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ABSTRACT
Domain-specific contextualized languagemodels have demonstrated
substantial effectiveness gains for domain-specific downstream
tasks, like similarity matching, entity recognition or information
retrieval. However successfully applying such models in highly
specific language domains requires domain adaptation of the pre-
trained models. In this paper we propose the empirically motivated
Linguistically Informed Masking (LIM) method to focus domain-
adaptative pre-training on the linguistic patterns of patents, which
use a highly technical sublanguage. We quantify the relevant dif-
ferences between patent, scientific and general-purpose language
and demonstrate for two different language models (BERT and
SciBERT) that domain adaptation with LIM leads to systematically
improved representations by evaluating the performance of the
domain-adapted representations of patent language on two inde-
pendent downstream tasks, the IPC classification and similarity
matching. We demonstrate the impact of balancing the learning
from different information sources during domain adaptation for
the patent domain. We make the source code as well as the domain-
adaptive pre-trained patent language models publicly available at
https://github.com/sophiaalthammer/patent-lim.

CCS CONCEPTS
• Information systems→Document representation;Language
models.
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1 INTRODUCTION
Large scale language models, pre-trained on corpora of general
purpose language [7], provide effective representations for text
documents, which improve the performance on a variety of down-
stream tasks including information retrieval, information extraction
and similarity matching [5, 18, 32]. The representations of contex-
tualized language models are used in production systems in the
web and news domains to include semantic knowledge for solving
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tasks based on text input like search or automated classification
[4, 31].

In this paper we propose a novel domain-adaption linguistically
informed masking pre-training method for BERT-style language
models. We show its suitability for the patent domain and demon-
strate its effectiveness for representation learning on patent lan-
guage. We publish our BERT-based language model pre-trained on
patent language data to make our work readily available for the
community.

The suitability of the representations with respect to a given
downstream task relies on the assumption that the language of
the documents of that downstream task comes from the same
or similar distribution as data of the language model. Otherwise
domain-adaptive pre-training becomes necessary, as the further
the language of the downstream task is from the distribution of the
pre-training language, the less relevant information is encoded in
the representations [12, 13]. Therefore we investigate in this paper:

RQ1 Which BERT-like pre-trained language model is best suited
to representing patent language?

We compare the language models BERT [7] (pre-trained on gen-
eral purpose language) and SciBERT [5] (pre-trained on scientific
language for representing patent language). We perform domain-
adaptive pretraining with both models and evaluate the resulting
representations on two independent patent-related downstream
tasks: IPC classification and similarity matching. Here we find that
the downstream task performance of the SciBERT based repre-
sentations outperforms the BERT-based representations for both
patent-related tasks. Furthermore we reason that this is due to the
more fine-grained tokenization of the patent language by the Sci-
BERT model than by the BERT models’ tokenization.
Patent language contains linguistic patterns which differ from gen-
eral purpose or scientific language [33] and is characterised by the
frequent use of technical terms and novel multi-word expressions,
as well as long sentences, chained conjunctions and large noun
phrases, as shown in Figure 1. In order to take these linguistic
characteristics into account, we propose the domain-adaptive pre-
training scheme for BERT-like language models: linguistically
informed masking. Linguistically informed masking shifts the
masking probabilities in domain-adaptive pre-training towards the
highly informative multi-word terms in patent language. As multi-
word terms are contained in the noun chunks, the degree of shifting
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What is claimed is: 1. A hydraulic regeneration deactivation
valve to react to a pressure and to deactivation regeneration of a

hydraulic cylinder,...

Figure 1: An example of a patent claim

the masking towards the multi-word terms is here controlled with
a noun chunk masking probability 𝑝𝑛𝑐 . We investigate:
RQ2 How does domain-adative pre-training with linguistically

informed masking influence the representations of patent
language?

For BERT and SciBERTwe compare domain-adaptive pre-training
with and without linguistically informed masking with shifting the
masking to 100% and to 75% to the noun chunks. In order to eval-
uate the effectiveness of the different representations for patent
language, we evaluate and compare them for the two independent
downstream tasks of IPC classification and similarity matching.
Here we find that linguistically informed masking does improve
the overall downstream performance, thus we reason that shifting
the masking probabilities towards the noun chunks improves the
representations of patent language. Furthermore we investigate the
degree of shifting the masking probability 𝑝𝑛𝑐 towards the noun
chunks.

Our contributions are as follows:
• We investigate domain adaptive pre-training of a general
purpose language model (BERT) and of a scientific language
model (SciBERT) for representing patent language and find
that SciBERT is more suitable to represent patent language.
We investigate two factors for that: the language pre-training
corpus as well as the tokenization

• We propose linguistically informed masking for domain-
adaptive pre-training for patent language and demonstrate
effectiveness gains with representations of patent language
learned with linguistically informed masking for IPC classi-
fication and similarity matching

• We make the source code as well as the domain-adapted
pre-trained language models available at
https://github.com/sophiaalthammer/patent-lim

2 RELATEDWORK
Representation learning. Learning general word representations

continues to be an active research area, from word-level represen-
tations [30, 35] up to pretrained language models [8, 15, 36, 38]. In
particular the BERT language model [8] delivers generally applica-
ble, syntactically and semantically informative embeddings which
have advanced the state-of-the-art performance on a variety of dif-
ferent downstream tasks. The extensive and varied further research
results based on the BERTmodel [16, 20, 26, 42] show the generality
and flexibility of the representations. Sun et al. [41, 42] use entity-
level and phrase-level masking to achieve state-of-the-art results
on Chinese. Joshi et al. [16] explore the effects of different static
masking schemes for the BERT pre-training and find that random
span masking is the best for learning general-purpose language.

