing Inferred View Image: Secreted Hierarchy Image: Secreted Hierarchy Image: Sec	Owlclasses	Properties Forms Individuals	6 Metadata (xml:base)
For Project: • wildlife For Class: • herbivore (instance of owl:Class) • Inferred View Asserted Hierarchy	SUBCLASS EXPLORER	CLASS EDITOR	
Asserted Hierarchy Image: Comment indications Image: Comment indications Property Value Image: Comment indications Image: Comment indications Image: Comment indicating Image: Comment indicating </th <th>For Project: 🕈 wildlife</th> <th>For Class: 😑 herbivore</th> <th>(instance of owl:Class) 📃 Inferred View</th>	For Project: 🕈 wildlife	For Class: 😑 herbivore	(instance of owl:Class) 📃 Inferred View
withing animal image image image image <td< th=""><th>Asserted Hierarchy</th><th>Name</th><th>- Die 🐁 🔜 🛛 Annotations</th></td<>	Asserted Hierarchy	Name	- Die 🐁 🔜 🛛 Annotations
animal animal b nerbivore b ranch b leaf b leaf c animal animal b nerbivore b ranch b leaf c animal c animal c animal c animal a animal b animal a animal b animal b animal a animal b animal a animal b a	e owl:Thing	Name Comment	Property Value Lang
Carnivore Condition Construction Constructin Construction Construction Construction Construc	🔻 🛑 animal	Hance comment	rdfs:c
 	▶ 😑 carnivore	Name	animals that eat only plants
branch leaf blaaf canimal caserted Condition canimal ceats only (plant or (is_part_of only plant)) NECESSAY & SUFFICIENT NECESSAY Image: Section of the section of t	erbivore	herbivore	or parts of plants.
Image: Second	branch		
Image: Second	ear		
Image: Conditional state of the state o	P plan		
Image: State of the state			Asserted Conditions
Image: Second		e animal	NECESSART & SUFFICIENT
MICESSAAY		only (plant or (is_part_of only plant))	=
Image: Contract of the second seco			NECESSARY
Image: Second			
Image: Solution of the soluti			
Image: Contract of the second seco			
Disjoint			
Cogic View Properties View			
Cogic View Properties View		<u>©</u> , 73 72 00	
Cogic View Properties View		0	- Disjoints
Cogic View O Properties View		0 . 7 . 2	🌓 Disjoints
Cogic View O Properties View		6 6 6 6 6	- Disjoint:
		(- Disjoint:
			Disjoint: Disjoint: Occirc View Pronerties View

An African Wildlife Ontology – Lions

31

29

<owl:Class rdf:ID="giraffe">
 <rdfs:comment>Giraffes are herbivores, and they
 eat only leaves.</rdfs:comment>
 <rdfs:subClassOf rdf:type="#herbivore"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#eats"/>
 <owl:allValuesFrom rdf:resource="#leaf"/>
 </owl:Restriction>
 <//wl>

webs

[Antoniou and van Harmelen, 2004]

30

An African Wildlife Ontology – Tasty Plants 32

<owl:class rdf:id="lion"></owl:class>
<rdfs:comment>Lions are animals that eat</rdfs:comment>
herbivores.
<rdfs:subclassof rdf:type="#animal"></rdfs:subclassof>
<rdfs:subclassof></rdfs:subclassof>
<owl:restriction></owl:restriction>
<pre><owl:onproperty rdf:resource="#eats"></owl:onproperty></pre>
<pre><owl:somevaluesfrom rdf:resource="#herbivore"></owl:somevaluesfrom></pre>

<owl:Class rdf:ID="tasty-plant">
 <rdfs:comment>Plants eaten both by herbivores and
 carnivores </rdfs:comment>

... ?

</owl:Class>

An African Wildlife Ontology - Tasty Plants

33

<rdfs:subClassOf rdf:resource="#plant"/> <rdfs:subClassOf> <owl:Restriction> <owl:onProperty rdf:resource="#eaten by"/> <owl:someValuesFrom> <owl:Class rdf:about="#herbivore"/> </owl:someValuesFrom> </owl:Restriction> </rdfs:subClassOf> <rdfs:subClassOf> <owl:Restriction> <owl:onProperty rdf:resource="#eaten by"/> <owl:someValuesFrom> <owl:Class rdf:about="#carnivore"/> </owl:someValuesFrom> </owl:Restriction> </rdfs:subClassOf> seme [Antoniou and van Harmelen, 2004]

An African Wildlife Ontology

35

ML

What problem would emerge if we replace owl:someValuesFrom by owl:allValuesFrom in the definition of carnivores?

