Control Objectives for DP: Digital Preservation as an Integrated Part of IT Governance

Christoph Becker, Vienna
Gonçalo Antunes, José Barateiro, Ricardo Vieira, José Borbinha, Lisbon
ASIS&T Annual Meeting
October 2011, New Orleans
Agenda

- IT Governance
- Digital longevity and reference models for DP
- A capability-based Reference Architecture for DP
 - Stakeholders, concerns, goals, influencers, capabilities
- Control Objectives for DP
 - How to integrate digital preservation into IT Governance
 - Processes as enablers for capabilities
- How to assess and improve?
 - A Capability Maturity Model for Preservation Planning
IT Governance and COBIT

- **IT Governance**: decision making and communication within IT-supported organizations
- **COBIT**: Control Objectives for Information Technology
 - “the leadership, organisational structures and processes that ensure that the enterprise’s IT sustains and extends the organisation’s strategies and objectives”
 - goal-driven, process-oriented and control-based
 - How to leverage resources to achieve desired ends?
 - Goals – processes - activities
 - *Ensure systems security, Acquire and maintain application software, ….*
 - Sophisticated, adaptable process model

➢ We integrate digital preservation goals and processes with IT Governance processes
Digital Longevity

- Numerous reference models, frameworks and concepts
 - OAIS and trust: TRAC, RAC (ISO 16363), NESTOR…
 - Records Management: MoReq, ISO 15489…
 - Risk: DRAMBORA…
 - Planning: PLATO
 - Economics: BRTF, LIFE….

- Yet….
 - Maturity of the field is unclear and evolving
 - Integration into Information Systems and Information Technology fields is unclear
 - How does Digital Preservation relate to, e.g., IT Governance?
 - How can we assess and improve organizational capabilities?

- Integrate Digital Preservation into IT Governance
 - Capability Model based on Enterprise Architecture approaches
A Capability-based Reference Architecture

Domain Knowledge
- SHAMAN-RA v1.0
- OAIS
- TRAC/RAC
- TDR 2002
- NESTOR
- Planets Planning method
- Planets Functional Model
- PREMIS
- BRTF Sustainability Report
- DRAMBORA
- PARSE.Insight
- ...

Standards and Best-Practices
- OMG UML
- OMG BMM
- OMG SBVR
- OMG OSM
- ISO 27000: Security
- IEEE Std. 1471-2000
- Zachman Framework
- COBIT
- DoDAF
- ...

Stakeholders | Concerns | Influencers | Goals | Capabilities
Digital Preservation Capabilities

A capability is an “ability that an organization, person, or system possesses. Capabilities are typically expressed in general and high-level terms and typically require a combination of organization, people, processes, and technology to achieve.”

A capability can control, inform, include, or depend on another capability.
DP Governance Capabilities

<table>
<thead>
<tr>
<th>Capability</th>
<th>Key goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance</td>
<td>Verify and report compliance</td>
</tr>
<tr>
<td>Community Relations</td>
<td>Engage with designated community</td>
</tr>
<tr>
<td>Certification</td>
<td>Obtain and maintain certification status</td>
</tr>
<tr>
<td>Mandate Negotiation</td>
<td>Negotiate with governing institutions</td>
</tr>
<tr>
<td>Business Continuity</td>
<td>Assure mission-critical operations and manage capabilities</td>
</tr>
<tr>
<td>Succession Planning</td>
<td>Negotiate formal succession plans</td>
</tr>
<tr>
<td>IT Governance</td>
<td>Manage services, processes, technology solutions</td>
</tr>
<tr>
<td>Manage Risks</td>
<td>Control strategic and operational risks and opportunities</td>
</tr>
</tbody>
</table>
A **capability** is an “ability that an organization, person, or system possesses. Capabilities are typically expressed in general and high-level terms and typically require a combination of organization, people, processes, and technology to achieve”

Preserve Contents is the ability to maintain content authentic and understandable to the defined user community over time and assure its provenance.
Core Preservation Capabilities

- Preservation Planning
- Preservation Operation

Preservation Planning
- Monitor, steer and control the preservation operation of content

Preservation Operation
- Control the deployment and execution of preservation plans.
Core Preservation Capabilities

Preservation Planning
- Monitor, steer and control the preservation operation of content
- • Influencers and Decision making
 • Options diagnosis
 • Specification and delivery
 • Monitoring

Preservation Operation
- Control the deployment and execution of preservation plans.
- • Analyze content
 • Execute preservation actions
 • Ensure adequate provenance trail
 • Handle preservation metadata
 • Conduct Quality Assurance
 • Provide reports and statistics
Core Preservation Capabilities

Preservation Planning

- Monitor, steer and control the preservation operation of content
- **Influencers and Decision making**
- **Options diagnosis**
- **Specification and delivery**
- **Monitoring**

Preservation Operation

- Control the deployment and execution of preservation plans.
- **Analyze content**
- **Execute preservation actions**
- **Ensure adequate provenance trail**
- **Handle preservation metadata**
- **Conduct Quality Assurance**
- **Provide reports and statistics**

Instructions

- "Migrate this set of images (in TIFF-5) to JP2 using ImageMagick 6.3 with parameters a,b,c"
- **Analyze original**
- **Migrate, analyse output**
- **Conduct quality assurance**
- **Provenance, metadata, Reporting**
COBIT processes...

