

Digital Preservation

Emulation

Mark Guttenbrunner
Institut für Softwaretechnik und Interaktive Systeme
TU Wien

http://www.ifs.tuwien.ac.at/dp

Agenda

- What is Emulation?
- Concept and Definition
- Emulation in Digital Preservation
- Emulation View Path
- Preserving Emulators
- Emulation in Preservation Planning
- Legal Aspects of Emulation

What is Emulation?

- Emulation refers to the capability of a device or software to replicate the behaviour of a different device or software
- examples: modem-emulation, terminal-emulation, emulation of computer-systems, video game system emulators
- difference to simulation ?
 - flight simulator does not actually fly

Use in Digital Preservation

- obsolete programs
 - recompilation not possible because of missing source code
 - data cannot be migrated to different format (e.g. scientific analysis)
- multimedia (interactive art, video games)
 - the logic inside a program and the appearance have to be preserved
- preservation of software for historic reasons
 - e.g. early operating systems
- keeping documents authentic (e.g. electronic signatures)
- migration through emulation
- data archaeology

Levels of Emulation

different levels of emulation:

- application (viewer)
- operating system (e.g. Wine)
- computer architecture
 - virtualization (e.g. DOSEMU on Linux)
 - hardware emulation (e.g. Dioscuri)
- interface level
 - output devices (e.g. mobile platforms vs. PC-screen)
 - input devices (e.g. paddle controls vs. mouse)
- environment (e.g. video game arcade in museum environment)

Computer Architecture Emulation

- virtual machine (virtualization)
 - only components are emulated, the code is run on the original CPU
 - can only be used, if the CPU of the host system is the same as the CPU of the target system.
- emulation of the full hardware of a system
 - all aspects of the original system are emulated
- techniques used
 - dynamic binary translation to optimize speed
 - HLE (High Level Emulation) to abstract e.g. video hardware to a functional level

Definition

- one possible definition of an emulator:
 - An emulator is a program that runs on one computer (the emulator's 'host' system) and thereby virtually recreates a different computer (the emulator's 'target' system).

Object			
Application to display Object			
Operating System I			
Emulator of System I			
Operating System A			
Host System Hardware A			

Concept

- emulation is usually done in software, emulation in hardware is also possible, but does not solve digital preservation problems!
- concept: keep the data in its original, unaltered form and keep using the software originally used to display the data
- the software has to be run on the operating system and the operating system on the hardware it was developed for

Requirements for Digital Preservation

- context documentation of digital objects
- documentation about handling of objects
- not only technical but also social properties are relevant
- data transfer between emulated and host environment necessary (injecting digital objects into environment, extracting data from environment)
- stability more important than speed
- automation of processes (e.g. executing commands in target environment, automated input)

Problems for Digital Preservation

- expert knowledge necessary on how to use systems and programs (e.g. OS)
- not only the digital object, also all the necessary secondary digital objects and their settings have to be preserved (view path)
- emulators are programs that have to be preserved over a long term as well

 View-Path: necessary path of secondary objects needed to display an object (e.g. application, operating system, hardware architecture)

Object
Application
Operating System
Emulator of Hardware

 Example: Word for Windows 1.0 in Windows 3.0 on MS-Dos 5.0 using the DOSBox emulator on Windows Vista running on 64bit Hardware

 different view-paths are possible (different emulator, different OS, different application to display the same document)

- documentation of view path necessary
 - objects in the view path
 - settings of the objects
- storage of objects
 - with the object or separate
 - complete view path (e.g. disc-image) or discrete objects and configure on demand

hardware configuration

- CPU type, memory, configuration, speed settings
- gfx-card, physics-card (3D rendering) incl. settings
- sfx-card, settings
- input-devices (e.g. light pen, trackball, data glove)
- output-devices (type (vector/raster), aspect ratio, size, display settings like brightness, colours)
- additional processing units, memory expansion cards (home-computers, game consoles)
- depends on the original system, list is by far not complete!
- tools can be used to determine the hardware and software settings (e.g. Sigar)

operating system

- type, version, system updates
- font size
- screen resolution
- colour depth
- installed fonts
- appearance settings
- installed utilities / applications that influence the appearance of the operating system

