
Modular Development in Patent AI Space: A Case Study

Mahesh Maan
Data Science Team, GreyB

Mohali, India
mahesh@projectpq.ai

Sam Zellner
Project Lead, PQAI
Atlanta, USA

sam@projectpq.ai

Anirudh Sanutra
IP Solutions, GreyB

Mohali, India
anirudh@projectpq.ai

ABSTRACT
Numerous development efforts are underway that aim to apply
the recent advancements in the field of artificial intelligence to a
variety of patent-related tasks such as prior-art searching,
technology landscaping, patent classification, etc. In this paper,
we advocate for researchers to align their work with a modular
system of software components. We show how such alignment
will make it easier for researchers to prototype new systems,
upgrade existing systems, collaborate, and build upon each
other’s work. We also present such a system of modular
components that we created while developing PQAI, an AI-based
prior-art search platform.

KEYWORDS
Patent AI, Patent Retrieval, Prior Art Search, Open Source,
Modular Software Architecture

1 Introduction
As a result of the rapid advancements in the field of machine

learning, the prevalent optimism surrounding AI in general, and
the ongoing efforts in IP industry [1, 2, 3, 4, 5, 6] and academia [7,
8, 9, 10], we foresee the development of many AI-centered patent
data mining software platforms in the coming years. If the
current trend persists, the field of AI will continue to evolve
rapidly during this time. As a result, to stay relevant, these
platforms will need to continuously experiment with and adopt
the latest and best AI tools as they become available.

In this paper, we show that by designing modular
components, researchers involved in the development and
refinement of such platforms can ensure that their systems are
flexible enough to evolve quickly and versatile enough to
leverage a spectrum of AI technique. We advocate for more
researchers to consider fitting their work within a modular
system. This would enable the community of patent data mining
researchers to more easily collaborate and build upon each
other’s work.

We also present an example of such a modular system,
designed during the development of PQAI [11], an AI-based
prior-art search platform.

The structure of this paper is as follows: Section1 sets the
context of the paper. Section 2 highlights a number of existing
problems associated with the development of AI-centric patent-

data mining platforms (and which might become more critical in
future as these platforms continue to develop in isolation).
Section 3 describes how a common, open-source schema of
modular components could mitigate these problems. Section 4
delves into the details of the modular system used in PQAI and
describes some of its components. Section 5 presents few
examples that show such components could be interlinked to
build modular systems to target specific patent data mining
problems.

2 Problems
Currently, most research groups developing patent-AI

platforms work in isolation. This is imparting to a number of
inefficiencies in the development efforts and creating limitations
for the users of such tools too. We are highlighting them below:

1. Although each platforms has a unique proposition that
focuses on a specific AI-capability, to render it usable in the
form of a software tool, a number of ‘commodity’ software
components for handling patent data also need to be
developed. Such components include patent number parses,
patent data repository wrappers, patent reading interfaces,
exporting and reporting functions, etc. Each development
group has to spend considerable resources building
commodity components that do not add to their core value
proposition.

2. The fact that there is no standardization of patent-software
components makes it difficult for various groups to
collaborate, upgrade, license, or sell their components for
reuse by others. Even though some of the platforms make
few API services available, they are also mostly
incompatible with each other, making it difficult to merge
the data/functionalities of two systems.

3. The closed source implementation of most platforms means
that it is not feasible for users such as corporate IP teams
and law-firms, who would like to have a custom UI or some
custom functionality on top of what is available on the
platform by default.

4. Since most platforms do not provide access to their inner
components or APIs, the entry-effort for AI researchers
who want to explore and experiment with patent data (e.g.,



PATENTSEMTECH’21, July, 2021 M. Maan et al.

in universities) is high. They have to arrange their own
databases and create a base functionality layer as a pre-
requisite. This takes considerable time and effort.

3 Solution
To mitigate the problems described in the preceding section,

we propose a solution centered on development, dissemination,
and adoption of an open-source schema of components with
standardized interfaces and their reference implementations by
the research community working in the patent-AI space.

Our solution is inspired partly by few initiatives [12, 13, 14,
15] that facilitate modular and efficient development in
neighboring fields and partly by our own exploration of the
design space of a patent-AI system while developing a prior-art
search engine. Although modular development in patent
information retrieval has been attempted before [16, 17], in
practice, there is a general lack of open-source frameworks and
resources critical for driving industry-wide adoption and
efficiency.

We believe that the availability of such resources would help
researchers to develop experimental prototypes faster, upgrade
existing software platforms with ease, and smoothly build upon
each other’s work. These resources include:

1. An open-source schema of standardized software components:
This schema acts as a blueprint of a family of highly
customizable and frequently used software components that
can be inter-connected together like Lego pieces. These
components should be standard in the sense that they have
well-defined input-output characteristics, although the
schema imposes no restriction on their implementation.
Following such a schema can help in ensuring that
components created by groups completely isolated from
each other are still inter-compatible. This schema should be
defined at a high level to be able to accommodate a variety
of AI techniques (few examples are presented in next
section).

