
Neural Networks 19 (2006) 911–922
www.elsevier.com/locate/neunet

2006 Special Issue
Advanced visualization of Self-Organizing Maps with vector fields

Georg Pölzlbauera,∗, Michael Dittenbachb, Andreas Raubera,b

a Department of Software Technology, Vienna University of Technology, Favoritenstrasse 9–11, Vienna, Austria
b eCommerce Competence Center – ec3, Donau-City-Str. 1, Vienna, Austria

Abstract

Self-Organizing Maps have been applied in various industrial applications and have proven to be a valuable data mining tool. In order to
fully benefit from their potential, advanced visualization techniques assist the user in analyzing and interpreting the maps. We propose two new
methods for depicting the SOM based on vector fields, namely the Gradient Field and Borderline visualization techniques, to show the clustering
structure at various levels of detail. We explain how this method can be used on aggregated parts of the SOM that show which factors contribute to
the clustering structure, and show how to use it for finding correlations and dependencies in the underlying data. We provide examples on several
artificial and real-world data sets to point out the strengths of our technique, specifically as a means to combine different types of visualizations
offering effective multidimensional information visualization of SOMs.
c© 2006 Elsevier Ltd. All rights reserved.

Keywords: Self-Organizing Maps; Visualization; Gradient Field; Borderline
1. Introduction

The Self-Organizing Map (SOM; Kohonen, 2001) is an
unsupervised artificial neural network especially valuable in
exploratory data analysis. It is used in a variety of scientific
and industrial applications (Kaski, Kangas, & Kohonen, 1998;
Oja, Kaski, & Kohonen, 2001). In this paper, we use the SOM
primarily as a visualization tool that performs a non-linear
projection from a high-dimensional feature space onto a two-
dimensional map lattice. We present our work on several flavors
of a visualization method that shows the clustering structure of
the map as a gradient field and show various extensions and
possible application scenarios. The gradient field is displayed as
arrows that point to the most likely cluster center for each map
unit. One property of this technique is that it can be adjusted by
interactively setting a kernel smoothing parameter to show the
granularity of the clustering, similar to the choice of the number
of clusters in clustering algorithms, revealing the structure at
various levels of detail.

The rest of the paper is organized as follows. In Section 2
we describe related SOM visualization techniques. In Section 3

∗ Corresponding author.
E-mail address: poelzlbauer@ifs.tuwien.ac.at (G. Pölzlbauer).

0893-6080/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2006.05.013
we discuss basic properties of the SOM and neighborhood
kernel functions. In Section 4 we introduce the Gradient Field
method and several extensions to it, namely the Borderlines
representation as well as grouped gradient fields. In Section 5
we provide experiments on a benchmark data mining data
set, a real-world industrial data set, and some experiments
on artificial data. Section 6 summarizes this paper and gives
directions for future work.

2. Related work

In this section, we provide a brief survey on SOM-
related concepts and visualization techniques. The two primary
qualities of the SOM are vector quantization and non-linear
vector projection. The former aims at finding a reduced
representation of the data samples by significant prototypes,
while the latter applies a reduction of dimensionality and
presentation in human-perceivable form (Grinstein, Trutschl, &
Cvek, 2001). The most important vector quantization method is
k-means (Hartigan & Wong, 1979) which is very similar to the
SOM. Prominent non-linear vector projection methods include
pair-wise distance preserving techniques like multidimensional
scaling (Torgerson, 1952) and Sammon’s Mapping (Sammon,
1969), which aim at preserving pair-wise distances in the
resulting projections. Other techniques measure distance based

http://www.elsevier.com/locate/neunet
mailto:poelzlbauer@ifs.tuwien.ac.at
http://dx.doi.org/10.1016/j.neunet.2006.05.013

912 G. Pölzlbauer et al. / Neural Networks 19 (2006) 911–922
on distribution and density of the data set to be projected, like
Isomap and Curvilinear Distance Analysis (Lee, Lendasse, &
Verleysen, 2004). Isomap (Tenenbaum, de Silva, & Langford,
2000) relies on nearest neighbor graphs of the input data
and finding the shortest path to construct the latent space.
ViSOM (Yin, 2002) is an extension of the SOM that aims
at positioning the prototype vectors in a roughly equidistant
way in order to avoid post-processing visualization methods.
With this model the training process itself is adapted to capture
data space characteristics. A lot of effort has been directed to
extend the topology of the SOM to more flexible topologies to
reveal the cluster structure as part of the resulting architecture
(Dittenbach, Rauber, & Merkl, 2002; Fritzke, 1994; Martinetz,
Berkovich, & Schulten, 1993).

SOM visualization usually uses the map lattice as a
visualization platform (Vesanto, 1999), where quantitative
information is most commonly depicted as color values or as
markers of different sizes. More advanced approaches exploit
the analogy to geography (Skupin, 2004). SOM visualization
methods mainly fall in two categories: techniques that rely
solely on the codebook vectors, and ones that take the
distribution of the data samples into account. We begin
with the former category. Component planes are projections
of one single dimension of the codebook. By plotting the
component planes for all dimensions, all information on
the prototype vectors is revealed. However, as with other
methods in statistics, it becomes increasingly difficult to
perceive important information such as clustering structure
and underlying dependencies. We show how to aggregate
component planes into groups and how to examine their
differences in Section 4.3.

The unified distance matrix (U-Matrix; Ultsch & Siemon,
1990) is a visualization technique that shows the local cluster
boundaries by depicting pair-wise distances of neighboring
prototype vectors. It is the most common method associated
with SOMs and has been extended in numerous ways. The
Gradient Field that we describe in this paper has some
similarities with the U-Matrix, but applies smoothing over a
broader neighborhood and a different style of representation.
One drawback of the U-Matrix is that it is less suited for large
sparse SOMs (Emergent SOMs; Ultsch, 1999).

Another form of visualizing the map is clustering the
prototype vectors (Vesanto & Alhoniemi, 2000), disregarding
the SOM topology. This provides a vector quantization point
of view and can be used to identify homogeneous regions.
Another type of visualization is concerned with gradients
(Kaski, Nikkilä, & Kohonen, 2000) for local models of the
SOM, which is also closely related to our method.