	OWLClasses	Properties E Forms 🔶 Indiv	iduals 🔶 Metadata (xml:base)
SUBCLASS EXPLORER	Q	CLASS EDITOR	Ф.
For Project: 🔷 wildlifeTas	styPlant	For Class: 🛑 TastyPlant	(instance of owl:Class) 🗌 Inferre
Asserted Hierarchy	😵 🗳 😞	Name	Annota
owl:Thing		Name Comment	Property Value L
🕨 🛑 animal		tune connient	rdfs:c
😑 branch		Name	
e leaf		TastyPlant	
V plant			
tree			
uee			
			Asserted Cond
			NECESSARY & SUFF
		 plant eaten_by some carnivore eaten_by some herbivore 	
		0 . 7 2 .	🕕 Dis

An African Wildlife Ontology – Tasty Plants

36

<owl:DatatypeProperty rdf:ID="manufactured-by">
 <rdfs:domain rdf:resource="#product"/>
 <rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="printingTechnology">
 <rdfs:domain rdf:resource="#printer"/>
 <rdfs:range rdf:resource="#printer"/>
 <rdfs:range rdf:resource="#printer"/>
 </owl:DatatypeProperty>

<owl:Class rdf:ID="hpProduct"> <owl:Class rdf:about="#product"/> <owl:Class rdf:about="#product"/> <owl:Restriction> <owl:onProperty rdf:resource="#manufactured-by"/> <owl:hasValue> <rsd:string rdf:value="Hewlett Packard"/> </owl:hasValue> </owl:hasValue> </owl:Restriction> </owl:Restriction> </owl:intersectionOf> </owl:Class>

<owl:Class rdf:ID="printer"> <rdfs:comment>Printers are printing and digital imaging devices.</rdfs:comment> <rdfs:subClassOf rdf:resource="#padid"/> </owl:Class> <owl:Class rdf:ID="personalPrinter"> <rdfs:comment>Printers for personal use form a subclass of printers.</rdfs:comment> <rdfs:subClassOf rdf:resource="#printer"/> </owl:Class>

sem

sem

<owl:Class rdf:ID="1100se"> <rdfs:comment>1100se printers belong to the 1100 series and cost \$450.</rdfs:comment> <rdfs:subClassOf rdf:resource="#1100series"/> <rdfs:subClassOf> <owl:Restriction> <owl:onProperty rdf:resource="#price"/> <owl:hasValue><xsd:integer rdf:value="450"/> </owl:hasValue> </owl:Restriction> </rdfs:subClassOf> </owl:Class>

- Basic Ideas of OWI
- Some OWL Examples
- Future Extensions
- Constructing Ontologies Manually
- Common Errors & How to Avoid Them
- Reusing Existing Ontologies
- Fundamental Research Challenges

42

laserJetPrinter

padid

nrinter

personalPrinter

hpLaserJetPrinter

hpProduct

hpPrinter

Future Exter	nsions of OWL	45	Modules and Imports		46
Modules a Defaults Closed Wo Unique Na Procedura Rules for F	and Imports orld Assumption ames Assumption al Attachments Property Chaining		 The importing facility of OWL is very trivial: It only allows importing of an entire ontology, neparts of it. Modules in programming languages based on information hiding (state functionality, hide implementation details): Open question how to define appropriate modumechanism for Web ontology languages. 		not
serre webs	[Antoniou and van Harmelen, 2004]	ML	Serre [Antoni	ou and van Harmelen, 2004]	М
Defaults		47	Closed World Assumption	on	48
• Many pra	ctical knowledge representation s	systems	OWL currently adopt A statement cannot b	s the open-world assumpt be assumed true on the ba	ion: isis of a

- allow inherited values to be overridden by more specific classes in the hierarchy. (Treat inherited values as defaults.)
- No consensus has been reached on the right formalization for the nonmonotonic behaviour of default values.
- A statement cannot be assumed true on the basis of a failure to prove it. On the huge and only partially knowable WWW, this is a correct assumption.
 Closed-world assumption: a statement is true when its
 - Closed-world assumption: a statement is true when its negation cannot be proved: tied to the notion of defaults, leads to nonmonotonic behaviour.