- needed secondary digital objects
 - virtual machine (e.g. JVM, .net)
 - database software (e.g. MySQL)
 - software device drivers (e.g. ODBC driver)
 - memory managers (e.g. dos4gw)
 - fonts
 - codecs
 - viewer/editor application (e.g. OpenOffice, PDF-Viewer)

- digital object itself
 - settings
 - configuration (e.g. appearance options, message boxes)
- additional objects not in the view path
 - can influence behaviour (e.g. speed)
 - e.g. virus scan software, remote desktop software

- Emulators get obsolete software for specific platform (hardware or virtual machine)
- various strategies for preservation
 - re-hosting
 - stacked emulation
 - emulation virtual machine (EVM)

re-hosting

- migrating emulator to a different host system
- has to be done for every emulator when the host gets obsolete
- documentation of system and expert knowledge about its function has to be available at implementation time

Object	Object
Application I	Application I
Operating System I	Operating System I
Emulator System I	 Emulator System I'
Operating System A	Operating System B
Host System Hardware A	Host System Hardware B

- stacked emulation (Russian Doll Syndrome)
 - emulating the emulators host system

possible performance problems

errors in emulation are multiplied

Object		
Application I		
Operating System I		
Emulator System I		_
Operating System A		
Host System Hardware A		

Object			
Application I			
Operating System I			
Emulator System I			
Operating System A			
Emulator System A			
Operating System B			
Host System Hardware B			

- emulation virtual machine
 - creating emulators for a virtual machine which is ported to a new host when the original host gets obsolete
 - only the virtual machine has to be ported to the new host

Object	Object
Application I	Application I
Operating System I	Operating System I
Emulator System I	Emulator System I
Virtual Machine V'	 Virtual Machine V"
Operating System A	Operating System B
Host System Hardware A	Host System Hardware B

Modular Emulation

- component based development
- specific machines are built from the components through configuration
- some examples:
 - Dioscuri (Java, emulates x86 PCs)
 http://dioscuri.sourceforge.net/
 - JPC (Java, emulates x86 PCs)
 - IronBabel (.NET, emulates modern video game consoles)
 - MAME/MESS (C, emulates video games, arcade machines, home computers)

UVC - Universal Virtual Computer

- developed by IBM / KB Netherlands for DP http://www.alphaworks.ibm.com/tech/uvc
- not a "real" hardware platform
- simplified design, open specification -> virtual machine easy to implement on future host machine
- Components:
 - Universal Virtual Computer (UVC) (future)
 - Logical Data Schema (LDS) with type description (now)
 - UVC program (format decoder) (now)
 - Logical Data Viewer (future)
- mixed migration/emulation approach

Significant Properties

- properties of a digital object that are considered significant and as such have to be preserved
- Examples
 - image width, colour depth
 - page breaks, font, character encoding
 - relative speed
 - ...
- Preservation action should preserve the important significant properties
- importance of properties differ for institutional settings

Preservation Planning

- Consistent workflow leading to a preservation plan
- Analyses, which solution to adopt
- Considers
 - preservation policies
 - legal obligations
 - organizational and technical constraints
 - user requirements and preservation goals
 - Describes
 - the preservation context
 - evaluated preservation strategies
 - resulting decision including the reasoning
- Repeatable, solid evidence
- Requirements tree
 - preserving significant properties, tool, process, costs

Why Preservation Planning?

- Several preservation strategies developed
- For each strategy: several tools available
- For each tool: several parameter settings available
- How do you know which one is most suitable?
- What are the needs of your users? Now? In the future?
- Which aspects of an object do you want to preserve?
- What are the requirements?
- How to prove in 10, 20, 50, 100 years, that the decision was correct / acceptable at the time it was made?