The second category of visualization techniques takes the
distribution of the data into account. The most simple ones are
hit histograms, that show how many data samples are mapped
to a map unit, and labeling techniques, that plot the names and
categories, provided they are available, of data samples onto the
map lattice. More sophisticated methods include smoothed data
histograms (Pampalk, Rauber, & Merkl, 2002), which show the
clustering structure by mapping each data sample to a number
of map units, and graph-based methods (Pölzlbauer, Rauber,
& Dittenbach, 2005), that show connections for map nodes
that are close in feature space. The P-Matrix (Ultsch, 2003a)
is another density-based approach that depicts the number of
samples that are within a sphere with a certain radius around
the prototype vectors. The radius is a quantile of the pair-wise
distances of the data vectors. The U*-Matrix (Ultsch, 2003b) is
a combination of P-Matrix and U-Matrix, and is applied to large
SOMs. The U-Matrix value, defined as the sum of distances
of each node to its direct neighbors, is multiplied by a scaling
factor induced by the local density of the data points around the
corresponding prototype vector. This results in high values for
areas where there the distance to neighboring areas is high and
the data density is low, and low values otherwise.

The Generative Topographic Mapping (GTM; Bishop,
Svensen, & Williams, 1998) has been introduced as an
alternative to the SOM with a continuous output space
that models the probability distribution in feature space.
The magnification factors visualization (Bishop, Svensen, &
Williams, 1997) depicts local stretching of the mapping as
ellipsoids in a discrete number of latent space centers. This
method is related to our technique as it explains directional
changes. Magnification factors can also be computed for the
SOM, where a continuous interpolation is applied to the
discrete SOM lattice in order to perform differential analysis.
Apart from that, our method differs mainly in the way that
smoothing is applied. While magnification factors for the SOM
show similar results as the U-Matrix, we apply a smoothing
according to an adjustable parameter that defines the width
of the area over which the differences are aggregated and
investigated. Further extensions of magnification factors for
GTM investigate their curvature (Tino, Nabney, & Sun, 2001).

3. Self-Organizing Maps and neighborhood kernels

A Self-Organizing Map is a mapping from an N -
dimensional feature space to a low-dimensional output space.
The output space is called the “map lattice” and consists of
M neurons (map units). In this work, we assume the output
space to be two-dimensional and the feature space to be a
vector space over the real numbers (RN). We introduce a strict
formal notation to differentiate between the various scenarios
where vectors, coordinates or positions are used. We explicitly
distinguish between a map node ξi on the two-dimensional
map lattice and its corresponding prototype vector (or model
vector) mi in feature space. The index 1 ≤ i ≤ M connects
a map node to its prototype vector. The set of all prototype
vectors is called the codebook M. We denote the horizontal
and vertical coordinates of ξi as ξu

i and ξv
i , respectively. The

prototype vector mi lives in the same space as the data samples.
Another use of the word “vector” in this paper is in the context
of the resulting visualization, that consists of a field of arrows
pointing to cluster centers. We will refer to it as the Gradient
Field method. There are two distance metrics involved in the
SOM algorithm, one in feature space, and the other one between
units on the map lattice. The distance between prototype vectors
mi and m j in feature space is denoted as

dF (mi , m j) = ‖mi − m j‖F (1)

G. Pölzlbauer et al. / Neural Networks 19 (2006) 911–922 913
where ‖·‖F is the distance measure of feature space also applied
during SOM training, which can be basically any metric, such
as the cosine distance, or any Minkowsky metric, with the most
common distance usually being Euclidean (Aggarwal, 2003).
dF is also used to compute the distance between data samples
and prototype vectors.

On the map lattice, the distance between units ξi and ξ j is
measured by the Euclidean metric

dO(ξi , ξ j) = ‖ξi − ξ j‖O =

√
(ξu

i − ξu
j)

2 + (ξv
i − ξv

j)
2. (2)

As our method is primarily concerned with post-processing of a
trained SOM we do not introduce the training process in detail,
but rather refer to (Kohonen, 2001) for an in-depth discussion.
A crucial concept in SOM training is the neighborhood kernel
hσ , which is a monotonously decreasing function hσ : R →

R+. It converts the distance dO into a measure of proximity.
Far-apart units ξi and ξ j will have a low kernel value. Thus, the
kernel acts as a weighting function for the influence of nodes
ξi and ξ j onto each other. Kernels are used in many fields of
statistics such as probability density estimation; however, for
use with SOMs, the kernel does not have to be a probability
function with unit area.

There are numerous kernel functions; the most widely used
one is the Gaussian kernel hG

σ , which resembles a bell-shaped
curve

hG
σ (dO) = exp

(
d2

O

2σ

)
. (3)

The kernel value for distant nodes is exponentially decreasing
and will be close to zero for dO > σ . For computational
reasons, the kernel can be cut off at this threshold (“cut-off
Gaussian kernel”):

hG′

σ (dO) =

{
hG

σ (dO) if dO ≤ σ

0 otherwise.
(4)

A very simple kernel is the bubble kernel, which is a step
function that is defined as

hb
σ (dO) =

{
1 if dO ≤ σ

0 otherwise.
(5)

It relies solely on the concept of cutting off outside the radius
σ , weighting all distances up to this point equally. This function
is not continuous in a mathematical sense.

Another choice is the inverse proportional kernel:

hip
σ (dO) =

1 −
d2

O

σ 2 if dO ≤ σ

0 otherwise.
(6)

It is similar to the Gaussian kernel but decreases faster to zero.
All of the above kernels are non-linear functions. The linear

kernel is an exception:

h1
σ (dO) =

{
1 −

dO

σ
if dO ≤ σ

0 otherwise.
(7)
It decreases linearly from one to zero. The parameter deserves
special attention. It determines the breadth of the neighborhood
function, such that very high values correspond to high
influence of far-away and close units alike, and very low values
emphasize only the direct neighbors of the map unit. It is used in
the proposed visualization techniques to control the granularity
of the structures detected, serving as a smoothing parameter.