Rules for Property Chaining

- Typical database applications assume that individuals ٠ with different names are indeed different individuals.
- OWL follows the usual logical paradigm where this is not the case. (Plausible on the WWW.)
- One may want to indicate portions of the ontology for ٠ which the assumption does or does not hold.

[Antoniou and van Harmelen, 2004]

- A common concept in knowledge representation is to define the meaning of a term by attaching a piece of code to be executed for computing the meaning of the term, instead of through explicit definitions in the language.
- Although widely used, this concept does not lend itself very well to integration in a system with a formal semantics, and it has not been included in OWL.

ML	webs	[Antoniou and van Harmelen, 2004]
51	Outline	52

- OWL does not allow the composition of properties for ٠ reasons of decidability.
- Integration of rule-based knowledge representation and DL-style knowledge representation is currently an active area. (E.g., W3C's Rule Interchange Format Working Group)
- Basic Ideas of OWI
- Some OWL Examples
- Future Extensions
- Constructing Ontologies Manually
- Common Errors
- Reusing Existing Ontologies
- Fundamental Research Challenges

webs

49

sem

				Determine scope
Determine scope		• There	is no correct ontology of a specific	Consider reuse
Consider reuseEnumerate terms		domai An on	n: tology is an abstraction of a	• Enumerate terms
Define classes and a taxonomyDefine properties		partici viable	ular domain, and there are always alternatives.	 Define classes and a taxonomy
Define constraintsCreate instances		• What i	s included in this abstraction	• Define properties
Check for anomalies		should the	be determined by use to which the ontology will be put.	Define constraints
Not a linear process!		by f	uture extensions that are already anticipated.	Create instances Check for
[Antoniou and van Harmelen, 2004; Noy and McGuinness]	ML	seme	[Antoniou and van Harmelen, 2004; Noy and McGuinness]	anomalies
Determine Scope (2)	55	Conside	Reuse	56
	Determine scope			• Determine scope
	• Consider reuse	• With t Semar	he spreading deployment of the otic Web, ontologies will become	• Consider reuse

Determine Scope

Basic questions to be answered at this stage are:

- What is the domain that the ontology will cover?
- For what we are going to use the ontology? ٠
- For what types of questions should the ontology provide answers?
- Who will use and maintain the ontology?

Determine scope	
Consider reuse	
Enumerate terms	
Define classes and a taxonomy	
Define properties	
Define constraints	
Create instances	
Check for	

anomalies

ML

53

• We rarely have to start from scratch when defining an ontology. There is almost always an ontology available from a third party that provides at least a useful starting point for our own ontology.

Write down in an unstructured list all the relevant terms that are expected to appear in the ontology:

- Nouns form the basis for class names.
- Verbs (or verb phrases) form the basis for property names.

Traditional knowledge engineering tools can be used to obtain:

- the set of terms.
- an initial structure for these terms.

[Antoniou and van Harmelen, 2004; Noy and McGuinness]

Define Properties

- Often interleaved with the previous step. ٠
- The semantics of subClassOf demands that whenever A is a subclass of B, every property statement that holds for instances of B must also apply to instances of A:

It makes sense to attach properties to the highest class in the hierarchy to which they apply.

anomalies

- Relevant terms must be organized in a taxonomic hierarchy. Opinions differ on whether it is more efficient/reliable to do this in a top-down or a bottom-up fashion.
- Ensure that hierarchy is indeed a taxonomy: If A is a subclass of B, then every instance of A must also be an instance of B.

seme

Define Properties (2)

[Antoniou and van Harmelen, 2004; Noy and McGuinness]

60

ML

Determine scope While attaching properties to classes, it makes Consider reuse sense to immediately provide statements about Enumerate the domain and range of these properties. terms Define classes and a taxonomy There is a methodological tension here Define properties between generality and specificity: Define

- Flexibility (inheritance to subclasses) •
- Detection of inconsistencies and misconceptions

constraints

seme

ML

webe

58

scope

reuse

terms

Define

Define

Define

Create

instances

Check for

anomalies

Consider

Enumerate

classes and

a taxonomv

properties

constraints

Determine

scope

reuse

terms

Define

Consider

Enumerate

instances

Check for anomalies

59

Define Constraints

Cardinality restrictions

Required values:

- owl:hasValue
- owl:allValuesFrom
- owl:someValuesFrom

Relational characteristics:

- symmetry
- transitivity
- inverse properties
- functional values

[Antoniou and van Harmelen, 2004; Noy and McGuinness]

Check for Anomalies

An important advantage of the use of OWL over RDF Schema is the possibility to detect inconsistencies in ontology and instances.