2. Open-source implementations of software components: Access
to a library of such components will enable researchers and
developers to avoid spending time creating their own ‘base
layer’ functionalities (such as standard searching and
filtering operations, patent number parsing, patent
rendering, data management, etc.) and reference
implementations for comparison. Instead, maximum effort
could then be invested in creating new and improved
components or building new capabilities by combining
existing components in new ways.

3. Remote API access to software components and datasets: API
access will facilitate and encourage small-scale development

and experimentation with patent data. This would be useful
for resource constrained efforts, such as where a small in-
house IP team can hire a freelancer developer to create a
lightweight dashboard for accessing and exploring patent
data of their own specific field, or where a small team of
students is carrying out a university project involving
patent data analysis. The API access would obviate the need
for such groups to set up a heavy system to get a little done.

4 Components
In this section, we present a non-exhaustive list of versatile

components from the PQAI library [11], which offer
functionalities frequently required in a range of patent data
mining operations. Under the PQAI initiative, the authors aim to
define a standardized schema of these components and release
their concrete implementations as open-source code.

For some of the components, we first describe their abstract
versions and then the patent-specific version. The abstract
version is unlikely to be used in real-world development, but
knowing its behavior helps in understanding the behavior of the
family of components that can be derived from it.

Patent Database: This is an instance of abstract component
Storage (described at the end of this list). Patent Database is a
special component in the sense that all components can be
configured to access it. A major benefit of this approach is that
components can pass around references within the Patent
Database (e.g., patent numbers) instead of patent data itself. This
keeps the component interfaces clean and lightweight.

Encoder: An encoder takes in an entity and returns its
representation. The input entities and output representations can
both take many forms, making this component very versatile.
For instance, one instantiation of an encoder can be in the form
of a Patent Vectorizer – which accepts a patent number (as
described earlier, all components can retrieve patent data given
the patent number) and returns a vector embedding in a high
dimensional space that corresponds to the given patent. A bag-
of-words encoder can be another example of this component.

Index: An index is a data structure optimized for searching
among entity representations. It differs from a Store in that it
may not necessarily be able to return the original representation.
It accepts a compatible query and returns a set of entity pointers.
A Patent Vector Index, for example, might accept a query vector
and return a set of patent number as top matches for the query.
Note that the Index accepts query representations and not raw
queries, therefore, it has to plugged into a suitable Encoder to
turn the raw query into a compatible representation.

Ranker: It accepts a set of entities and returns a list of the
same entities, the order of which is determined by a ranking
criterion. A Patent Ranker for instance, would accept a set of



Modular Development in Patent AI Space: A Case
Study PATENTSEMTECH’21, July, 2021

patents and a user query as input and orders those patents in
decreasing order of relevancy to the given query.

Classifier: A classifier associates one of a finite set of
predefined labels to a patent, where the labels have unique
meanings associated with them. A Patent Classifier for instance,
could take as input a set of patent numbers and associate, with
each patent number, a label, which may mean for example
whether this patent is related to solar cell technology or not.
Internally, classifiers can make use of configurable classifier
models, which can be initialized with inputs such as (patent-
number, label) pairs or a textual description.

Consolidator: A consolidator accepts a set of patents and
associates one of a finite set of arbitrary labels to each patent.
Essentially, it creates clusters of patents where each cluster’s
patents have some common characteristics. A Technology
Consolidator, for instance, can accept a set of patent numbers and
then group them into, say, 3 groups, depending on the
technologies they relate to.

Filter: A filter accepts a set of entities and depending on a
filter criterion returns a subset of them. A Patent Filter, for
instance, would filter out patents satisfying a condition such as a
publication date criterion. Filters can be cascaded to create a
Filter Sequence. For instance, a date period filter can be created by
cascading a before-date filter and an after-date filter.

Sorter: The input-output characteristics of a sorter are similar
to a ranker but in its output, only the relative positions of the
entities matter. A Patent Sorter can, for instance, accept a list of
patent numbers and arrange them such that any patent in the list
is succeeded by the most similar patent to it in the rest of the list.
Such a sorter can be useful during a manual review of patents
(all related patents come in sequence and the reviewer can make
use of insights still available in their short term memory).

Patent Number Parser: It accepts plain text as input, then
detects and extracts any patent numbers in it, translates them
into a standard format (e.g., by truncating or adding zeros) and
then outputs a list of patent numbers that can be directly
inputted to the Patent Database component. This component,
when used at the boundary of a patent data mining system, can
eliminate all issues that arise due to patent number format
mismatching.

Storage is an abstract wrapper around as a data source. It
stores entities that are all of the same type but other than this, it
makes no assumption about how the data is stored (e.g. whether
it is stored in a local database, in the primary memory, or on a
remote server). A Storage component performs two operations:
it saves and retrieves entities. In the saving operation, it accepts
an entity and returns its entity identifier. Retrieval operation is
the opposite of saving operation - an entity is returned in
response to a supplied identifier. Storages can be configured to
be read-only too.