4. SOM visualization with vector fields

In this section, we introduce two methods for visualizing
the clustering structure based on vector fields (Pölzlbauer,
Dittenbach, & Rauber, 2005b). The gradient is plotted on top
of the SOM lattice with one arrow per map unit. The length and
direction of each arrow indicate where the cluster centers are
located. The entirety of the arrows forms a smooth vector field
especially intended for use by professionals with engineering
backgrounds, exploiting their familiarity with gradient and flow
visualizations. The Borderline visualization is derived from the
Gradient Field and provides an alternative view that emphasizes
the cluster boundaries. In Section 4.3, we further extend the
Gradient Fields to contrast contributing factors of the clustering
structure.

4.1. Gradient Field Visualization

In this subsection we describe the algorithm for obtaining
a vector field that shows homogeneous areas. Each of its
arrows ai is computed based on the prototype vectors, the map
topology, and the choice of the neighborhood kernel. The ai
will be plotted on top of their corresponding map units ξi .
The vectors ai have a u and v component, denoted as au

i and
av

i , corresponding to the horizontal and vertical coordinates,
respectively. The algorithm outlined in the next paragraphs
consists of two main steps which are repeated for each map
unit. In the first one, weighted distances to all other prototype
vectors are computed and separated along both the u and v

axes in positive and negative directions. In the second step,
these contributions are aggregated for each coordinate and
normalized in order to avoid border effects.

From this point, we will outline the algorithm to compute the
coordinates of ai , for map unit ξi and its associated prototype
vector mi . Some of the formulas involve pair-wise comparisons
to other units and models vectors, which will be denoted with
index j . These computations have to be performed for all
1 ≤ j ≤ M with j 6= i . First we need to obtain the vector
connecting the positions of ξi and ξ j in output space, which is
defined as

χi j = Eξiξ j = ξ j − ξi . (8)

The angle α of this vector χi j is simply

αi j = arctan

(
χv

i j

χu
i j

)
. (9)

Using the above notation, it is now possible to apply the
neighborhood kernel to the distance between units ξi and ξ j ,

914 G. Pölzlbauer et al. / Neural Networks 19 (2006) 911–922
Fig. 1. (a) Distances to prototype of map unit in the center; dark values denote
high distances. (b) Map unit size scaled according to Gaussian neighborhood
kernel with σ = 4.

which is the length of χi j , and to split up this weight into u and
v directions:

ωu
i j = cos αi j · hσ (‖χi j‖), ωv

i j = sin αi j · hσ (‖χi j‖). (10)

The value of ωu
i j will be close to zero when either the distance

between ξi and ξ j is high, resulting in a very low kernel value,
or in the case ξu

i = ξu
j , i.e. ξi is directly above or below ξ j with

no horizontal offset. The value of σ also influences the kernel
function and thus the value of ω since high σ tend to weight
far-away map units higher than with low σ values. Note that
ωu

i j will be negative in the case ξ j is to the left of ξi .
In the following, we will only explicitly provide formulas

for the u coordinate, as v follows analogously. In the next step,
the distances between the associated prototype vectors mi and
m j are taken into account, weighting these distances by ω, and
assigning them to either the positive or negative side of u:

δu+

i j =

{
dI (mi , m j) · ωu

i j if ωu
i j > 0

0 otherwise
(11)

δu−

i j =

{
dI (mi , m j) · (−ωu

i j) if ωu
i j < 0

0 otherwise.
(12)

Dividing the weighted distance contribution of the prototype
vectors along the positive and negative directions will provide
a means to find the direction where the dissimilarity of the
current vector mi is relatively low, and where the arrow ai will
ultimately point to. If, for example, ξ j is next to ξi on the right
side, and the distances between the prototype vectors are high,
then δu+

i j will be high, which will contribute significantly to
ai pointing to the left, away from ξ j . Fig. 1 gives a schematic
overview of the weighting process to the unit in the center of the
map ξi . First, the pair-wise feature space distances dI (mi , m j)

are shown in Fig. 1(a), where the i th node is the one in the
middle of the map; then, the sizes of the hexagons are scaled
according to the kernel value of their output space distance
to the center node hσ (‖χi j‖) in Fig. 1(b). The arrow in this
figure points in the direction where the least weighted distances
are. Repeating this calculation for all the ξ j , we can finally
aggregate the δu+

i j and δu−

i j values:

ρu+

i =

∑
j=1...M, j 6=i

δu+

i j , ρu−

i =

∑
j=1...M, j 6=i

δu−

i j . (13)
Once we know ρu+

i and ρu−

i , we can tell whether and to
which extent one of the directions outweighs the other. For
ρu+

i > ρu−

i , the accumulated distances from the right side are
bigger than the ones on the left, so the arrow will point to the
left. Close to the map borders, the distance contributions in the
direction of the border will always be lower than in the direction
inside the map since there are simply no prototype vectors for
which a distance could be computed. The resulting arrows are
thus biased to always point outside of the map. To avoid this, a
normalization has to be performed that sums the ωu

i j values in
positive and negative directions

ωu+

i =

∑
j=1...M, j=i

{
ωu

i j if ωu
i j > 0

0 otherwise
(14)

ωu−

i =

∑
j=1...M, j=i

{
−ωu

i j if ωu
i j < 0

0 otherwise.
(15)

Finally, we can determine the components of ai as

au
i =

ρu−

i · ωu+

i + ρu+

i · ωu−

i

ρu+

i + ρu−

i

(16)

where the accumulated input space differences ρu+

i and ρu−

i
are weighted by the opposing accumulated ωu−

i and ωu+

i ,
respectively. In case the node ξi does not lie close to the edge
of the u axis, ωu+

i and ωu−

i will be equal, and the effect
of this normalization will vanish. The most important of the
computational steps are performed in (13) and (16). The roles of
ρ+

i and ρ−

i of either u or v coordinates deserve special attention
and will be briefly discussed:

• ρ+

i ≈ ρ−

i : In this case, distances are balanced and the
component of a will be small. If the values of ρ+

i and ρ−

i
are small, the prototype vectors m j of the surrounding map
units of ξi are very similar to mi and likely to be in the
center of a cluster. In the case both ρ+

i and ρ−

i are large,
ξi is likely to be right in between two clusters to neither of
which it belongs. Such units are called interpolating units
and are easily recognized as arrows of neighboring units are
pointing away from them.