Domain adaptation of language models. There is a suite of BERT-
like domain-specific models which have been fine tuned for, e.g., the

social media [13], biomedical [22], clinical [1], legal [6] or scientific
domains [5]. They show that the domain adaptive fine-tuning on the
same language modelling tasks already leads to more informative
representations of the respective domain and therefore to better
performance on downstream tasks. Beltagy et al. [5] demonstrate by
training a BERT language model from scratch on scientific language
and with a trained, scientific vocabulary that the suitability of the
tokenization to the domain language is an important parameter for
good representations of that language. However Gururangan et al.
[12] demonstrate that domain-adaptive pre-training is crucial for
specific domains and for the performance on downstream tasks.
Hofstätter et al. [14] demonstrate the use of retrofitting [11] for
Word2Vec [30] patent embeddings for patent retrieval.

Natural language processing in the patent domain. The use of
machine learning and deep learning methods for patent analysis
is a vibrant research area [4, 18] with application in technology
forecasting, patent retrieval [2, 37], patent text generation [23] or
litigation analysis. There has been much research on the patent do-
main language which shows that the sections in patents constitute
different genres depending on their legal or technical purpose [40].
Furthermore the vocabulary of patent language is highly specific
[27, 33] and contains special multi-word terms which are novel con-
structions from commonly used words and which are characteristic
of patent language, as in Figure 1 [9, 45]. The citations of patents
are a frequent subject of research and they are used to explore the
similarity of cited patents [25, 28, 39]. The classification of patents
with the IPC tags, which determine a hierarchical topic category of
the patent, is a well known downstream task [21, 24]. The manual
curation of patent metadata by the patent offices provides abundant
labelled data for NLP research, however the tasks of IPC classifica-
tion and similarity matching can not yet be considered solved, and
thus are sufficiently difficult tasks for comparing the capabilities of
representations for patent language.

3 LINGUISTICALLY INFORMED MASKING
Here we motivate the domain adaptive pre-training method of
linguistically informed masking for learning patent representations
and we define and introduce linguistically informed masking for
BERT-like language models.

3.1 Linguistic motivation
Our goal is to learn better language representations for the patent
domain. As the language models which are the subject of our re-
search are pre-trained on a different language domain, we aim to
quantify the difference between the pre-training language and the
target language, here patent language, in terms of their linguistic
patterns. Therefore we examine the general-purpose and scientific
language on which BERT and SciBERT are pre-trained, respectively,
as these models will serve as pre-trained language models which
we adapt to patent language.

One of the main distinct characteristics of patent language is the
use of constructed multi-word terms [33] such as “a disk-shaped
suspension-type insulator” or “a non-transitory computer-readable
medium”. These multi-word terms are contained in noun chunks,
therefore we analyze the length and appearance of noun chunks
in patent language compared to general-purpose and scientific
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Figure 2: Distribution of noun chunk length in patent and
Semantic Scholar abstracts and Wikipedia: patent language
contains on average longer noun chunks with domain spe-
cific information signals

language. As representatives from each language domain we choose
a sample of 600 articles from the Wikitext raw training dataset [29]
and 1, 000 abstracts from the Semantic Scholar research corpus [3],
which correspond to the pre-training data of BERT and SciBERT.

We identify the noun chunks using the Spacy natural language
toolkit1 after removing tabs and multiple whitespaces as well as
mathematical formulas from the raw text. We remove noun chunks
which are longer than 10 words as we see that these cases are
enumerations when analyzing the noun chunks.

Figure 2 shows the distribution of noun chunk length of the
different language domains, with the average length in dashed ver-
tical lines. We observe a significant difference of the distribution
of the noun chunk length in the patent language (mean: 2.73; sd:
1.27) compared to general-purpose (2.21;1.25) or scientific language
(2.37;1.36) as there are more long noun chunks in patent language
(K-S test: 𝑝 < .001 for all three language combinations). Therefore
we conclude that patent language contains longer noun chunks
than general-purpose or scientific language and the longer noun
chunks in patent language are constructed using novel combina-
tions of common nouns. Consequently the BERT and SciBERT
models are not trained to generate optimal representations of these
noun chunks.

Considering that the noun chunks contain domain-specific in-
formation signals in the form of multi-word-terms and technical
terms [33], this motivates us to focus on learning the linguistic
peculiarities of the patent domain contained in the noun chunks
explicitly during domain-adaptative fine-tuning. Hence we propose
linguistically informed masking for domain-adaptive fine-tuning
of BERT-like language models.

1https://github.com/explosion/spaCy/

Wikipedia USPTO13M

𝑝 (𝑦 𝑗𝑘 = 1) 0.499 0.507
𝑝 (𝑦 𝑗𝑘 = 0) 0.501 0.493

Table 1: Probability that a given token 𝑘 in sequence 𝑗 is in
a noun chunk for two datasets