- problems with dynamic and interactive content:
 - to get reproducible results the digital object has to follow a deterministic behaviour:
 what are the factors that influence the objects behaviour?
 - continuous rendering of objects:
 when should object properties be extracted?
 where can properties be extracted from the running system?

deterministic behaviour:

- view path has to be constant to compare behaviour
- input has to be constant
 - macros
 - remote access
 - "hardware" (read input on hardware level on original system, apply on hardware-layer of emulator)
- external factors that influence deterministic behaviour have to be constant (e.g. date/time, network activity, random number seed)
- not every object's behaviour can be made deterministic! (or not with justifiable effort)

how to extract significant properties:

- not from the object, from the environment (object is rendered by the environment)
- environment has to support extraction ideally in extraction language (e.g. XCL) (not supported by emulators yet)
- properties have the dimension time (e.g. frames/second, cycles per second, number of file access operations per minute)
- properties change over time (e.g. frames/second min, average, max)

when to extract properties:

- not every state in an objects rendering process is significant
- depending on the object
 - target state: only one state after initially rendering the object or after applying a certain series of input events (e.g. rendering a static object)
 - series of states: only certain states after certain events (e.g. web site after each click on a link)
 - continuous stream: every rendered state of the object is important (e.g. video game, sound stream)

where to extract properties:

rendered form of a digital object exists on various levels in a system:

where to extract properties:

- descriptive form
 - before rendering, useful for migration, no change in emulation
- rendered form in memory (original system)
 - both original system and emulator memory of host system
- rendered form in memory (host system)
 - exists only on host system, no comparison possible
- rendered form on output interface
 - signal analyzed by comparator (e.g. digital video signal, analog audio signal)
- rendered form on display device
 - influence of display device options (e.g. brightness settings)

where to extract properties:

- depending on the tests where to extract:
 - screenshot level after applying input: is the emulation working correctly?
 - comparison of output: is the transformation from emulated system to host system working correctly?
- depending on the original system:
 - screenshot only possible if not a single process system like video game device
 - output signal only possible if output device is not part of system (e.g. built-in speakers)
 - after output device always possible, additional factors influencing the signal

test workflow:

- determine external events that influence the objects behaviour
- describe the original environment
- decide on what level to compare the digital object
- recreate the environment in emulation
- apply standardized input to both environments
- extract significant properties
- compare the significant properties

Legal Aspects of Emulation (1)

- European regulations, legislations of France, Germany,
 Netherlands researched by KEEP
- Legal impact on media transfer
 - Multimedia works protected by intellectual property rights (EC Information Society Directive)
 - reproduction/representation of a protected work must be authorized
 - copyright protects content, independent from the physical medium
 - exception authorizes reproduction and representation of protected works by institutions responsible for legal deposit (e.g. national libraries) in some European countries (e.g. DE, FR, NL) -> allows migration or media refreshment
 - Copy protection: circumvention legal for memory institutions in some countries (e.g. FR), not legal in others (e.g. DE (specifically not allowed for games), NL)

Legal Aspects of Emulation (2)

Emulation software

- Decompiling computer program environments (operating systems, firmware (e.g. BIOS) and applications)
- Article 6 of the Computer Programs Directive: not subject to prior authorization if (i) intended to create interoperability; (ii) performed by a licensee or lawful user; (iii) necessary information not quickly and easily accessible, and (iv) limited to the portions of the code required
- decompilation of certain parts of software code allowed for e.g.
 development of emulation platform, not for research (interoperability between old Multimedia Works and current computer environments)

Emulation of hardware

- Patent protection: no reverse engineering allowed if patent in force
- Emulation of semi-conductors (computer chips): reproduction of semiconductor chip masks likely allowed (analyzing/evaluating/teaching)
- Use of emulated hardware from third parties: use under respective licenses

Legal Aspects of Emulation (3)