• ρ+

i > ρ−

i : The distances in positive direction outweigh
distances in negative direction. mi is more similar to its
neighbors in negative direction and ai will reflect this by
pointing there.

• The length of ai is determined by the difference between ρ+

i
and ρ−

i . Large differences result in long arrows.

Our method differs from the U-Matrix in the way that it can
be represented as a field of arrows, and by the smoothing that is
performed by the kernel to override small cluster boundaries
that may be artifacts that come from the choice of the map
size. The choice of the kernel width σ plays an important role
in what the visualization actually shows, since a small value
of σ weights the direct neighbors of the map unit ξi much
stronger than the other units, while a large value takes the
surrounding units into account, weighting them nearly equally,
and thus smoothing over wide areas. The effect of choosing
σ lies in whether the visualization is a fine-grained vector

G. Pölzlbauer et al. / Neural Networks 19 (2006) 911–922 915
field, where the neighboring arrows vary sharply, or a coarse
representation that show the global clustering structure. One of
the main advantages of our method is that it allows interactively
setting and tuning σ to different levels, so different kinds of
clustering structures can be observe. The value of σ has to be
seen in relation to the size of the map. For usual settings, we
recommend setting σ to around one sixth of the number of units
along the shorter side of the map, which usually results in a
balanced visualization that is neither coarse nor granular. We
provide examples and further discussion of σ in Section 5.1.

The computational complexity of calculating the vector field
is O(M2) since it requires the pair-wise distances between the
map nodes and prototype vectors. In case the kernel is cut
off after a certain threshold, like hG′

, hb, hip, or hl , which
is plausible since distant map nodes influence each other by
negligible amounts, the complexity reduces to O(M). The
computational cost of the U-Matrix also scales linearly with the
number of map units, thus computation of the vector field is
no more expensive in terms of complexity than the U-Matrix.
The experiments in Section 5, which include SOMs with up to
2000 nodes, have been computed in several seconds even for the
O(M2) case, running under an implementation in Matlab code,
thus offering itself for interactive visualization with different
sets of σ .

4.2. Borderlines representation

Another representation that emphasizes cluster boundaries
over vector fields pointing towards cluster centers can be easily
derived. By depicting the orthogonal of each ai as a line from
both sides of the center instead of an arrow, the resulting
visualization shows likely cluster boundaries. The length of
the arrows is preserved such that long lines hint at a strong
separation between clusters. We call this representation the
Borderline visualization. An example is shown in the next
section.

4.3. Extension to groups of component planes

In this subsection, we describe an extension of the Gradient
Field technique. As data mining methods usually assume
that the observed data samples follow an unknown statistical
distribution, local correlations and dependencies between
variables are often an interesting property to assess. We assume
that the clustering structure is induced by certain groups of
variables. The variables of these distinct groups are either
correlated to a certain degree or statistically dependent in a non-
linear way. Our assumption implies that the clustering structure
can be decomposed into these groups of variables. The basic
idea is to plot two or more groups simultaneously with the
Gradient Field method. This combined visualization shows the
contributing factors of the clustering and gives an additional
feel about the underlying data.

The reliance on variables and component planes rather
than codebook vectors and their distances requires us to
introduce some additional formal definitions. A projection of
the codebook’s i th variable is called the i th component plane
C i , which lies in a one-dimensional subspace of the feature
space. Component planes can be conveniently visualized on
the map lattice. We define groups of component planes as the
combination of several variables, and denote S = {1, . . . , m}

as the set that consists of all the indices of these variables. We
are further interested in comparing g subsets S1,...,g ⊆ S.
The sets must be disjoint, i.e. Si ∩ S j = ∅, i, j ≤ g,
∀i 6= j must hold. The union ∪

g
i=1 Si does not necessarily

have to contain all the variable indices if only a subset of the
variables is of interest. We denote by M (Si) = ×k∈Si Ck ,
where × refers to the Cartesian product, the reduced codebook
which consists of the component planes Si . M (S i) is a
“sub-SOM” with the same number of map units, for which
e.g. the U-Matrix and Gradient Field visualizations can be
computed. Interesting subsets S1,...,g can be chosen either
based on correlations between component planes (Vesanto &
Ahola, 1999; Himberg, 1998) or by grouping variables that are
known to be semantically similar, for example variables that
have a common source. The former choice can be performed
by either investigating the correlation matrix or by visual
inspection of the component planes, combining the ones that
are similar. Determining the correlation of component planes
can be performed by

dcomp(i, j) = abs(γ (C i , C j)) (17)

where γ (C i , C j) is a suitable measure of correlation such as
the Pearson correlation coefficient on the variables C i and C j .
For highly similar component planes, the absolute value is
close to 1. If there is no linear correlation, its value is close
to zero. Grouping components together is then performed by
partitioning the set of component planes. The more interesting
choice is grouping variables that are semantically similar,
since this exploits a priori knowledge about the data. We then
investigate whether the groups provide contrasting clustering
structures. For a thorough discussion of this approach, see
(Pölzlbauer, Dittenbach, & Rauber, 2005a).

Once the relevant variable groups have been selected,
the Gradient Field method can be applied to both sets and
visualized simultaneously. In order to adjust the length of the
arrows to negate the effect of different numbers of variables
between the sets, we compute

â(S1)
i = a(S1)

i
|S1|

|S1| + |S2|
(18)

where | · | denotes the cardinality of a set. In the next section,
we provide examples that explain the relation to variable
dependence and applications on a real-world data set.