Examples of common inconsistencies:

- ... incompatible domain and range definitions for transitive, symmetric, or inverse properties; ... cardinality properties;
- ... requirements on property values can conflict with domain and range restrictions.

61

Determine

scope

reuse

Define

Define

Define

Create

instances

Check for

anomalies

Determine scope

Consider reuse

Enumerate

a taxonomy

properties

constraints

terms

Define classes and

Define

Define

Create

instances Check for anomalies

ML

ML

63

properties

constraints

Consider

Enumerate terms

classes and

a taxonomy

- Filling the ontologies with such instances is a separate step.
- Number of instances >> number of classes
- Thus populating an ontology with instances is not done manually:
 - ... retrieved from legacy data sources.
 - ... extracted automatically from a text corpus.

weba

- [Antoniou and van Harmelen, 2004; Noy and McGuinness]
- _

Outline

- Basic Ideas of OWL
- Some OWL Examples
- Future Extensions
- Constructing Ontologies Manually
- Common Errors & How to Avoid Them
- Reusing Existing Ontologies
- Fundamental Research Challenges

62

Determine scope

Consider

Check for anomalies

seme

- Failure to make all information explicit, assuming that information implicit in names is "represented" and available to the classifier.
- Mistaken use of universal rather than existential restrictions as the default.
- Open world reasoning.
- The effect of range and domain constraints as axioms.

webe	[Rector, et al., 2004]	ML
Guidelines		67

- Always paraphrase a description or definition before encoding it in OWL, and record the paraphrase in the comment area of the interface.
- Make all primitives disjoint which requires that primitives form trees.
- Use someValuesFrom as the default qualifier in restrictions.
- Be careful to make defined classes defined the default is primitive.

- Trivial satisfiability of universal restrictions that "only" (allValuesFrom) does not imply "some" (someValuesFrom).
- The difference between defined and primitive classes and the mechanics of converting one to the other.
- Errors in understanding common logical constructs.
- Expecting classes to be disjoint by default.
- The difficulty of understanding subclass axioms used for implication.

webe	[Rector, et al., 2004]	ML
Guidelines (2)		68

- Remember the open world assumption. Insert closure restrictions if that is what you mean.
- Be careful with domain and range constraints. Check them carefully if classification does not work as expected.
- Be careful about the use of "and" and "or" (intersectionOf, unionOf).

Guidelines (2)

٠

webs

٠

•

sem

Getty Thesaurus of Geographic Names (TGN),

National Cancer Institute in the United States

http://www.mindswap.org/2003/CancerOntology

containing around 1 million entries http://www.getty.edu/research/conducting research/vocabularies/tgn

- To spot trivially satisfiable restrictions early, always have an existential (someValuesFrom) restriction corresponding to every universal (allValuesFrom) restriction, either in the class or one of its superclasses (unless you specifically intend the class to be trivially satisfiable).
- Run the classifier frequently; spot errors early.

Basic Ideas of OWI

Outline

- Some OWL Examples
- Future Extensions
- Constructing Ontologies Manually
- Common Errors & How to Avoid Them
- Reusing Existing Ontologies
- Fundamental Research Challenges

en e veba	[Rector, et al., 2004]	ML	weba	N
Existing Dom	ain-Specific Ontologies	71	Existing Domain-Specific Ontologies (2)	72

Cultural domain:

- Art and Architecture Thesaurus (AAT) with 131.000 terms in the cultural domain http://www.getty.edu/research/conducting research/vocabularies/aat
- Union List of Artist Names (ULAN) with 293,000 names and biographical and bibliographic information about artists and architects http://www.getty.edu/research/conducting research/vocabularies/ulan

Medical domain:

Cancer ontology from the

Geographical domain:

- Merge independently developed vocabularies into a single large resource.
- E.g. Unified Medical Language System integrating 100 biomedical vocabularies The UMLS metathesaurus contains 750,000 concepts, with over 10 million links between them. http://umlsinfo.nlm.nih.gov
- The semantics of a resource that integrates many independently developed vocabularies is rather low. But very useful in many applications as starting point.

weba	[Antoniou and van Harmelen, 2004]	ML
Topic Hierarchies		75

- Some "ontologies" do not deserve this name: simply sets of terms, loosely organized in a hierarchy.
- This hierarchy is typically not a strict taxonomy but rather mixes different specialization relations (e.g., is-a, part-of, contained-in).
- Such resources often very useful as starting point.
- Example: Open Directory hierarchy, containing 4,830,584 sites hierarchically organized in over 590,000 categories. http://dmoz.org

www.onto-med.de/en/theories/gfo/index.html	
l Formal Ontology (GEO)	
www.loa-cnr.it/DOLCE.html	
ormal Ontology (BFO): series of sub-ontologies ontology.buffalo.edu/bfo/BFO.html	
rd Upperlevel Ontology (SUO) suo.ieee.org	
:h 60,000 assertions on 6,000 concepts www.opencyc.org	
	ontologies. (Not domain-specific) n 60,000 assertions on 6,000 concepts /ww.opencyc.org rd Upperlevel Ontology (SUO) uo.ieee.org ormal Ontology (BFO): series of sub-ontologies ntology.buffalo.edu/bfo/BFO.html

- Some resources were originally built not as abstractions of a particular domain, but rather as linguistic resources.
- These have been shown to be useful as starting places for ontology development.
 E.g., WordNet, with around 150,000 word senses.
 http://wordnet.princeton.edu

ML

- Future Extensions
- Constructing Ontologies Manually
- Common Errors & How to Avoid Them
- Reusing Existing Ontologies
- Fundamental Research Challenges

 Author:
 Frank van Harmelen (More resources of Frank van Harmelen)

 General Information
 Holger Wache (Vrije Universiteit Amsterdam)

 Provider:
 Holger Wache (Vrije Universiteit Amsterdam)

 Learning Resource Language:
 English

 Description Language:
 English

 Oescription:
 A 1 hour video about the research challenges in Semantic Web

 Classification:
 Ontologies for the Semantic Web, Knowledge Representation and Reasoning, Knowledge Representation

 Classelication:
 Equicational Material, Presentation

 Classelication:
 Equicational Reasoning, Knowledge Representation and Reasoning, Knowledge Representation and Reasoning, Knowledge Representation and Reasoning, Knowledge Representation and Reasoning Representation

- [Antoniou and van Harmelen, 2004] Grigoris Antoniou and Frank van Harmelen, A Semantic Web Primer, MIT Press, Massachusetts, 2004.
 - [Miller] Miller, Eric: W3C Layer Cake, http://www.w3.org/2001/09/06-ecdl/slide17-0.html (checked online 6. Jan. 2008)
 - [Noy and McGuinness] Ontology Development 101: A Guide to Creating Your First Ontology Natalya. F. Noy and Deborah L. McGuinness, http://www.ksl.stanford.edu/people/dlm/papers/ontology101/

ontology101-noy-mcguinness.html (checked online 6. Jan. 2008).

- [REASE] REASE- the EASE repository for learning units, http://ubp.l3s.uni-hannover.de/ubp/baseapp@home (checked online 6. Jan. 2008).
- [Protégé 3.3.1] Stanford Medical Informatics, Protégé-OWL, http://protege.stanford.edu/download/download.html (checked online 6. Jan. 2008).

[Rector, et al., 2004] Alan Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger Knublauch, Robert Stevens, Hai Wang, and Chris Wroe, OWL Pizzas: Practical Experience of Teaching OWL-DL: Common Errors & Common Patterns, http://www.co-ode.org/resources/papers/ekaw2004.pdf (checked online 6. Jan. 2008).

[W3Ca] OWL Web Ontology Language Overview, http://www.w3.org/TR/2004/REC-owl-features-20040210/, W3C Recommendation 10 February 2004, (checked online 6. Jan. 2008)

sem web

ML

seme

... Grigoris Antoniou and ... Frank van Harmelen

for making nice slides of their presentations available.