3.2 Masked Language Modelling (MLM)
The BERT language model [8] is designed to learn bidirectional
representations for language and is jointly pre-trained on the tasks
of masked language modelling (MLM) and next sentence prediction
(NSP), with two different additional layers based on the output of
its transformer network [44]. In the next sentence prediction task
the model is given two sentences of a text and it has to predict if the
second sentence is the next sentence in the original text. In masked
language modelling 15% of the tokens in each sequence are masked
out and the model predicts the true token, which is inspired by
the Cloze task [43]. Solving these pre-training tasks requires the
representations to capture syntactic and semantic characteristics
of the language and therefore this task enables the language model
to learn linguistic representations.
In this section we describe the novel domain-adaptive pre-training
method of linguistically informed masking (LIM) for BERT-like lan-
guage models, which adapts the MLM task in order to focus the
model towards learning specific linguistic information of the do-
main.
We first give a formal definition of the MLM task. Let 𝐵 be the
number of training sequences consisting of encoded sentences in
one training batch and let 𝑚𝑎𝑥_𝑝𝑟𝑒𝑑 be the number of masked
positions where the original token needs to be predicted. Then the
loss 𝐿 of the MLM task is defined as cross-entropy between the
predictions 𝑝_𝑚𝑙𝑚𝑖 𝑗 and the label 𝑙_𝑚𝑙𝑚𝑖 𝑗 as

𝐿 :=

𝐵∑
𝑗=1

𝑚𝑎𝑥_𝑝𝑟𝑒𝑑∑
𝑖=1

−(log(𝑝_𝑚𝑙𝑚𝑖 𝑗 )𝑇 𝑙_𝑚𝑙𝑚𝑖 𝑗 )𝑤𝑖 𝑗

𝐵∑
𝑗=1

𝑚𝑎𝑥_𝑝𝑟𝑒𝑑∑
𝑖=1

𝑤𝑖 𝑗

for each position 𝑖 and for each sequence 𝑗 . 𝑤𝑖 𝑗 is a weight for a
padding mechanism in case fewer than 𝑚𝑎𝑥_𝑝𝑟𝑒𝑑 positions are
masked in the sequence. The predictions 𝑝_𝑚𝑙𝑚𝑖 𝑗 ∈ R𝑉 are a
probability distribution over the whole vocabulary with size 𝑉 and
the label is a one-hot encoding of the masked token. The predictions
𝑝_𝑚𝑙𝑚𝑖 𝑗 are the output of the MLM layer and are defined as

𝑝_𝑚𝑙𝑚𝑖 𝑗 := 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑚𝑙𝑚 𝑋𝑖 𝑗 + 𝑏𝑚𝑙𝑚)

where𝑊𝑚𝑙𝑚 ∈ R𝑉×𝐻 and 𝑏𝑚𝑙𝑚 ∈ R𝑉 are the weights and biases of
the MLM output layer and𝑋𝑖 𝑗 ∈ R𝐻 is the final hidden vector of the
masked position 𝑖 with dimensionality 𝐻 . For a sequence 𝑗 we get
the final hidden vectors of the masked positions𝑋 𝑗 ∈ R𝐻×𝑚𝑎𝑥_𝑝𝑟𝑒𝑑

with

𝑋 𝑗 = 𝑇𝑗𝑀𝑗 ∀𝑗 = 1, .., 𝐵.

Here 𝑇𝑗 ∈ R𝐻×𝑆 are the final outputs of sequence 𝑗 of the BERT
model with the input sequence length 𝑆 and the masking matrix
𝑀𝑗 ∈ {0, 1}𝑆×𝑚𝑎𝑥_𝑝𝑟𝑒𝑑 , which shows the masked positions. The
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masking matrix𝑀 𝑗 for a sequence 𝑗 consists of one-hot vectors for
each masked position 𝑛 with 𝑛 = 1, ..,𝑚𝑎𝑥_𝑝𝑟𝑒𝑑 :

𝑀
𝑗

𝑘𝑛
:=

{
1, if token 𝑘 is masked in 𝑛th position
0, otherwise.

3.3 Linguistically informed masking
pre-training method (LIM)

With the linguistically informed masking method we aim to give
the model the flexibility to focus on learning specific linguistic
characteristics of the language, namely the noun chunks in the
patent domain. Therefore we propose the linguistically informed
masking method where 𝑝𝑛𝑐 ∈ [0, 1] of the masked tokens belong to
a noun chunk and 1 − 𝑝𝑛𝑐 to a non-noun chunk. We realize this by
modifying the masking matrix𝑀 𝑗 ∈ {0, 1}𝑆×𝑚𝑎𝑥_𝑝𝑟𝑒𝑑 of sequence
𝑗 depending on

𝑦 𝑗𝑘 :=

{
1, if token 𝑘 belongs to a noun chunk
0, otherwise

which indicates whether token 𝑘 of sequence 𝑗 belongs to a noun
chunk or not. The LIM masking matrix �̂� 𝑗 ∈ {0, 1}𝑆×𝑚𝑎𝑥_𝑝𝑟𝑒𝑑 is
constructed so that it contains with a probability of 𝑝𝑛𝑐 onlymasked
tokens 𝑘 for which 𝑦 𝑗𝑘 = 1, and with a probability of 1 − 𝑝𝑛𝑐 only
masked tokens for which 𝑦 𝑗𝑘 = 0. With this construction, in 𝑝𝑛𝑐 of
the sequences only tokens that belong to a noun chunk are masked,
and in 1 − 𝑝𝑛𝑐 of the sequences only tokens of non-noun chunks
are masked.
In order to examine the differences of the pre-training methods
of MLM and LIM we analyze the overall noun chunk distribution
for tokens in the Wikitext raw dataset [29], which corresponds to
the pre-training domain of the BERT model, and the USPTO13M
patent dataset, which is shown in Table 1. Because masking in
MLM is random and around half of the tokens in both datasets
are part of noun chunks, around half of the masked positions will
belong to a noun chunk and half will not. This means that with
MLM fine-tuning on patent documents, the influence of tokens in
noun chunks would be approximately equally weighted, despite the
importance of noun chunks in patent language. With LIM however
we can control the influence of noun chunks via the parameter 𝑝𝑛𝑐 .
To increase this influence the noun chunk masking probability must
be 𝑝𝑛𝑐 > 𝑝 (𝑦 𝑗𝑘 = 1), which means that we choose 𝑝𝑛𝑐 > 0.507
for the patent domain. With 𝑝𝑛𝑐 = 0.507 LIM reduces to MLM as
a special case, as the probability of masking out a noun chunk in
LIM is then the same as in MLM.