5. Experiments

In this section, we will investigate the usefulness of the
previously described techniques with two real-world data sets
and several artificial ones. The first one is the “Phonetic”
benchmark data,1 which describes 20 distinct phonemes from

1 Included in LVQ-PAK, available at http://www.cis.hut.fi/research/software.

http://www.cis.hut.fi/research/software

916 G. Pölzlbauer et al. / Neural Networks 19 (2006) 911–922
Fig. 2. Phonetic data mapped to the SOM: (a) U-Matrix, (b) clusters and corresponding labels. (c) Hit histogram of data with label “E”. (d) k-means clustering with
8 clusters. (e) k-means clustering with 4 clusters.
continuous Finnish speech, which are measured in 20 variables.
It consists of 1962 data samples. The SOM trained on this data
set consist of 30 × 40 map units. The other real-world data
set comes from the domain of petroleum engineering (Zangl &
Hannerer, 2003). The “Fracture Optimization” data set has been
collected from 199 gas wells in 10 dimensions. The variables
can be grouped according to their source and use, which we will
discuss in more detail below. We have trained two SOMs on this
data set, one with 7×10 map units, and one with 44×44 to show
the characteristics of our method for largely differing SOM
sizes of both conventional as well as emergent SOM types. We
show the general properties of our method with the Phonetic
data set, and the dual visualization and correlation discussion
with the Fracture Optimization data. The artificial data sets
thereafter are used to stress our method’s capabilities of
visualizing non-linear correlations between groups of variables.

5.1. Effects of the neighborhood radius

At first, we want to show the effects of the kernel width σ

with the SOM trained on the Phonetic data set with a Gaussian
kernel hG. In this dataset, many of the phoneme classes coincide
with the homogeneous areas on the map. The U-Matrix of this
30 × 40 SOM is shown in Fig. 2(a). Fig. 2(b) highlights some
regions that are primarily occupied by one vowel or consonant.
As an example for a phoneme that is highly clustered, Fig. 2(c)
shows the hit histogram for data samples of phoneme “E”.
In Fig. 3, the results for both Gradient Field and Borderline
methods for σ = 1, 5, 15 are shown. The σ values “1”, “5”,
and “15” have been chosen to represent low, medium, and high
radii, respectively, in relation to the map size of 30 × 40. Low
values of this parameter lead to very granular visualizations,
where only direct neighbors are taken into account for the
computation of each arrow and thus only local gradients can
be observed, as visualized in Fig. 3(a) and (d). By increasing
σ , the clustering structure revealed shifts gradually from local
towards global. Fig. 3(b) and (e) provide a far better overview
on the clustering structure, and individual regions can be
distinguished. In Fig. 3(c) and (f), the global structure is shown
for σ = 15. It reveals that the upper third is most strongly
separated from the rest of the map, which has not been indicated
by any of the former, more local representations. The relation
to a clustering algorithm is shown in Fig. 2(d) and (e), which
show the results of k-means of the codebook vectors with 8
and 4 clusters. The map topology is omitted for the clustering
process, so clusters can consist of non-adjacent nodes. σ is
loosely related to the number of clusters, as high values of σ

show few boundaries and are comparable to clustering with
few cluster centers, while a low σ results in many local cluster
boundaries and is thus comparable to clustering with many
cluster centers. When compared to Fig. 3, it can be seen that
the k = 4 clustering reveals similar information as the Gradient
Field method with a high σ , while k = 8 is comparable to the
ones with a lower smoothing parameter. The choice of σ has
to be performed interactively and varies for the type of kernel
used, but a good starting point for the Gaussian kernel hG is
1/6th of the shorter side of the map. σ always has to be seen
in relation to the size of the map since it is defined in absolute
terms over the number of units over which the smoothing is
performed. While the choice of σ strongly influences the type of
information on the structure revealed, the results are insensitive
to the choice of the neighborhood kernel function. We have not
noticed significant differences between different neighborhood
kernels. The only exception is the Bubble kernel hb, which is

G. Pölzlbauer et al. / Neural Networks 19 (2006) 911–922 917
Fig. 3. Phonetic data with 30 × 40 SOM, Gradient Field visualization: (a) σ = 1, (b) σ = 5, (c) σ = 15. Borderline visualization: (d) σ = 1, (e) σ = 5, (f) σ = 15.
not continuous in a mathematical sense and does not allow a
smooth convergence across the neighborhood range, and is also
hardly used for SOM training. Thus, a cut-off kernel variant
may be employed, resulting in linear complexity for calculating
the vector field.

5.2. Smoothing sparse maps

The next example shows the smoothing effect on sparse
maps which are sometimes preferred if the SOM is used for
visualization only and vector quantization is not of interest.
We use a 44 × 44 as an example of an oversized SOM
trained on the Fracture Optimization data set with an inverse
proportional kernel hip. The Fracture Optimization data set
that we use for this experiment consists of 199 samples in
10 variable dimensions, where each sample corresponds to a
well for gas drilling. Since the number of map nodes (1936)
is about ten times higher than the number of data samples
(199), the U-Matrix visualization shown in Fig. 4(a) shows
artifacts that come from the fact that most samples are mapped
to nodes that they occupy solely. The remaining units are
merely interpolating units. The U-Matrix implies that these
transitions are actually cluster boundaries, while the significant
boundary between the upper and lower parts are overshadowed.
In Fig. 4(b), a Gradient Field with σ = 8 is visualized, the
radius being roughly one sixth of the map axes. The smoothing
effect overrides the insignificant cluster boundaries and focuses
on a more global clustering structure, which consists of two big
clusters on the upper and lower part of the map and a transition
region slightly right of the center. It is thus possible to adapt the
visualization accordingly for sparse SOMs.
5.3. Dual gradient fields on petroleum engineering data

Next, we discuss the combination of Gradient Fields to
show how groups of component planes influence the overall
clustering structure with a 7 × 10 SOM trained on the Fracture
Optimization data. The map size is determined by the number
of training data samples and the ratio of the axes is calculated
from the ratio of the first to the second largest eigenvalue
from principal component analysis, as performed by default in
the Matlab SOM Toolbox (Vesanto et al., 1999). The variable
dimensions come from 3 types of sources: (1) geological
factors that describe properties mainly determined by the choice
of the geographic position; (2) engineering parameters set
during the gas pumping process; and (3) output parameters
that assess the success of the operation: “Stimulation Costs”
and “Produced Gas”. The data is gathered during three steps,
each corresponding to one of these groups. First, the position
where to build the well after checking the geological data is
selected; then the engineering parameters are determined and
the pumping propellant and fluids are started; and finally, after
the gas has been obtained, the output variables can be assessed.
The index sets are denoted as Sgeo (3 dimensions), Sparam (5
dimensions), and Sout (2 dimensions), respectively. We have
trained a 7 × 10 SOM on this data set and want to find out how
these groups of variables depend on each other and how they
decompose the clustering structure. Note that we use the output
variables in the same way as the other ones for training since
the SOM is an unsupervised learning method. What we intend
to do is thus related to canonical correlation analysis rather than
to regression. Data analysts are concerned with measuring the
impact of the choice of the well’s position or the fine-tuning of
the engineering parameters on the output.

