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Abstract
Frequent Itemset Mining is considered to an important
research oriented task in data mining, due to its large
applicability in real world applications. In recent years lot of
algorithms and techniques are proposed for enumerating
itemsetsfrom transactional databases. In which some are best
for dense type datasets, while some are best for sparse type
datasets. Currently there is no single algorithm exist that is
best for all type of datasets (sparse as well as dense). The
main limitation of previous algorithm is that, they depend
upon single approach and do not combine the bestfeatures of
multiple approaches for speedup the process of itemset
mining. In this paper, we first compare and contract the two
main itemset mining strategies on different itemset mining
factors, scalability of algorithm, item search order, dataset
projection and itemsetfrequency counting. Then we introduce
a new hybrid strategy that combines the best features of
existing strategies. Our different experiments on benchmark
datasets show that mining all and maximal frequent itemsets
using hybrid approach outperforms the previous algorithms
on almost all types ofdense and sparse datasets, which shows
the effectiveness ofour approach.

Keyword: Data Mining, Association rules mining,
Frequent itemset mining, Maximal frequent itemset
mining.

1. Introduction

Since the introduction of Association Rule Mining
(ARM) problem by (Agrawal 1993) [1], now it has
become a core problem in data mining tasks, and has
been successfully applied to market basket analysis,
classification, clustering, sequential pattern, web
mining and text mining applications. ARM is an
undirected or unsupervised data mining technique,
which works on variable length data, and it produces
clear and understandable results. The process of ARM
consists of two main steps:

1 Find the frequent item sets or large item sets
with a minimum support.

2 Use the large item sets to generate association
rules that meet a confidence threshold.

The prototypical application of ARM is in market
basket analysis, where the items represent products and
the records the point-of-sales data at large grocery or
departmental stores. An example rule could be that,
"90°0 of customers buying product A also buy product
B."

The association mining task can be stated as
follows: Let T is the transactions of the database and X
is the set of items from {X v (I to n)]. A set of items is
called an itemset. An itemset X is frequent if it contains
at least v(X) transactions, where u is the minimum
support. The set of all frequent itemsets are denoted by
Fl. An itemsetX is maximal if is not subset of any other
known frequent itemset. An itemset X is closed if it is
not appear in any other known frequent itemset with
same transactions as X. We denote MFI as set of all
maximal frequent itemsets and FCI as set of all frequent
closed itemset. Any maximal frequent itemset X is a
frequent closed itemset since no nontrivial superset ofX
is frequent. Thus we have MFIczFCIczFI.

In last five years a number of all [2, 8, 9, 12],
maximal [4, 6] and closed [10, 14] itemset mining
algorithms are proposed. The basic strategy of mining
frequent itemset by all these algorithms is divided into
two main approaches: Candidate-generate-and-test
(CGaT) [2] and pattern growth approach [8]. As
reported in [5], no single approach yet has proven that it
is best and efficient for all types of datasets (sparse or
dense).

In this paper, we compare pattern growth approach
and CGaT approach in terms of scalability, item search
order, projection and itemset frequency counting. We
also show the significance of these factors on hybrid
approach [3], which we have recently proposed. In [3]
we compared hybrid approach with only CGaT
algorithms on MFI problem. In this we perform a detail
comparison of hybrid approach with pattern growth and
CGaT approach on all and maximal itemset problems.
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Our experiments on different sparse and dense
benchmark datasets show that mining frequent itemset
with hybrid approach is more efficient and faster than
other two approaches, which gives a global best
solution.

2. Pattern growth Approach

The pattern growth approach is a divide-and-conquer
technique, which divides search space into disjoint sub
search spaces (Partitions) called conditional databases
Di. The conditional database of item ai can be construct
by ac16 (a is the parent conditional pattern), which
includes all those transactions where a1'u6 is appear as a
prefix. In short pattern growth approach eliminates the
recursive candidacy generation and test operations. The
FP-growth basis algorithm is described in Figure 1.