Conclusions

- legal risk of transferring data relatively limited as long as conservation only done at cultural heritage organizations, access only granted to individual researchers
- research exceptions are not applicable if made available to the public at large to give access to digital objects
- copyright law would have to be adapted to fit the Information
 Technology age: focus on protecting against unauthorized usage of
 Multimedia Works rather than prohibit to transfer to new media
- exemptions for memory institutions are necessary to protect digital cultural heritage (long-term)
- negotiations with software manufacturer and hardware manufacturers enabling emulation (mid-term)

Digital Preservation

Preserving Interactivity

Mark Guttenbrunner
Institut für Softwaretechnik und Interaktive Systeme
TU Wien

http://www.ifs.tuwien.ac.at/dp

Agenda

- objects & motivation
- alternatives
- software preservation
- interactive art preservation
- video game preservation
 - case study for video game preservation
 - video game archives
 - video game preservation projects
- virtual world preservation

Objects

documents

- authenticity & accessibility
- boundary document/application is fuzzy (e.g. scripts/macros embedded in documents)

software

- keep original proprietary software running and data accessible
- distributed software is hard to preserve
- scientific software for research
- business software for legal obligations (safekeeping period)
- computer museum (cultural heritage)

Objects

interactive art

- authentic look & feel
- hardware proprietary
- documentation not available
- can be a mix of analogue and digital installations

video games

- same problems as interactive art (-> "art games")
- legal problems
- proprietary media
- companies are not supportive
 (yet? -> Digital Game Preservation White Paper at Game Developers Conference 2009)
- distributed games

Alternatives

emulation

- application level (documents)
- OS level (software)
- hardware (documents, software, interactive art, video games)

migration

- source ports (software, video games, interactive art)
- static binary translation (software, video games, interactive art)
- documentation on video, paper (documents, software, interactive art, video games)

Alternatives

- simulation
 - software
 - interactive art
 - video games
- reinterpretation
 - interactive art
 - video games
- mixed forms (e.g. reinterpretation/migration, reinterpretation/simulation)

Software Preservation

short term

- "XP-Emulator" on Windows 7
- DOS-compatibility-mode on Windows XP
- Rosetta on Intel-based Apple Macintosh (dynamic binary translation)

long term

- hardware emulation
- migration (reprogramming, porting) to new platforms
- JISC-study on significant properties of software
 - properties necessary of reconstruct software from source

http://www.jisc.ac.uk/media/documents/programmes/preservation/spsoft ware_report_redacted.pdf

Software Preservation

Dioscuri

http://dioscuri.sourceforge.net/

- Intel x86 PC emulation
- emulator specific for digital preservation purposes
- features copy/paste from emulated environment
- stable solution (Java VM, modular emulation)

Qemu

http://www.nongnu.org/qemu/

- emulation and (x86 only) virtualization
- different target CPUs supported (ARM, SPARC, PowerPC, MIPS etc.)

Software Preservation

- Grate (Global Remote Access to Emulation-Services)
 - TightVNC technology (Virtual Network Computing over webaccess)
 - different emulators supported
 - transfer speed of input/output usually not fast enough for video games but sufficient for applications
 - can be used for remote migration: transfer local file into emulated environment, migrate, transfer back to local system (without installing emulator locally)
 - uses DROID / PRONOM services for recognizing file formats

Interactive Art Preservation

Archiving the Avant-Garde

http://www.bampfa.berkeley.edu/about/avantgarde

- Berkley Art Museum, Guggenheim museum
- the Variable Media Initiative (http://www.variablemedia.net/)
- Variable Media Questionnaire: artists choose different strategies for preserving art: emulation, migration and reinterpretation
- DOCAM (Documentation and Conservation of the Media Arts Heritage)

http://www.docam.ca/

- visual and performing arts (theatre, dance, performance) and architecture
- cataloguing structure, case studies in conservation and preservation, documentation and archival management
- Real-time Demos
 - Amiga Demo-Scene Archive (ADA) (http://ada.untergrund.net/)
 - Hornet Archive (PC Demos) (http://www.hornet.org/)

