

From A-Z, towards a patent text mining application

Domain Ontology Population

September 2019

The 1st PatentSemTech

Linda Andersson andersson.ar.it@gmail.com andersson@ifs.tuwien.ac.at +43 (0) 699 17 821 600 http://www.ifs.tuwien.ac.at/~andersson/ https://www.artificialresearcher.com/

© Linda Andersson 2019

Linda Andersson - Résumé

Academic merits

 Information design 1998-2001

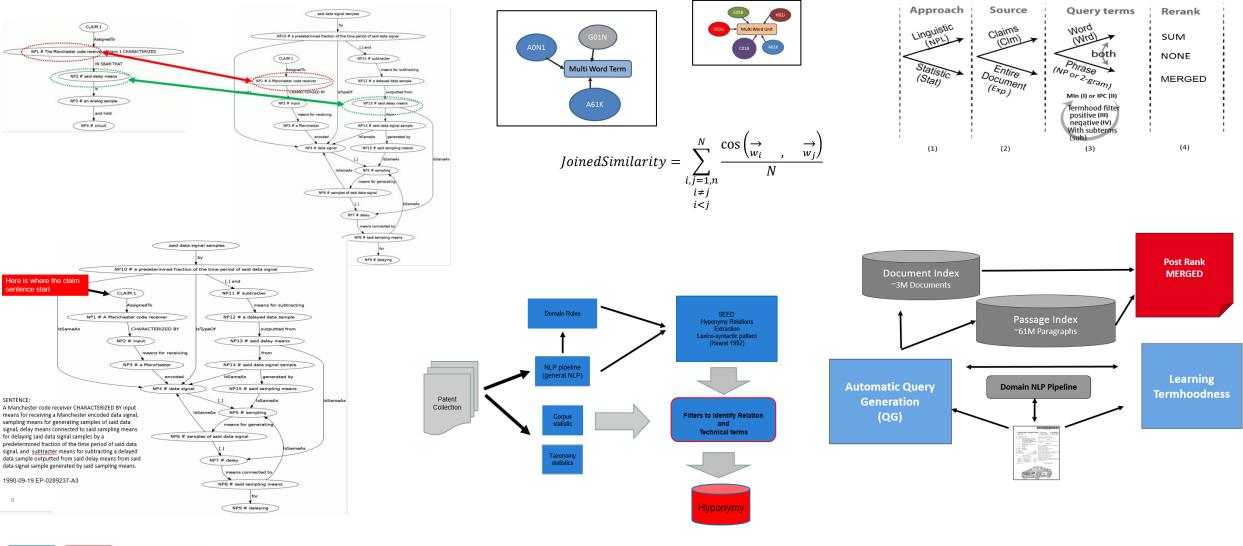
- General Linguistics
 2001-2003
- Computational Linguistics 2006-2009
- Language Engineering 2004
- Library & Information Science 2004-2006
- Computer Science
 2009-2019

Research fields

- Natural Language Understanding
- Natural Language Processing
- Information Extraction
- Information Retrieval

Awards

- 2018 Commercial Viability award by the Austrian Angel Investors Association.
- 2017 PhD high potential R&D award, i2c Award, Vienna University of Technology
- 1999 Finalist in a Venture Cup held at Mälardalens University College.


Outline

- Introduction and Motivations
- The limitation of general Natural Language Processing (NLP)
- Automatic Terminology extraction
- Domain ontology population

The Essence of Patent Text Mining

(Andersson 2019*)

FAKULTÄT FÜR !NFORMATIK Faculty of Informatics

© Linda Andersson 2019

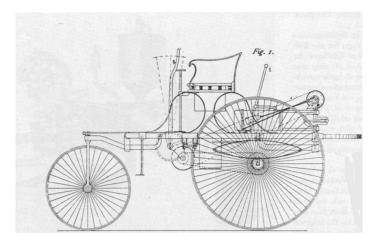
In short: The patent text genre

- Meta data
 - Bibliographic data (citing prior art, assignee, inventor, date)
 - Different Classification Schema
 - e.g. International Patent Classication (IPC).
 - reflects a semantic interpretation of the technical domains
 - taxonomy structure

• Linguistic Characteristics

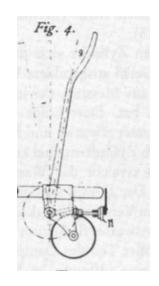
- No text normalization
- Text section: Title, Abstract, Description, Claim
- A mixture of technical term and legal terms
- Patent genre consist of several sub languages

Motivation: From the user requirement


• Use case: Provide a tool, which suggest related terms in the query formulation process

When conducting Prior Art Search it is essential to find different aspects of a patent? Each aspect can be divided into term pairs consisting of a general term and a specific term. Consequently, if we have three aspects A, B and C each of these three aspects' pairs need to be combined in the search process. The search strategy in patent search consist of many complexes queries targeting the main topic as well as sub topics of patents.

(S. Adams, Personal correspondence, PatOlympics 2011, Vienna).