Procedure FP-Growth (Tree, a)

1. for each item ai in Tree do
2. generate pattern B = ai U a with support

ai.support
3. construct B's conditional pattern and

B's conditional FP-Tree TreeB
4. ifTreeB 0
5. then call FP-Growth (TreeB, B)

Figure 1: pattern growth algorithm

2.1 Scalability
The basis operation of pattern growth mining approach
is recursive creation of aicx5 conditional patterns,
conditional FP-tree and counting ac16 frequency. For
sparse datasets recursion creation of ac16 conditional
patterns from parent nodes is almost equal to the total
number of frequent itemset, which takes a large memory
for storage and also large processing time for itemset
mining. Therefore numbers of scalable pseudo-
construction techniques H-Mine [11], OP [9] are
proposed. However, pseudo-construction cannot reduce
traversing cost as efficiently as physical construction.

2.2 Item search order
As per literature review, two item search order are
proposed, static lexicographically order and dynamic
ascending frequency order [10]. Static order is a fixed
order and all the nodes of search spaces follow the same
order. Pseudo construction techniques H-Mine and OP
follow this order. As alternative, ascending frequency
order, adopt by AFOPT [10], which not only reduces

search space but also reduces the total number of
recursive conditional patterns.

2.3 Projection
Pattern growth approach is a divide-and-conquer
methodology, and projecting compressed or relevant
conditional patterns on lower nodes of search space is a
key feature of this approach, which dramatically reduces
the total mining time. Construction of projected
conditional FP-tree Treeai,i, from parent node's
conditional FP-tree Treea can be considered from the
following definition.

Definitioni: Given a parent conditional FP-tree Treea.
Item ai projected conditional FP-tree Treeai,,d is a sub
tree of its parent FP-tree Treea D Treeai,d, which can be
construct by including only those branches where ai is
appear either as a node or leave.

2.4 Frequency counting
There are two ways of checking, whether item ai is
frequent or infrequent. First, is to direct count from
transaction database which takes 0(n) cost. Second one
is to collect support from item ai parent conditional
pattern, which depend on the size of conditional FP-tree,
not on size of transaction database. Lemmal describes
the completeness of frequency counting from
conditional FP-tree.
Lemmal: Given a conditional pattern CDP and min sup
threshold. The support of frequent itemset ai can be
derived from CDP.
Proof: Based on the FP-tree TreecDp, the support of
frequent itemset ai in TreecDp can be count from a1
mapped nodes (mapped nodes can be retrieved from
header table) to root of TreecDp.

3. Candidate Generate and test approach
(CGaT)

Procedure CGaT (F:Itemset)

1. Output F
2. Foreach e E. e > tail(F) do
3. ifF U {e}is frequent item call CGaT(F U

{e})
Figure 2: Candidate-generate-and-test algorithm

The CGaT approach essentially uses block nested lop
join i.e. the search space is the inner relation and it is
divided into blocks according to itemset length (G. Liu
2003). The basis operation involves in CGaT is
recursive creation of candidate itemset F1 from parent
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itemset Pi-,, and testing support (Fi'Pi1l) whether it is
frequent or infrequent. Figure 2 shows the basis strategy
of CGaT algorithm.

3.1. Scalability
The search space of CGaT can be traverse by depth first
search order (DFS) or breadth first search order (BFS),
where DFS is consider to be most popular and scalable
approach. By traversing search space with DFS only one
tree path is explored at any time so total space
consumption cost always remains equal to O(ML),
where ML is the maximum length of tree path.

3.2. Item search order
Dynamically following ascending frequency order is
key feature of CGaT approach. Almost all CGaT
algorithms [2, 4] follow ascending frequency order,
which drastically reduces the itemset search space and
mining time.

3.3. Projection and Frequency counting
Most of CGaT algorithms use vertical tid [6] or vertical
bitmaps [4] as an initial database representation.
Vertical database representation has two major
disadvantages. First, with vertical representation
approach we can't share prefix on dense datasets as FP-
tree. Second, vertical database representation approach
projects almost all transactions on each node of search
space which takes O(n) cost in itemset frequency
counting.

Burdick at al in [4], proposed a bit-vector projection
technique known as projected bitmap. The main
deficiency of projection using projected bitmap
technique is that, it requires a high processing cost
(time) for its creation. Due to this reason, they proposed
adaptive compression in [4], since projection is done
only when saving from the compressed bitmaps
outweigh the cost of projection. However, with adaptive
compression, projection cannot be possible on all nodes
of search space. The major advantage of vertical
technique is that, it optimizes frequency counting cost
with a factor of 1/32, if we represent 32 rows per single
vertical bit-vector region [13].

4. Hybrid Approach

calculation cost by using pattern growth approach [11],
but it also reduces search space by ascending frequency
order using vertical bitmaps [4].