918 G. Pölzlbauer et al. / Neural Networks 19 (2006) 911–922
Fig. 4. Fracture Optimization data with 44 × 44 SOM: (a) U-Matrix,
(b) Gradient Field with σ = 8.

Fig. 5. Fracture optimization, 7 × 10 SOM: (a) component plane “produced
gas”, (b) component plane “stimulation costs”; (c) U-Matrix, (d) U-Matrix of
M (Sgeo), (e) M (Sparam), (f) M (Soutput).

Fig. 5(c)–(f) show the U-Matrices for the SOM and the
sub-SOMs M (S geo), M (S param), and M (S out). From these,
an impression of the cluster boundaries can be gained. The
engineering parameters seem to divide the map horizontally,
while the geological factors are responsible mainly for a vertical
boundary. The output parameters are the most interesting ones,
since we aim to explain which regions of the map correspond
to desirable outcomes, i.e. where wells with low costs and high
produced gas are located. Fig. 5(a) and (b) show the component
planes for these variables. It can be seen that the costs are high
in the lower part of the map, and low in the upper regions.
The gas production is high for wells that are mapped to the
left border and slightly below the center of the map. Thus,
the most desirable position for wells is the upper left corner
with both low costs and high output. Fig. 6(a)–(c) show the
pair-wise Dual Gradient Fields of the three groups. For the
arrows pointing in different directions for most parts of the
map, the underlying variable groups are likely to be statistically
independent and explain different parts of the overall clustering
structure, which will be discussed in the next example. Fig. 6(c)
shows Sgeo and Sparam, where the arrows are orthogonal
in most cases. This information can be exploited in order
to improve the fracture optimization process. The horizontal
position of the sample projected onto the map is apparently
Fig. 6. Fracture Optimization SOM Dual Gradient Fields (the first group is
indicated by black, and the latter by grey vectors): (a) M (Sout) vs M (Sgeo),
(b) M (Sout) vs M (S param), (c) M (Sgeo) vs M (Sparam).

determined by the geological factors since the black arrows are
parallel to the horizontal axis. The vertical position corresponds
to the engineering parameters. Thus, once the well is physically
built, the geological factors cannot change anymore, and the
horizontal position on the SOM describes a constraint for the
effect of tuning the engineering parameters. It is desirable to
shift a well towards the upper left corner to optimize output
and costs. The lengths of the arrows correspond to how much a
parameter has to be changed to achieve a change in the node that
the sample is projected to. For example, Fig. 6(b) shows Sout
(black) and Sparam (grey). Suppose a well is mapped to position
“A”, where the black arrow is short, while the grey arrow is
long: thus moving one node up would require changing the
engineering parameter by a large amount, while resulting only
in small differences in output. For position “B”, the arrows are
approximately orthogonal, thus changing the parameters would
only have marginal effects on the output since the gradients do
not indicate that there is a change in output vertically.

5.4. Statistical dependencies between groups of variables

Next, we examine the effect of the Dual Gradient Field
method on 4 artificial data sets where we want to find out
whether one variable is statistically dependent on the other two.
The data sets consist of 10,000 samples. The first 3 examples
are three-dimensional, and the last one is twenty-dimensional.

G. Pölzlbauer et al. / Neural Networks 19 (2006) 911–922 919

Fig. 7. Artificial Data SOM (no relationship): component planes: (a) x1, (b) x2, (c) x3; (d) length of difference vector, (e) scatterplots and distribution of x1, x2, x3,

(f) Dual Gradient Fields M (Suniform) vs M (SSprob dep).
In the three-dimensional examples, the first two variables x1
and x2 are uniformly distributed between 0 and 1, and are
statistically independent. The set of indices forming this group
is denoted as Suniform = {1, 2}. The second group consist of the
third probably dependent variable Sprob dep = {3} for which
we want to know whether it can be explained by the former two
variables.

In the first example, we consider a third variable x3 that is
independent of the former two and is also uniformly distributed.
Scatterplots for this data set are provided in Fig. 7(e), which
show the variables x1, x2 and x3 in rows and columns, and
pair-wise scatterplots where they intersect; the bar charts show
the distribution of each single variable. The scatterplots clearly
show that there is no correlation between any of the variables.
Fig. 7(a)–(c) shows the component planes after training a
30 × 30 SOM with a cut-off Gaussian kernel hG′

on this data.
The Dual Gradient Fields in Fig. 7(f) show that most arrows
do not have common directions. To emphasize this, we have
calculated the length of the vector connecting the two arrows

‖aSuniform
i − a

Sprob dep
i ‖O in Fig. 7(d). This value is high (light

values) if the black and grey arrows point in different directions
and low (dark values) if the black and grey arrows are similar.
The figure has numerous light nodes, and thus indicates that
there are no dependencies between the variable groups.

In the second setup, the third coordinate of each sample is
defined as x3 =

x1+x2
2 . Scatterplots can be seen in Fig. 8(e).