Interactive Art Preservation

- "The Erl King" (1983-85) by Grahame Weinbren and Roberta Friedman
 - interactive movie, obsolete and generic hardware and software
 - original software was written by the artist -> very high priority to preserve the original code
 - emulated for Guggenheim museum
 http://www.bampfa.berkeley.edu/about/ErlKingReport.pdf
 - migrated as webpage
 http://www.grahameweinbren.net/ErlKing/Erlkoenig.html

hardware emulators (multiple platforms)

- MAME
 Multiple Arcade Machine Emulator
 http://mamedev.org/
 - arcade machines
 - modular concept
 - open source (C)
- MESS
 Multiple Emulator Super System
 http://www.mess.org/
 - based on MAME source
 - emulates home computers & video game consoles

hardware emulators (single platforms)

 available for almost any system (from early home computers and video game console systems to Nintendo Wii)

pro:

- more feature complete emulation than multiple system emulators
- better compatibility
- more user friendly (less options, usually auto detection of some game settings like region)

con:

- typically platform dependent
- usually single person development and not always open source

hardware emulators (single platforms) – some examples

- Atari 2600 Stella http://stella.sourceforge.net/
- Commodore Amiga WinUAE
 http://www.winuae.de/englisch/main.html
- Sony Playstation 2 PCSX2
 http://www.pcsx2.net/
- Nintendo DS no\$cash
 http://nocash.emubase.de/gba.htm

Nintendo Virtual Boy – Red Dragon

http://rdragon.vr32.de/

Sega Dreamcast – nullDC

http://www.emudev.org/nullDC-new/

game engine interpreters

SCUMM-VM

http://www.scummvm.org/

- "Script Creation Utility for Maniac Mansion"
- various engines supported (e.g. LucasArts Games, Sierra)

Frotz

http://frotz.sourceforge.net/

- Infocom Z-Machine
- text-adventures
- not true to original appearance

- cultural heritage
- public interest ("retro gaming")
- problems:
 - broken hardware, decayed media
 - changed TV Standards
- challenges:
 - unavailable documentation (partially even lost forever)
 - preservation of game code from different media (optical, cartridge, online)
 - legal aspects
 - look & feel (different controllers)

- define basis for library scenario
 - data collection = console video games
 - designated user community are visitors of the library
 - required goals
 - authentic look & feel, long term preservation, accessibility and metadata, high compatibility, cost to be considered
- choosing sample records
 - three games for every system
 - popular game
 - game with special controller / overlay
 - game using special accessory or hardware enhancement or technically complex game

identifying requirements

considered alternatives

- emulation
- simulation
- print-to-paper (video) approach

developing the experiments

- source code evaluation
- game-play with keyboard/mouse and joystick
- configuration of alternative

running the experiments

- alternatives for one console system
- alternatives for different console systems from the same era
- alternatives for one system of each era

FACULTY OF !NFORMATICS

analyzing results

- comparison of emulators of the one system and different systems of the same generation of video game consoles
 - games emulated well
 - special hardware only supported by dedicated emulators
 - scalability and stability better for multi-system emulators
 - no metadata supported
- comparison of emulators of one system of each generation of video game consoles
 - infrastructure, process, costs and context similar results
 - emulation better for games of earlier systems
 - no perfect emulation for systems of the last three generations

Video Game Archives

Private collectors

- very active communities
 http://www.digitpress.com/
 http://www.atariage.com/
- not relying on public funding
- longest running initiatives
- problem: lots of very rare specimen only in private hands, no consolidated preservation efforts
- Computerspielemuseum (Berlin, Germany)
 http://www.computerspielemuseum.de/
 - huge collection from USK (Unterhaltungssoftware Selbstkontrolle)
 - relies mainly on donations for obsolete games/systems
 - exhibitions (e.g. Pong Story http://pong-mythos.net/)
 - Permanent museum in Berlin since January 2011