In [3], we combined H-Mine [11] (a pattern growth
approach) and vertical bitmaps [4] into a single hybrid
approach. The basic strategy of our hybrid approach for
mining complete itemset is, it traverses search space by
DFS and on each node of search space, it projects
relevant transactions by Hyper-Mine and reorder and
remove infrequent items from tail by ascending
frequency order with using vertical bitmaps. Figure 3
shows a sample hybrid initial database representation.

Table 1 compares pattern growth, CGaT and hybrid
approach in terms of scalability, item search order,
projection and frequency counting cost.

Table 1: Comparisons of different ARM approaches
Approac Scalable Item Projec Frequency
h search tion counting cost

order
Pattern Not for Ascending Yes 0 (size of
growth sparse Frequency conditional
(physical datasets order database)
constructi
on)
Pattern Yes Static fix Yes 0 ( size of
growth order conditional
(Pseudo database)
constructi
on)
Candidate Yes Ascending No 0 (size of bitmap)
generate Frequency
and test Order
Hybrid Yes Ascending Yes 0 (size of

Frequency conditional
Order database)

The completeness of projecting transactions of tail items
in hybrid approach can be proof from the following
lemma2.
Lemma2: Let P be the node of search space and let
proj(P) be its projection, its tail items ti projection can
construct from P projection.
Proof: We know that all tail items are ticzP, and proj(P)
contains all those transactions, where P is appear as a
prefix. So tail items proj(t1) can be calculate directly
from proj(P), because proj(t)cproj(P), this completes
our proof.

As from related work review, we can conclude that
pattern growth approach is better in terms of projection
and frequency counting, where CGaT is better in terms
of scalability and item search order. In [3] we combined
the best features of both approaches into a single hybrid
approach, which not only optimizes itemset frequency
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A B C
B D E F G
E H
C E G H
A C G
D E
A C D F H
F I

Transaction A B C D E F G H I
I Bitmap 1 1 I 0 0 0 0 0 0
Array A B C

2 Bitmap 0 1 0 1 1 1 1 0 0
Array B D E F G

3 Bitmap 0 0 0 0 1 0 0 1 0
Array E H _

4 Bitmap 0 0 I 0 1 0 1 1 0
Array C E G H

5 Bitmap 1 0 1 0 0 0 1 0 0
Array A C G

6 Bitmap 0 0 0 1 1 0 0 0 0
Array D EE

7 Bitmap 1 0 1 1 0 1 0 1 0
Array A C D F H _ _

8 Bitmap U U U U U 1 U 0 1
Array F I

Figure 3: A sample hybrid initial transaction dataset
representation

Procedure Reorder (Node P)

Figure 4: Pseudo code for reordering

5. The Search Methodology

Let we take a generic iteration of Figure 4 and Figure 5

hybrid algorithm. Procedure reorder(Node P) in Figure
reorders tail elements by ascending frequency order and
removes infrequent tail items. Line from 4 to 5 in Figure

makes new projections of frequent tail items of node P
according to lemma2. Figure 6 shows a projected
transaction of itemset AC from its parent projection
proj(A).

Procedure HybridMining (Node P, Support)

1 Reorder (P)
2 use PEP to trim the tail, and sort items by

ascending support
3 for each item x in P.reorder tail
4 HybridMining (x, Supportfxl)

Figure 5: Pseudo of Hybrid approach for frequent itemset
mining

Item A B C D E F G H I
Count 3 1 2 1 0 1 1 1 0
Hyper
Link

A BH
B = D = E | F |G|
E H /

D E
A

C D |F |H|

Only those transactions are included where itemset
AC is appear as a prefix

Figure 6: Projection of itemset AC

Note on top level nodes of search space were tail items
are larger that ATL (Average Length of transaction
database), reordering tail items by traversing items of
treaded-transactions T ofproj(P) is more beneficial (see
Figure 7) than bitmaps which takes O(m) where m is
number of tail items. On lower level nodes where tail
items become constant and shorter than ATL, here
reordering by bitmaps is more useful. Definition3
describes the reordering cost and tradeoff with both
(threaded-transactions and bitmaps) techniques.