We examine the impact of LIM compared toMLMwith the choice
of 𝑝𝑛𝑐 = 0.75. The probability of masking the token 𝑘 , which is in a
noun chunk in sequence 𝑗 , with the MLM task in the patent domain
is

𝑝 (𝑀 𝑗

𝑘𝑛
= 1|𝑦 𝑗𝑘 = 1) =

𝑝 (𝑀 𝑗

𝑘𝑛
= 1 ∧ 𝑦 𝑗𝑘 = 1)

𝑝 (𝑦 𝑗𝑘 = 1)

=
𝑝 (𝑀 𝑗

𝑘𝑛
= 1) ∗ 𝑝 (𝑦 𝑗𝑘 = 1)
𝑝 (𝑦 𝑗𝑘 = 1) = 0.15

as the masking is independent of the noun chunks. For LIM the
probability of masking a noun chunk token is

𝑝 (�̂� 𝑗

𝑘𝑛
= 1|𝑦 𝑗𝑘 = 1) =

𝑝 (�̂� 𝑗

𝑘𝑛
= 1 ∧ 𝑦 𝑗𝑘 = 1)

𝑝 (𝑦 𝑗𝑘 = 1)

=
𝑝 (�̂� 𝑗

𝑘𝑛
= 1) ∗ 𝑝𝑛𝑐

𝑝 (𝑦 𝑗𝑘 = 1) =
0.15 ∗ 0.75

0.507
= 0.22

This shows how we influence the probability of masking a token
𝑘 , which is in a noun chunk, with the parameter 𝑝𝑛𝑐 . With 𝑝𝑛𝑐 =

0.507 LIM reduces to MLM as a special case. In summary, the LIM
parameter 𝑝𝑛𝑐 controls the probability of masking noun chunk
tokens.

4 EXPERIMENT DESIGN
Our experiments investigate which BERT-like pre-trained language
model is best suited to represent patent language (RQ1) as well as
the influence of domain-adaptive pre-training with linguistically
informed masking for the representations of patent language (RQ2).
To evaluate these questions we do domain-adaptive pre-training on
patent language with BERT and SciBERT with either the MLM or
LIM pre-training method. We compare the vanilla model without
domain-adaptive pre-training, the MLM and LIM domain-adaptive
pre-training for BERT and SciBERT for representing patent lan-
guage. To assess the quality of the resulting representations we
evaluate the performance of the representations for the two inde-
pendent, patent-related downstream tasks of IPC classification and
similarity matching.2

4.1 Data
We leverage the patent corpus from the Google Patents Public
Datasets 3 on BigQuery with the query in Appendix A.1. The cor-
pus, which we will refer to as USPTO13M, consists of 13 million
granted utility patents in English with title, abstract, claims and
description. The title contains on average 8 words, the abstract
112 words, the claims 1067 and the descriptions 9539 words. We
also retrieve metadata like the filing date and the IPC tags, which
are a consistent, hierarchical topic categorization of the patents
and which are assigned by patent examiners [46]. Our corpus con-
tains 738 different IPC tags on the subclass level of the tags. The
patents also contain citations referring to other previously pub-
lished patents which the current patent is related to. Of primary
importance are category “X” citations, which encode close techni-
cal relatedness. Category “X” is applicable “where a document is
such that when taken alone, a claimed invention cannot be consid-
ered novel” [10]. We will use the citations of a patents as similarity
indication of two patents.

4.2 Domain adaptive pre-training on patent
language

Following the definition of Pan and Yang [34] for transfer learn-
ing, we define the domain adaptive pre-training from the source
domain Wikipedia or the source domain of scientific language with
the source tasks of MLM and NSP to the target domain of patent
language with the target task of MLM or LIM and NSP. Here we

2We show the tasks’ independence in Appendix A.3.
3https://console.cloud.google.com/bigquery?p=patents-public-data
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take the unsupervised domain-adaptive pre-training dataset as the
title, abstract, claims and descriptions of 320𝑘 patent documents
from the USPTO13M corpus containing 3.3 billion words, similar to
the size of the BERT and SciBERT pre-training datasets. We remove
tabs, multiple whitespaces and mathematical formulas. We choose
the 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 cased model with 110𝑀 parameters as initialisation
to match the size of the SciBERT model. As the learning rate is a
sensitive parameter that is data- and task-specific, we perform a
grid search over 1 ∗ 10−4, 5 ∗ 10−5, 2 ∗ 10−5, 1 ∗ 10−5 as learning
rate candidates following Beltagy et al. [5] and Alsentzer et al. [1]
and choose the optimal learning rate for each configuration. We
choose the same hyperparameters as were used in the pre-training
phase for each model. The hyperparameters, including learning
rates, can be found in Appendix A.2. We carry out domain adap-
tive pre-training of the BERT and SciBERT model for 100𝑘 steps
following Lee et al. [22], which equates to one epoch of the domain
adaptive pre-training dataset.
For LIM domain adaptive pre-training we consider two values for
our domain-dependent hyperparameter 𝑝𝑛𝑐 ∈ {0.75, 1.0} as our
analysis in section 3.3 has shown that 𝑝𝑛𝑐 = 0.507 reduces to MLM
pre-training and as we want to investigate the optimal weighting
of LIM hyperparameter 𝑝𝑛𝑐 .