Video Game Archives

DiGA – Digital Games Archive

http://www.digitalgamearchive.org

- raise public awareness concerning the cultural significance of entertainment software
- guarantee its long term preservation
- create a legal and dependable base for the preservation of games (legislative proposals etc.)
- digitally donated games free for download

National Video Game Archive (UK)

http://www.nationalvideogamearchive.org/

- National Media Museum and Nottingham Trent University
- "celebrate video game culture and preserve its history for researchers, developers, game fans and the public"
- preserve, analyze and display the products of the global videogame industry

Video Game Preservation Projects

- Preserving Virtual Worlds (US) (2008-2010)
 http://pvw.illinois.edu/pvw/
 - preserving American art awards by Library of Congress US in 2007 also for video games
 - two year project led by University of Illinois' Graduate School of Library and Information Science (GSLIS)
 - explored methods how to preserve digital games and interactive fiction
 - case studies on: Spacewar!, Second Life, Star Raiders, Doom, Warcraft
 - Final Report
 http://pvw.illinois.edu/pvw/?p=224

Video Game Preservation Projects

 KEEP - Keeping Emulation Environments Portable (EUproject) (started 2009)

http://www.keep-project.eu/

- "Emulation Access Platform" tools for accessing and storing a wide range of digital objects
- Disocuri, GRATE
- Research on legal aspects of emulation
- IGDA (International Game Developers Association) Game Preservation SIG (Special Interest Group)

http://www.igda.org/preservation

- GDC 2011: Saving Videogames from Certain Doom (6th annual meeting on Game Developers Conference)
- White paper on Digital Game Preservation:
 http://wiki.igda.org/Game_Preservation_SIG/White_Paper
 Digital_Game_Preservation_White_Paper
- Active mailing list, wiki pages, projects...

Virtual World Preservation - Approaches

Extracting the world

- user generated content
- preserve interactivity with the world
- convert to different format (e.g. Second Life -> OpenSimulator)
- looses events, people, actions ... everything that makes a world feel "alive" ?

Recording events

- interactions with the world
- Interactions between users
- "real-life" approach
- either manually or automatic
 (e.g. http://www.ifs.tuwien.ac.at/dp/second_life)

Page 62

Virtual World Preservation - Examples

- Second Life
 - Virtual Conferences (Posters, Presentations)
 - User generated art
 - Events

http://www.archive.org/details/SL_AvatarIslandIntroduction

World Of Warcraft

http://www.archive.org/details/Wow_ShattrathTour

- EA-Land (The Sims Online): The Final Countdown
 - "Lost Server Connection"

http://www.archive.org/details/EALand_FinalCountdown

Digital Preservation

Practical Tasks

Practical Tasks

- tasks: <u>http://www.ifs.tuwien.ac.at/~guttenbr/teaching/dp2011/Emulation.zip</u>
 - digital art: run the "Laser Demo" demo on emulators (Altirra first, then Atari800)
 - video games: run "Floppy Frenzy" in DOSBox at correct speed
 - data access: boot Dioscuri from the provided floppy image and copy text from the file "rogue\rogue.doc" into an email-message on your hostenvironment – also try to run the game Rogue

to-do:

- set up the emulation environment(s) on your computer
- run the application and execute the task
- share your experience and observations with the class
- discuss these questions afterwards:
 - did you manage to set up the environment? where were the difficulties?
 - were you able to operate the system without problems?
 - can you tell if the experience was authentic? do you think it was? if not, why not?
 - what were the differences in the emulators? (if you ran more than one)

DP Übung

- Submission of the concept papers on 2011-05-08 through TUWEL
- any question to the tasks / about the organisation of the Übung?

Thank you for your attention.

guttenbrunner@ifs.tuwien.ac.at www.ifs.tuwien.ac.at/dp www.planets-project.eu

FACULTY OF !NFORMATICS