Pearson’s correlation coefficient between x1 and x3 is 0.7, and
between x2 and x3 is −0.7, indicating strong linear dependence.
The component planes plots for the 30 × 30 SOM on this
data are shown in Fig. 8(a)–(c). It can be seen that the
projection results in linear ascent along diagonal lines, which
are orthogonal for x1 and x2, stressing their independence. This
has not happened in the previous example. Here, the data set is a
two-dimensional subspace embedded in the three-dimensional
feature space, and thus equal in dimension to the map lattice.
The dependent component x3 interferes with the other axes.
When we apply the Dual Gradient Field method for groups
Suniform and Sprob dep, the result can be seen in Fig. 8(f). Aside
from some deviations introduced by the SOM’s border effect,
it shows that the cluster structure of this map is caused by
the same factors, since the black and grey arrows are very
similar both in angle and length. This is an expected result,
since the third variable is predictable, and it will not introduce a
different clustering structure than the one already present from
the previous coordinates. Fig. 8(d), where again the differences
of the black and grey arrows are depicted, shows that the arrows
are very similar for all parts of the map.

In the third case, the dependent variable is given as x3 =

abs(x1+x2−1) which is then multiplied by a factor to normalize
its variance to the other variables. Although there exists a
deterministic relationship between the variables, the correlation
is zero for all pairs of variables, since there is no global
linear relationship. x3 is only piece-wise linearly dependent.
Scatterplots are shown in Fig. 9(e), which reveal that there is
some sort of dependency between x1 and x3, and between x2
and x3. Component planes for the SOM trained on this data are
visualized in Fig. 9(a)–(c). The component plane for x3 shows
that the peak vales are on two edges of the map; the SOM
thus has adjusted properly to this two-dimensional manifold.
By applying the Gradient Fields, the arrows in the regions
with a linear relationship are almost identical. The smoothing
performed to obtain the arrows only weights gradients within
a certain radius, and the linear relationship can be observed
within this radius. In the transition region, however, where x3

920 G. Pölzlbauer et al. / Neural Networks 19 (2006) 911–922
Fig. 8. Artificial Data SOM (linear relationship): component planes: (a) x1, (b) x2, (c) x3; (d) length of difference vector, (e) scatterplots and distribution of x1, x2,

x3, (f) Dual Gradient Fields M (Suniform) vs M (Sprob dep).
Fig. 9. Artificial Data SOM (non-linear relationship): component planes: (a) x1, (b) x2, (c) x3; (d) length of difference vector, (e) scatterplots and distribution of x1,

x2, x3, (f) Dual Gradient Fields M (Suniform) vs M (Sprob dep).
approaches zero, no linear relationship is found, resulting in
high differences between the arrows. Again, in Fig. 9(d) the
lengths of the difference vector between the arrow is depicted.
This deviation shows where the linear relationship is not given,
but recognizing that there is a linear relationship in most other
areas of the map. When compared to Figs. 7(d) and 8(d), where
the same is performed for the independent and the linearly
dependent case, we can now show in Fig. 9(d) where the
visualization recognizes piece-wise linear relationships. While
most statistical coefficients fail to quantify the deterministic

G. Pölzlbauer et al. / Neural Networks 19 (2006) 911–922 921
Fig. 10. Artificial Data SOM (XOR-like relationship): (a) component plane
x11, (b) length of difference vector, (c) Dual Gradient Fields M (Suniform) vs

M (Sprob dep).

dependence of x3 in this case, our method can be used in
order to identify piece-wise linear portions of the data. Also,
this implies that if cluster structures of variable groups overlap
in certain regions of the map, we can learn about piece-wise
dependencies between the variables.

The last example examines a more complex high-
dimensional data set in 20 variables. Again, the data are split
into two groups, and the dependence of the second group
Sprob dep = {11, . . . , 20} is investigated. The first group
Suniform = {1, . . . , 10} is further divided into two subgroups
of 5 dimensions. The variables in these subgroups are equally
distributed with zero mean, and are constructed in a way
that they are highly correlated within each subgroup with
correlation coefficient of 0.9. Pairs of variables from different
subgroups are not correlated. The second group of 10 variables
is dependent on the first one and is constructed by an XOR-like
function

xk = sign(xi) · sign(x j) (19)

with 11 ≤ k ≤ 20 the variable from the second group to be
computed, 1 ≤ i ≤ 5 a variable of the first subgroup, and
6 ≤ j ≤ 10 a variable from the second subgroup. The results
for the Dual Gradient Flow can be seen in Fig. 10. Fig. 10(a)
shows an example component plane of Sprob dep computed
by (19). In Fig. 10(c), the results of the Dual Gradient Flow
method are depicted. The arrows are highly divergent in the
regions where the boundaries are. The grey arrows, denoting
M (Sprob dep), point away from these boundaries towards their
4 cluster centers, while the black arrows are almost uniform
over the map, with a small disturbance in the middle of the map
that was probably introduced during training. The difference
is visualized in Fig. 10(b), which shows the deviation of the
arrows. In the dark areas, the statistical relationship between
the two groups is evident, while the light areas correspond to
transitions. This is another example of a non-linear dependency
that cannot be captured by a linear correlation coefficient,
which is zero for pairs of variables from Sprob dep and Suniform.

6. Conclusion and future work

In this paper, we have described a visualization technique for
Self-Organizing Maps with gradient fields that are especially
aimed at professionals with engineering backgrounds. The
method can be displayed either as a flow diagram where arrows
point in the direction of the most likely cluster centers, or as an
equivalent that emphasizes at showing cluster boundaries. It has
a parameter that determines how much smoothing is applied to
the resulting visualization. We have also provided an extension
to simultaneously plot multiple groups of variables to show
the decomposition of the clustering structure in contributing
factors. We have also shown that this method can be used to
detect linear and non-linear dependencies between variables.

Future work will be directed towards efforts to cluster
variables for the dual visualization, such that this task can
be performed automatically without the need for explicit
user interaction. Another enhancement may be achieved by
integrating data density information in input space, as the
current model relies solely on the prototype vectors. A further
possible extension is the analysis and visualization of the
rate of change of the arrows, thus investigating the second
order differentiation of the feature space distances. Also, the
applicability of the vector field visualization to other related
mapping models is currently under investigation.

References

Aggarwal, C. C. (2003). Towards systematic design of distance functions for
data mining applications. In ACM SIGKDD international conference on
knowledge discovery and data mining (pp. 9–18). New York: ACM Press.

Bishop, C., Svensen, M., & Williams, C. (1997). Magnification factors for the
GTM algorithm. In Workshop on self-organizing maps (pp. 333–338).