Deflniion2: Let ti are tail items of node P and let ATL is
average transaction length of transaction dataset. If total
tail items are greater than ATL then total cost of
reordering by threaded-transactions Twill be O(m*ATL)
where m is total number of items in T. If tail items are
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1 for each threaded transaction x in proj(P)
2 ifP.tail less than ATL
3 for each array item ofx {y item in x}

4 increment support ofy in support table
5 make new threaded linky in header

table ofP

6 else
7 for all tail elements in P. tail y P. tail
8 ify is '1' in transaction bitmap ofx
9 increment support ofy in support
table

10 return support storage
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less than ATL then total cost of reordering by vertical
bitmaps will be O(m*n) (m are total P tail items and n
is number of T transactions) which is less than
O(m*ATL).

Line 3 in Figure 5 makes child nodes of P from
frequent tail items and line 4 traverses child nodes in
DFS order.

6. Computational Experiments

In this section we now describe the effectiveness of our
hybrid approach comparing with pattern growth and
CGaT approach. For comparison we used the best
implementations of pattern growth and CGaT approach
available at
http://fimi.cs.helsinki.fi/src/.

Item A B C D E F G Hl
Count 3 2 4 3 4 2 3 3 l

LHiyper/\

A B C ||\
B D = E |F G _
E \H
C E G|
A fiC G| |
D E
A t W C = D F |H
F s. I

A threaded transaction of itemset A with items
(A, C, D, F, H)

Figure 7: A sample hyper threaded projection for item A and
G

All the source code of HybridMine is written in C.
Experiments are conducted on Pentium model 3
processor 1.0 GHz with 40 GB ASUS hard disk. For
experiment purpose we used small 160 MB main
memory, which show s that our hybrid approach is
scalable and does not create any memory problems. We
also realized in our experiments that pattern growth
approach sometimes run out of space on dense datasets,
where CGaT approach sometimes run out of space on
sparse datasets.

6.1. Datasets used in experiments
The experiments reported in this paper have been
conducted on several dense and sparse benchmark

datasets which were frequently used in previous work
and can be downloaded from
http://fimi.cs.helsinki.fi/data/.

6.2. Mining All Frequent Itemset
Let I be the set of items and S be set of transactions,
where each transaction teS contains set of items titem,s
which are subset of titemdj. Given a support threshold
min sup, an itemset Xcd is frequent if its support is
sup(X) > min sup. IfX subset Y is infrequent, we does
not need to check sup(X) because we now if subset is
infrequent its superset will be also infrequent. Figure 8
shows the performance curves of all algorithms. The
performance measure is the execution time of the
algorithms datasets with different support thresholds. As
we can see from Figure, the Hybrid approach
outperforms the other algorithms on almost all types of
datasets, and gives global best performance. The
performance improvements of Hybrid approach over
other algorithms are significant at low support
thresholds.

6.3. Mining Maximal Frequent Itemset
Mining MFI is considered to be more advantage able
than mining Fl, since it mines small and useful long
patterns. However, mining MFI is more complicated
than mining Fl, since for each candidate maximal
itemset; we not only check its frequency (support) but
also its maximality, which takes 0 (MFI) cost is worst
case. In practice, checking itemset maximally is
considered to be an important factor in MFI mining. As
per literature review two techniques, progressive
focusing [6] and MFI-tree [7] has been proposed for
checking MFI maximally, efficiently. Where,
progressive focusing is widely used in most of the MFI
mining algorithms [4, 7]. Figure 9 shows the
performance curves of all algorithms. The performance
measure is the execution time of the algorithms datasets
with different support thresholds. As we can see from
Figure, the Hybrid approach outperforms the other
algorithms on almost all types of datasets, and gives
global best performance. The performance
improvements of Hybrid approach over other algorithms
are significant at low support thresholds.

7. Conclusion
In recent years lot of algorithms are proposed for
efficient mining of all and maximal frequent itemsets. In
which some are best for sparse type datasets, while
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Figure 8: Performance results of Hybrid, CGaT and pattern-growth algorithms on all frequent itemset mining.
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some are best for dense type datasets. Currently there is
no single algorithm exist that shows global best
performance on all types of datasets. The main
limitation of previous algorithms is that, they really
upon only single strategy and do no combine the best
features of multiple strategies for speedup the process of
itemset mining. In this paper, we show that combining
the best features of multiple strategies into a single
hybrid is more beneficial and efficient than relying upon
single strategy. Our different experimental results on
benchmark datasets show that mining all and maximal
frequent itemsets using our hybrid approach is more
efficient than existing algorithms and gives global best
performance.
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