5 Exemplary Systems
In this section we show few examples to demonstrate how

the components described in the last section can be
interconnected to form systems that carry out specific patent-
related tasks.

Patent search engine: The input here is a user query and
possibly one or more filters (such as date restrictions) and the
output is a ranked list of patents. The following diagram shows a
possible implementation using standard components:

Figure 1: A patent search engine designed with standard
components

Technology monitoring system: The input here is a
specification of a technology area and a time period of interest
and the output is a set of recent patents and published
applications. A generic, re-configurable classifier is used here,
which uses a textual description of the technology or a white-list
of patents to adjust its operation (e.g., by training an internal ML
model). The diagram below shows a possible implementation
using standard components:

Figure 2: A technology monitoring system designed with
standard components

Technology landscaping: The output of technology
landscaping studies, unlike the preceding two examples, is much
more complex than a list of patents. A typical output, however,
can be broken down in the form of a number of insights that are



PATENTSEMTECH’21, July, 2021 M. Maan et al.

reached by manually analyzing the patent data, typically
through charts on a dashboard. Some of these charts are quite
basic, such as patent filing trend over the years. Others are more
sophisticated, such as a heat-map of patent portfolio sizes held
by the major players in a number of technology sub-domains.
Most of these charts, irrespective of the complexity of the
underlying data, plot two categorical variables. The data for
these charts can therefore, be arrived at by making use of two
consolidators, each of which cluster the data points into discrete
clusters which correspond to the plotted categories:

Figure 3: Part of a technology landscaping system designed
with standard components

6 Conclusions and Future Work
We showed how the ongoing and future software

development efforts in the patent-AI space can be greatly
facilitated by aligning the development with a schema of
modular and highly-customizable software components.
Through examples we showed how the components in such a
schema can be interconnected like Lego bricks to create varied
patent data mining systems optimized for different tasks.
Following such a schema will enable faster prototyping,
smoother upgrades, and easier collaboration among research
groups. We therefore encourage researchers to consider fitting
their work in a common modular system to speed up research
and development in the patent-AI space.

In future work, we aim to define and release such a modular
system and open-source implementations of its constituent
components under the PQAI initiative. We invite industry
experts and researchers for collaboration in defining and
standardizing this system.

REFERENCES
[1] IPRALLY TECHNOLOGIES LTD, 2021. Patent search done right.

https://www.iprally.com/
[2] AMPLIFIED, 2020. Better prior art. Faster. https://www.amplified.ai/
[3] SIMILARI, 2020. Supercharge your IP. https://similari.com/
[4] INQUARTIK CORPORATION, 2021. Find patents with ease.

https://www.inquartik.com/patentcloud/patent-search/

[5] THREE10 SOLUTIONS, INC. 2020. The End of Keyword Searching.
https://www.dorothyai.com/platform

[6] CINTIAN, 2020. Welcome to the Patent Data Revolution.
https://www.cintian.ai/

[7] Helmers, L., Horn, F., Biegler, F., Oppermann, T. and Müller, K., 2019.
Automating the search for a patent’s prior art with a full text similarity search.
PLOS ONE, 14(3), p.e0212103.

[8] Li, S., Hu, J., Cui, Y. and Hu, J., 2018. DeepPatent: patent classification with
convolutional neural networks and word embedding. Scientometrics, 117(2),
pp.721-744.

[9] Lu, Y., Xiong, X., Zhang, W., Liu, J. and Zhao, R., 2020. Research on
classification and similarity of patent citation based on deep learning.
Scientometrics, 123(2), pp.813-839.

[10] Sarica, S., Song, B., Low, E. and Luo, J., 2019. Engineering Knowledge Graph
for Keyword Discovery in Patent Search. Proceedings of the Design Society:
International Conference on Engineering Design, 1(1), pp.2249-2258.

[11] PROJECT PQAI, 2020. Prior-Art Search for Everyone. https://projectpq.ai/
[12] Guo, J., Fan, Y., Ji, X. and Cheng, X., 2019. MatchZoo. Proceedings of the 42nd

International ACM SIGIR Conference on Research and Development in
Information Retrieval.

[13] HUGGING FACE, 2021. The AI community building the future.
https://huggingface.co/

[14] EXPLOSION, 2021. Industrial-Strength Natural Language Processing.
https://spacy.io/

[15] APACHE FOUNDATION, 2013. Apache UIMA. https://uima.apache.org/
[16] Klenner, A., Bergmann, S., Zimmermann, M. and Romberg, M., 2012. Large

scale chemical patent mining with UIMA and UNICORE. Journal of
Cheminformatics, 4(S1).

[17] Krishna, A., Feldman, B., Wolf. J, Gabel, G., Beliveau, S., Beach, T., 2016.
Examiner Assisted Automated Patents Search. The 2016 AAAI Fall
Symposium Series, Technical Report FS-16-02