4.3 Fine-tuning on patent-related downstream
tasks

Our goal is to compare the performances of the different repre-
sentations on the downstream tasks rather than to maximise the
absolute performances. As two independent patent-related down-
stream tasks for evaluating the quality of the representations of
patent language we choose IPC classification and similarity match-
ing of two given patents. As baselines we choose the BERT and
SciBERT vanilla models which are not domain adapted to the patent
domain, as well as a convolutional neural network for sentence
classification [17] based on word2vec representations [30].

Following the definition of Pan and Yang [34] the vanilla BERT
model is transferred from the source domain Wikipedia and the
vanilla SciBERT model is transferred from the scientific source do-
main, to the patent domain with the target tasks of IPC classification
or similarity matching. Therefore the transfer learning problem
involves both a domain and a task shift.

For the BERT model which is fine-tuned on the patent domain
with the MLM task the transfer is defined as only a task adaptation
from the source task of MLM or LIM and NSP to the target task of
IPC classification or similarity matching on the same domain of
patents. The fine-tuning of the BERT LIM0.75 and the LIM1 con-
figuration are defined analogously for the SciBERT-based models.
Overall we fine-tune and evaluate 8 different pre-trained models
on the IPC classification and the similarity matching tasks.

4.3.1 IPC classification. For the IPC classification we use a subset
of up to 480𝑘 labelled patent claims of the USPTO13M dataset for
training, similar to Lee and Hsiang [21], and an test set of 150𝑘
patent claims, containing in total 738 different IPC [46] tags on the
subclass level. We restrict our classification input to the claims as
the input size of the model is limited and, as [21] have demonstrated,
the text of the claims is sufficient to predict the IPC tags.

The patents have 1.73 IPC tags on average. As the document
class label we use the single most frequent tag after truncating all
tags to the subclass level. We remove tabs, multiple whitespace
and mathematical formulas before passing the text to the BERT
model for fine-tuning. For the IPC classification fine-tuning we
choose the same hyperparameters as in the domain adaptive pre-
training except the learning rate. For the learning rate we perform
a grid search and choose the same learning rate of 5 ∗ 10−5 for all
configurations (see Appendix A.4). We fine-tune in total for 30𝑘
steps, which corresponds to one epoch for 480𝑘 labelled samples,
and we evaluate the models every 10𝑘 steps.

In order to analyze the impact of the language representations
for downstream tasks with smaller number of labelled training
data, we finetune the models on a training dataset size of 160𝑘 and
320𝑘 and the whole 480𝑘 samples and analyze the performance
compared to the baseline. Detailed results for the different dataset
sizes for the BERT model as well as for the SciBERT model can be
found in Table 2. Here the baseline performance is compared to the
MLM or LIM domain adapted BERT and SciBERT model.

4.3.2 Similarity matching. For the similarity matching task we
retrieve pairs of patents which stand in an “X” citation relation,
which we interpret as indicating similarity between the two doc-
uments. We denote these pairs of patent which cite each other as
positive pair. In order to fine-tune the models on similarity match-
ing, we also need negative pairs of patent which do not stand in a
citation relation. As the citations of a given patent do not include
all possible true citable patents, but rather only those which the
patent examiners choose, we must construct negative citation pairs.
This construction is done as follows: To a given patent document,
which comes from the positive citation pairs, we sample randomly
a negative patent document from the positive patent pairs which
stand in a citation relation with another patent document. If the
pair turns out to be the same document, we drop it and also positive
citations pairs are dropped. We choose a training dataset size up
of 12𝑘 citation pairs with 50.1% positive and 49.9% negative pairs
represented by their claims. The test dataset contains 16, 500 pairs,
49.9% positive and 50.1% negative ones. We remove tabs, multi-
ple whitespaces and mathematical formulas from the text before
passing it to the BERT model.

The grid search for the BERT vanilla model indicates that 2∗10−5
is themost suitable learning rate for fine-tuning on similaritymatch-
ing and we choose this rate for all configurations (see Appendix
A.5).

In order to analyze the impact of the language representations
for downstream tasks with smaller number of labelled training data,
we finetune the different configurations for one epoch on a training
dataset size of 2𝑘 , 8𝑘 and 12𝑘 samples and analyze the performance
compared to the baseline.

The results of the evaluation for the similarity matching are
provided in Table 3 for the BERT-based and for the SciBERT-based
models.