Bishop, C., Svensen, M., & Williams, C. (1998). GTM: The generative topo
graphic mapping. Neural Computation, 10(1), 215–234.

Dittenbach, M., Rauber, A., & Merkl, D. (2002). Uncovering hierarchical
structure in data using the growing hierarchical self-organizing map.
Neurocomputing, 48(1–4), 199–216.

Fritzke, B. (1994). Growing cell structures — a self-organizing network for
unsupervised and supervised learning. Neural Networks, 7(9), 1441–1460.

Grinstein, G., Trutschl, M., & Cvek, U. (2001). High-dimensional
visualizations. In Data mining conference KDD workshop 2001 (pp. 7–19).
New York: ACM Press.

Hartigan, J. A., & Wong, M. A. (1979). A K-means clustering algorithm.
Applied Statistics, 28, 100–108.

Himberg, J. (1998). Enhancing SOM-based data visualization by linking
different data projections. In International symposium on intelligent data
engineering and learning.

Kaski, S., Kangas, J., & Kohonen, T. (1998). Bibliography of Self-Organizing
Map (SOM) papers: 1981–1997. Neural Computing Surveys, 1, 102–350.

922 G. Pölzlbauer et al. / Neural Networks 19 (2006) 911–922
Kaski, S., Nikkilä, J., & Kohonen, T. (2000). Methods for exploratory cluster
analysis. In International conference on advances in infrastructure for
electronic business, science, and education on the internet. Rome, Italy:
L’Aquila.

Kohonen, T. (2001). Self-organizing maps (3rd ed.). Berlin, Heidelberg:
Springer.

Lee, J., Lendasse, A., & Verleysen, M. (2004). Nonlinear projection
with curvilinear distances: Isomap versus curvilinear distance analysis.
Neurocomputing, 57, 49–76.

Martinetz, T., Berkovich, S., & Schulten, K. (1993). “Neural-gas” network
for vector quantization and its application to time-series prediction. IEEE
Transactions on Neural Networks, 4(4), 558–569.

Oja, M., Kaski, S., & Kohonen, T. (2001). Bibliography of Self-Organizing
Map (SOM) papers: 1998–2001 addendum. Neural Computing Surveys, 3,
1–156.

Pampalk, E., Rauber, A., & Merkl, D. (2002). Using smoothed data histograms
for cluster visualization in Self-Organizing Maps. In Proceedings of the
international conference on artificial neural networks (pp. 871–876).
Madrid, Spain: Springer.

Pölzlbauer, G., Dittenbach, M., & Rauber, A. (2005a). Gradient visualization
of grouped component planes on the som lattice. In M. Cottrell (Ed.),
Proceedings of the fifth workshop on self-organizing maps (pp. 331–338).

Pölzlbauer, G., Dittenbach, M., & Rauber, A. (2005b). A visualization
technique for Self-Organizing Maps with vector fields to obtain the cluster
structure at desired levels of detail. In Proceedings of the international joint
conference on neural networks (pp. 1558–1563). Montreal, Canada: IEEE
Computer Society.

Pölzlbauer, G., Rauber, A., & Dittenbach, M. (2005). Advanced visualization
techniques for Self-Organizing Maps with graph-based methods. In
D. Prokhorov (Ed.), Proceedings of the second international symposium
on neural networks (pp. 75–80). Chongqing, China: Springer-Verlag.

Sammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE
Transactions on Computers, C-18(5), 401–409.

Skupin, A. (2004). A picture from a thousand words. Computing in Science and
Engineering, 6(5), 84–88.
Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric
framework for nonlinear dimensionality reduction. Science, 290(5500),
2319–2323.

Tino, P., Nabney, I., & Sun, Y. (2001). Using directional curvatures to visualize
folding patterns of the GTM projection manifolds. In International
conference on artificial neural networks (pp. 421–428). Springer.

Torgerson, W. (1952). Multidimensional scaling: I. theory and method.
Psychometrika, 17, 401–419.

Ultsch, A. (1999). Data mining and knowledge discovery with emergent self-
organizing feature maps for multivariate time series. In E. Oja, & S. Kaski
(Eds.), Kohonen maps (pp. 33–46). Elsevier Science.

Ultsch, A. (2003a). Maps for the visualization of high-dimensional data spaces.
In Proceedings of the workshop on self-organizing maps (pp. 225–230).
Japan: Kyushu.

Ultsch, A. (2003b). U*-matrix: a tool to visualize clusters in high dimensional
data. Tech. rep. Department of Mathematics and Computer Science,
Philipps-University Marburg.

Ultsch, A., & Siemon, H. P. (1990). Kohonen’s self-organizing feature maps
for exploratory data analysis. In Proceedings of the international neural
net-work conference (pp. 305–308). Kluwer.

Vesanto, J. (1999). SOM-based data visualization methods. Intelligent Data
Analysis, 3(2), 111–126.

Vesanto, J., & Ahola, J. (1999). Hunting for correlations in data using the
Self-Organizing Map. In International ICSC congress on computational
intelligence methods and applications (pp. 279–285). ICSC Academic
Press.

Vesanto, J., & Alhoniemi, E. (2000). Clustering of the Self-Organizing Map.
IEEE Transactions on Neural Networks, 11(3), 586–600.

Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (1999). Self-
Organizing Map in matlab: The SOM toolbox. In Proceedings of the matlab
DSP conference 1999 (pp. 35–40).

Yin, H. (2002). ViSOM — a novel method for multivariate data projection
and structure visualisation. IEEE Transactions on Neural Networks, 13(1),
237–243.

Zangl, G., & Hannerer, J. (2003). Data mining: Applications in the petroleum
industry. Round Oak Publishing.

	Advanced visualization of Self-Organizing Maps with vector fields
	Introduction
	Related work
	Self-Organizing Maps and neighborhood kernels
	SOM visualization with vector fields
	Gradient Field Visualization
	Borderlines representation
	Extension to groups of component planes

	Experiments
	Effects of the neighborhood radius
	Smoothing sparse maps
	Dual gradient fields on petroleum engineering data
	Statistical dependencies between groups of variables

	Conclusion and future work
	References