- Driven by specific goals and controls
- Organized into activities with assigned responsibilities
- Related to other processes
- Measured on all levels: Internal vs. external goals and metrics
Preservation Planning example

Goals

- Ensure understandability …

IT

Measure

Number of objects with breach of understandability during time horizon …

Process

- Manage obsolescence threats at logical level …

Activity

- Diagnose all options against requirements …

Activities

Measure

- Options diagnosis: Efficiency, completeness, correctness and timeliness …
Preservation Planning Process

Goals
- Ensure that all operations are monitored for compliance and alignment to goals
- Steer preservation operations to ensure authenticity and understandability for the specified time horizon
- Maximize efficiency of operations and resources

IT
- Ensure that all operations are monitored for compliance and alignment to goals
- Steer preservation operations to ensure authenticity and understandability for the specified time horizon

Process
- Ensure authenticity and understandability of content
- Manage obsolescence threats at the logical level
- Ensure timely detection and reaction to changes in the environment
- Minimize operational costs of preservation

Activities
- Document all relevant influence factors of the context
- Select content to be covered by an action plan
- Specify requirements
- Select options to be considered
- Diagnose all options against requirements
- Assess the performance of options and select the best one
- Specify and deliver concrete courses of actions to be deployed

Activities Table

<table>
<thead>
<tr>
<th>Activities</th>
<th>Producer/Depositor</th>
<th>Consumer</th>
<th>Executive Management</th>
<th>Repository Manager</th>
<th>Technology Manager</th>
<th>Operational Manager</th>
<th>Regulator</th>
<th>Author</th>
<th>Repository Operator</th>
<th>Technology Operator</th>
<th>System Architect</th>
<th>Solution Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document context: Collect and describe all influence factors of interest and relevance; i.e., all drivers, constraints, goals and regulations applicable.</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define scope of interest: Select a range of content for requiring a common treatment, to scope the decision making activities and ensure focused planning.</td>
<td>A</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define requirements: Make drivers and goals operational, i.e., define objectives and constraints represented by decision criteria.</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select options: Select a (minimal relevant) set of options potentially fulfilling requirements.</td>
<td>I</td>
<td>C</td>
<td>A</td>
<td>I</td>
<td>R</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnose options: Gather information about available options, i.e. measures corresponding to a set of criteria.</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assess options: Assess options against requirements, i.e. specified criteria, to deliver efficient decisions and operational plans.</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specify preservation plan: Specify actions and directives in understandable form.</td>
<td>I</td>
<td>I</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>R</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deliver preservation plan: Deliver plan to operations (to prepare plan deployment).</td>
<td>I</td>
<td>I</td>
<td>C</td>
<td>A</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Monitoring: Monitor operations specified by plans and operational attributes of the system, i.e. internal influencers.</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Monitoring: Monitor external influencers (regulations, technological opportunities; user community shifts; etc.).</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measure
- Assessments Traceability to influencers
- Requirements Measurability
- On Traceability, Repeatability, Reversibility, Completeness, Efficiency, Durability, Diagnosis: efficiency, completeness, correctness, reliability, and timeliness

Measures
- Understandability, completeness, correctness, reliability, and timeliness
- Monitoring completeness, correctness, reliability, and timeliness

Checkpoints
- Correspondence of operations to external influences or external influencers of relevance
Coming from Software Engineering, the CMM has been shown to be a powerful instrument for assessment and improvement.

<table>
<thead>
<tr>
<th>Awareness and Communication</th>
<th>Policies, Plans and Procedures</th>
<th>Tools and Automation</th>
<th>Skills and Expertise</th>
<th>Responsibility and Accountability</th>
<th>Goal Setting and Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Initial / ad-hoc</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Repeatable, but Intuitive</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Defined</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>Managed and Measurable</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>Optimized</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Awareness and Communication</td>
<td>Policies, Plans and Procedures</td>
<td>Tools and Automation</td>
<td>Skills and Expertise</td>
<td>Responsibility and Accountability</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Some recognition of the need for control</td>
<td>Disorganised ad-hoc decisions</td>
<td>...</td>
<td>Not defined</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Management recognizes the need for controlling and communicates issues</td>
<td>Planning process emerges, but informal and incident-driven</td>
<td>Sporadic tool usage without Systematic integration</td>
<td>Some awareness of required skills, hands-on experience</td>
<td>People take ownership of issues based on their own initiative on a reactive basis</td>
</tr>
<tr>
<td>3</td>
<td>Importance of a planning approach is understood, accepted and communicated.</td>
<td>Formal planning process in place, some strategy takes place</td>
<td>Automated tools, but processes defined by available services</td>
<td>...</td>
<td>Responsibilities assigned, documented and clearly communicated.</td>
</tr>
<tr>
<td>4</td>
<td>Systematic planning is part of the organization’s culture</td>
<td>Planning fully supported by well-specified methods; internal best practice</td>
<td>Automated planning system + operational monitoring</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>Continuous improvement</td>
<td>Industry best practice</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Questions?

Thank you for your attention!

www.ifs.tuwien.ac.at/~becker