5 RESULTS
In the following we examine the downstream task evaluation results
regarding our research questions.
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IPC classification Accuracy Precision Recall F1 Score

160k 320k 160k 320k 160k 320k 160k 320k

Word2Vec + CNN 0.2600 0.2900 0.2600 0.2700 0.2600 0.2900 0.1900 0.2100

BERT

VanillaBERT 0.5413 0.5779 0.5244 0.5663 0.5413 0.5779 0.5163 0.5605

Domain adapted

𝑝𝑛𝑐 = 0.50 (MLM) 0.5503† 0.5813† 0.5275† 0.5744† 0.550† 0.5813† 0.5250† 0.5651†

𝑝𝑛𝑐 = 0.75 (LIM0.75, ours) 0.5531† 0.5820† 0.5296† 0.5703† 0.5531† 0.5820† 0.5279† 0.5647†
𝑝𝑛𝑐 = 1.00 (LIM1, ours) 0.5472† 0.5790† 0.5227† 0.5700† 0.5472† 0.5790† 0.5218† 0.5614†

SciBERT

VanillaSciBERT 0.5604 0.5864 0.5422 0.5782 0.5604 0.5864 0.5356 0.5709

Domain adapted

𝑝𝑛𝑐 = 0.50 (MLM) 0.5636† 0.5909† 0.5414† 0.5800† 0.5636† 0.5909† 0.5386† 0.5738†
𝑝𝑛𝑐 = 0.75 (LIM0.75, ours) 0.5693† 0.5927† 0.5486† 0.5821† 0.5693† 0.5927† 0.5449† 0.5760†
𝑝𝑛𝑐 = 1.00 (LIM1, ours) 0.5626† 0.5955† 0.5493† 0.5840† 0.5626† 0.5955† 0.5420† 0.5778†

Table 2: Accuracy, precision, recall and F1-score of IPC classification on the test set for BERT and SciBERT without and with
domain-adaptive pre-training with MLM or LIM (𝑝𝑛𝑐 = 0.75/1.00), † indicates statistically significant difference to Vanilla
baseline, 𝛼 = 0.05

Similarity matching Accuracy Precision Recall F1 Score

4k 12k 4k 12k 4k 12k 4k 12k

Word2Vec + CNN 0.5016 0.5027 0.5086 0.5104 0.5016 0.5027 0.3646 0.3812

BERT

VanillaBERT 0.8334 0.8444 0.8545 0.8562 0.8334 0.8444 0.8304 0.8428

Domain adapted

𝑝𝑛𝑐 = 0.50 (MLM) 0.8519† 0.8639† 0.8641† 0.8746† 0.8519† 0.8639† 0.8503† 0.8627†
𝑝𝑛𝑐 = 0.75 (LIM0.75, ours) 0.8574† 0.8669† 0.8613† 0.8812† 0.8574† 0.8669† 0.8568† 0.8654†

𝑝𝑛𝑐 = 1.00 (LIM1, ours) 0.8484† 0.8599† 0.8551† 0.8724† 0.8484† 0.8599† 0.8474† 0.8584†

SciBERT

VanillaSciBERT 0.8294 0.8489 0.8314 0.8599 0.8294 0.8489 0.8289 0.8474

Domain adapted

𝑝𝑛𝑐 = 0.50 (MLM) 0.8524† 0.8684† 0.8733† 0.8808† 0.8524† 0.8684† 0.8499† 0.8671†
𝑝𝑛𝑐 = 0.75 (LIM0.75, ours) 0.8614† 0.8689† 0.8672† 0.8827† 0.8614† 0.8689† 0.8606† 0.8674†

𝑝𝑛𝑐 = 1.00 (LIM1, ours) 0.8519† 0.8664† 0.8711† 0.8774† 0.8519† 0.8662† 0.8496† 0.8655†

Table 3: Accuracy, precision, recall and F1-score of similarity matching on the test set for BERT and SciBERT without and
with domain-adaptive pre-training with MLM or LIM (𝑝𝑛𝑐 = 0.75/1.00), † indicates statistically significant difference to Vanilla
baseline, 𝛼 = 0.05

5.1 RQ 1: BERT vs SciBERT
Comparing the evaluation results of BERT and SciBERT for IPC
classification and for similarity matching leads to the conclusion
that the SciBERT based models achieve an overall higher perfor-
mance. For the IPC classification the results in Table 2 show that
the SciBERT model outperforms the equally domain-adapted BERT
model (for MLM, LIM0.75 and LIM1) by 1 − 2% downstream task
performance. In Table 3 we see the results for similarity matching

and comparing the performance of the BERT-based and SciBERT-
basedmodels shows the same picture. The domain-adapted SciBERT
based model outperforms the corresponding BERT model by 1− 2%
downstream task performance. Overall the SciBERT model domain
adapted with LIM with 𝑝𝑛𝑐 = 0.75 achieves the best performance
for IPC classification and similarity matching.
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5.2 RQ 2: MLM vs LIM
We compare the domain-adaptive pre-training methods of MLM
and LIM, by evaluating the downstream task performance of BERT
and SciBERT domain adapted either with LIM with 𝑝𝑛𝑐 = 0.75 or
𝑝𝑛𝑐 = 1.00 or MLM.
If we compare the evaluation results for the IPC classification in
Table 2 we find that for BERT and SciBERT the domain adapted
representations with LIM lead to a higher downstream task per-
formance, for BERT LIM0.75 demonstrates the best results, for
SciBERT LIM1 shows the highest performance. For the task of simi-
larity matching we find similar results: BERT and SciBERT achieve
the best performance for similarity matching based on the domain
adapted representations of LIM0.75.

In order to compare the performance gains to the baseline per-
formance of the BERT models without domain adaptation, we can
see the relative accuracy improvement compared to the baseline
BERT model of the MLM and LIM domain fine-tuned models in
Figures 3 and 4 for the BERT-based models and the SciBERT-based
models respectively.

For the BERT-based models we can see that the improvement of
the LIM domain fine-tuned model with a noun chunk masking of
𝑝𝑛𝑐 = 0.75 is consistently the highest for each size of downstream
task training data for both downstream tasks, besides for the IPC
classification trained on 480𝑘 samples, where the domain adapted
model with 𝑝𝑛𝑐 = 1.00 improves the performance compared to the
domain adapted model with 𝑝𝑛𝑐 = 0.75. Similarly we observe that
the LIM0.75 SciBERT model achieves the highest improvement for
the similarity matching for all data set sizes, for the IPC classifi-
cation the performance improvement for a smaller dataset size of
160𝑘 labelled samples is significant.

Especially in the setting of less training data for the downstream
tasks, we can observe substantial performance improvements of
the LIM0.75 domain fine-tuned models compared to the MLM fine-
tuned model on both tasks and both models. Therefore our experi-
ments show that domain fine-tuning using LIM leads to improved
representations, when comparing LIM to MLM on the two indepen-
dent domain specific downstream tasks.

These evaluation results demonstrate that the representations of
patent language, which are domain adapted using the linguistically
informed masking training method, achieve higher downstream
task performance on two independent patent-related downstream
tasks. Especially in the low data regime of the downstream task,
the performance gains of the LIM representations are substantial.

6 ANALYSIS OF RESULTS
In this section we analyze our results regarding the better suitability
of the SciBERT model to represent patent language than the BERT
model as well as regarding the weighting factor 𝑝𝑛𝑐 of the noun
chunk masking in domain adaptive pre-training.

6.1 Tokenization analysis
The language models BERT and SciBERT are trained to encode a
given text into representations. Every language model has a to-
kenization, and it has become common practice to train the tok-
enization of language models with a subword algorithm [19]. The

Figure 3: Relative accuracy improvement from vanilla BERT
to MLM or LIM domain fine-tuned BERT models for differ-
ent sizes of downstream task training data

Figure 4: Relative accuracy improvement from vanilla SciB-
ERT to MLM or LIM domain-finetuned SciBERT models for
different sizes of downstream task training data

language model is then pre-trained in an unsupervised manner on
domain language. Therefore the quality of the representations of
a language model for a specific language domain depends on the
similarity of the pre-training language and the target domain, as
well as the suitability of the tokenization to the target domain.
In this section we investigate one potential reason of the better
suitability of the SciBERT model to encode patent language than of
the BERT model: the tokenization. We analyze which tokenization
is most suitable for patent language by comparing a subword tok-
enization trained on patent data to the tokenizations which BERT
and SciBERT use for encoding.
We measure the suitability of the tokenization by the split ratio,
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Tokenization Encoding

BERT [’f’, ’##em’, ’##to’, ’access’, ’point’]
SciBERT [’fem’, ’##to’, ’access’, ’point’]
Patent [’femto’, ’access’, ’point’]

Table 4: Encoding of the fragment “femto access point” us-
ing three different trained vocabularies

Figure 5: Distribution of the sentence length for different
tokenizations

which is defined as length of the encoded sentence divided by the
number of words in the sentence. A lower split ratio indicates better
suitability for the domain because words are not split as often, thus
domain-relevant words are retained in full more often rather than
being split into less information rich parts.
Following Beltagy et al. [5] we train a vocabulary with the Senten-
cepiece algorithm [19] on 5 million sentences of the patent dataset.
As the split ratio of the training sentences is similar to the split ratio
of unseen patent sentences, we conclude that the tokenization is
sufficiently well trained on these 5million training sentences to be a
general encoding of patent language. Now we want to compare the
different vocabularies for encoding patent language. The example
in Table 4 shows how a suitable tokenization leads to less splitting
up into subwords as it includes special words such as “femto” in
full.

In order to compare the performance of the different vocabular-
ies for encoding patent language we determine the length of the
encodings for 1.6 million sentences from patents with the different
vocabularies.
In Figure 5 is the distribution of the sentence length in total number
of words and the distribution of the different encoding lengths of
the sentences with the average as dashed vertical line.

We can see that the encoding length with the SciBERT tokeniza-
tion is shorter than the encoding with the BERT vocabulary. We
observe an average split ratio for the patent tokenization of 1.16,
for the SciBERT tokenization of 1.21 and for the BERT tokenization
of 1.29. Because of the shorter encoding length and the smaller

Figure 6: Effect of balancing the noun chunk masking with
the parameter 𝑝𝑛𝑐 : representations which are domain fine-
tuned using LIM0.75 show promising accuracy improve-
ments for both downstream tasks and for both BERT-based
representations

split ratio of the SciBERT tokenization relative to BERT, we can
conclude that the SciBERT tokenization fits better to encode the
patent language. Because the representations are learned for the
tokens in the vocabulary, it follows that the better the tokenization
fits to the language domain the more specific information can be
captured by the learned representations. As the tokenization of the
SciBERT language model fits better to represent patent language
than the BERT vocabulary, we suggest this as a reason that the SciB-
ERT language model shows better results for representing patent
language than BERT.

6.2 Masking probability analysis
We also want to investigate the effect of balancing the domain
adaptive pre-training with the noun chunk masking parameter
𝑝𝑛𝑐 which gives the ability to control the learning from different
linguistic information from the target domain. For that we analyze
the accuracy improvements of different noun chunkmasking values
𝑝𝑛𝑐 for domain adaptive pre-training for BERT and SciBERT on
both downstream tasks.

We show the accuracy improvements compared to the baseline
models without domain adaptative pre-training in Figure 6. Here
one can observe the clear trend that shifting the noun chunk mask-
ing towards the noun chunks with a weighting of 75%masked noun
chunks and 25% masked non-noun chunks lead to higher accuracy
improvements for both downstream tasks. However focusing the
domain fine-tuning only on the noun chunks, in other words LIM1,
shows suboptimal results, which leads to the conclusion that balanc-
ing the masking of noun chunks and non-noun chunks between the
values of 0.5 and 1.0 is beneficial for domain adaptive pre-training
for patent language.
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7 CONCLUSION
Overall we conclude that domain adaptive pre-training for learn-
ing representations of patent language is beneficial for pre-trained
masked language models like BERT and SciBERT. We find that the
SciBERT-based representations outperform the BERT-based repre-
sentations of patent language for the two independent downstream
tasks of IPC classification and similarity matching. Therefore we
conclude that SciBERT is more suitable to represent patent language
than the BERT model and see one reason for that in the suitability
of the tokenization of SciBERT to patent language. Furthermore
we have proposed the empirically motivated domain adaptive pre-
training method of linguistically informed masking for BERT-like
language models. We demonstrate improvements on both patent-
related downstream tasks for representations of patent language
that have been domain-adapted using the LIM method. Further-
more we analyze the impact of the weighting factor for shifting the
masking towards the noun chunks. We conclude that domain adap-
tive pre-training with linguistically informed masking improves
the representations of the patent domain for BERT and SciBERT
and that balancing the weighting to learn from different linguistic
information is beneficial for representation learning.
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A APPENDICES
A.1 Google BigQuery query for patent dataset

USPTO13M

SELECT

publication_number ,

publication_date ,

filing_date ,

priority_date ,

title.text AS title ,

title.truncated as title_tr ,

abstract.text AS abstract ,

abstract.truncated as abstract_tr ,

claim.text as claim ,

claim.truncated as claim_tr ,

descr.text as descr ,

descr.truncated as descr_tr ,

ARRAY_TO_STRING(ARRAY(SELECT

code FROM UNNEST(p.ipc)), ";")

AS ipc ,

ARRAY_TO_STRING(ARRAY(SELECT

code FROM UNNEST(p.cpc)), ";")

AS cpc

FROM

`patents -public -data.patents.
publications ` p,

UNNEST(p.title_localized) as title ,

UNNEST(p.abstract_localized)

as abstract ,

UNNEST(p.claims_localized) as claim ,

UNNEST(p.description_localized)

as descr

WHERE

filing_date >= 20000101

AND

claim.language = 'en'

AND

descr.language = 'en'

AND

title.language = 'en'

AND

abstract.language = 'en'

AND

/* Granted patents only */

application_kind = 'A'

Google BigQuery database accessed on the 04.11.2019

A.2 Hyperparameter for domain adaptive
pre-training on patent domain

The masking and next sentence accuracies after domain adaptive
pre-training each configuration for 2500 steps for the different
learning rate candidates 1 ∗ 10−4, 5 ∗ 10−5, 2 ∗ 10−5, 1 ∗ 10−5 as well
as the learning rate choice for each configuration can be seen in
Table 5. Domain adaptive pre-training was performed on 1 GPU
and took 2.5 days for each configuration.

A.3 Independence of IPC classification and
similarity matching

In order to test whether there is a trivial relationship between the
IPC tags and the similarity relations of a patent, we train a linear
SVM classifier on predicting the similarity matching of a pair of
patents from their IPC tag representation. On an equally balanced
binary dataset we reach a classification performance which is little
better than random (accuracy: 0.59, F1 score: 0.46), and therefore
conclude that the two tasks are independent.
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maximum sequence length 256
masking probability 0.15
training steps 1000
warm-up steps 100
𝛽1 0.9
𝛽2 0.999
dropout probability 0.1
batch size 16
learning rate 2 ∗ 10−5

Table 7: Hyperparameter for similarity matching fine-
tuning

maximum sequence length 128
masking probability 0.15
training steps 100,000
warm-up steps 10,000
𝛽1 0.9
𝛽2 0.999
dropout probability 0.1
batch size 32

Table 5: Hyperparameter for domain adaptive pre-training

A.4 Learning rate evaluation for fine-tuning on
IPC classification

The evaluation of the grid search for the best suitable learning
rate for IPC classification fine-tuning can be found in Table 6. The

accuracy values for the different configurations are shown after
fine-tuning for 2500 steps with the learning rate candidates 5 ∗
10−5, 2 ∗ 10−5, 1 ∗ 10−5. The IPC classification was performed on 1
GPU and took around 1.5 days for each configuration.

IPC classification

5 ∗ 10−5 3 ∗ 10−5 2 ∗ 10−5

BERT Vanilla 0.4321 0.4301 0.4135
BERT MLM 0.4737 0.4598 0.4333
BERT LIM0.75 0.4776 0.4594 0.4372
BERT LIM1 0.4830 0.4592 0.4212
SciBERT Vanilla 0.4906 0.4773 0.4501
SciBERT MLM 0.5031 0.48705 0.4652
SciBERT LIM0.75 0.5142 0.4870 0.4665
SciBERT LIM1 0.5020 0.4863 0.4647

Table 6: Accuracy values for different learning rates after
IPC classification fine-tuning each model for 2500 steps

A.5 Hyperparameter for fine-tuning on
similarity matching

The hyperparameter for fine-tuning on similarity matching can be
found in Table 7. Fine-tuning the BERT vanilla model configuration
for 1000 steps on the different learning rates of 5 ∗ 10−5, 3 ∗ 10−5,
2 ∗ 10−5 indicates that 2 ∗ 10−5 is the most suitable learning rate
for fine-tuning on similarity matching and we choose this rate for
all configurations. The fine-tuning was performed on 1 GPU with
61 RAM and took around 30 hours for each configuration.
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