Motivation: No 37435 Benz Patent – Moterwagen (1886)

You search for the entire invention but also on specific details **Engine function**

Steering mechanism

Example of Automatic Query Formulation

Automatic query expansion terms from ontologies

position brake actuating member brake actuating member hydraulically-assisted rack pinion steering gear brake operating member conventional braking system pair pedals

accelerator pedal case pedal device pedal device

2) United States Design Pat Dyson et al.	ent (10) Patent No.: US D500,000 S (45) Date of Patent: 88 Dec. 21, 2004
4) AUTOMOBILE BODY	Primary Examiner-Melody N. Brown (74) Attorney, Agent, or Firm-Relph E. Smith
 Inventors: Andrew P Dyson, West Bloomfield, MI (US); Joseph S Debner, Bloomfield, 	(57) CLAIM
MI (US); David C McKinnon, Bioenficht, MI (US); Gieza W Abbott West Bioenficht, MI (US)	The cenamental design for an automobile body, as shown and described.
3) Assignee: BalmlerChrysler Corporation, Auburn	DESCRIPTION
Hills, MI (US)	FIG. 1 is a front perspective view of an automobile body
") Term: 14 Years	showing our new design; FIG. 2 is a side view thereof;
 Appl. No.: 29/201,094 	FIG. 3 is a mar perspective view thereof;
(2) Filed: Mar. 10, 2004	FIG. 4 is a front view thereof,
13 LOC (7) CL	
2) U.S. Cl	
 Field of Search	
D21/424, 433; 296/18	FIG. 8 is a rear perspective view of FIG. 6;
(i) References Cited	FIG. 9 is a front view of FIG. 6, and,
U.S. PATENT DOCUMENTS	FIG. 10 is a rear view of FIG. 6.
D408,329 5 * 4:1999 Aposh et al. D12,9 D408,459 8 * 11,2002 Debayr et al. D12,9 D475,651 S * 72005 Stoddard et al. D12,9 D477,253 S * 72006 Stoddard et al. D12,9 D477,253 S * 72006 Stoddard et al. D12,9 D465,696 S * 72006 Stoddard et al. D12,9 D465,696 S * 122000 Howelf et al. D12,9	drawings are for illustration only, and do not form a part of the claimed design.
cited by examiner	1 Claim, 8 Drawing Sheets
A CONTRACTOR	

<QUERY>

(conured OR clutch OR connectability OR nmofs OR fclp OR dnsr OR slippage OR anda OR rotational OR acceleration OR backlash OR subordinate OR estimating OR ure OR brake OR torque OR stopped OR vehicle OR wheel OR command OR outputting OR estimate OR shock OR nsr OR driving OR pedal OR wheels OR shaft OR prohibiting OR determining OR sensor OR tws OR drive OR occurrence OR estimated OR prescribed OR stopping OR elapsed OR motor OR speed OR gdv OR instruction OR input OR output OR controller OR rotating OR accelerator OR electric OR force OR flag) AND

("vehicle driving force control apparatus" OR "drive wheel" OR "rotational speed" OR "4wd controller" OR "clutch connection command" OR "rear wheel" OR "four-wheel drive state" OR "torque transfer path" OR "output rotational speed" OR "input rotational speed" OR "clutch control section" OR "detected parameter" OR "generation load torque" OR "torque fluctuation" OR "brake operation" OR "determination occurrence" OR "four-wheel drive vehicle" OR "input shaft" OR "4wd controller proceed" OR "wheel speed sensor" OR "output shaft" OR "response delay" OR "clutch input shaft" OR "backlash elimination" OR "drive mode switch" OR "brake pedal" OR "accelerator pedal" OR "targeted range" OR "transition time" OR "wheel speed" OR "rotational speed difference" OR "clutch connection" OR "motor torque" OR "generator load torque" OR "vehicle driving force control" OR "high rate" OR "electric motor" OR "throttle opening" OR "external disturbance" OR "vehicle driving force" OR "connected state" OR "previous equation" OR "prescribed range" OR "electric power" OR "prescribed rotational speed difference" OR "12-volt battery" OR "connection command" OR "disconnected state" OR "electric clutch" OR "four-wheel drive") </ d>

Example of automatic identified technical term and suggestion of query expansion terms

brake pedal:

vehicle operating pedal,
conventional hydraulic brake system
pedal devices
position brake actuating member
brake actuating member
hydraulically-assisted rack pinion steering gear
brake operating member
conventional braking system
pair pedals

accelerator pedal

case pedal device pedal device

The limitations of the general Natural Language Processing tools

From A-Z, towards a patent text mining application

Natural Language Processing

According to Wikipedia: https://en.wikipedia.org/wiki/Natural language processing, 2019-09-02

"Natural language processing (NLP) is a subfield of linguistics, computer science, information engineering, and artificial intelligence concerned with the interactions between computers and human (natural) languages, in particular how to program computers to process and analyze large amounts of natural language data."

.

The different linguistic layers

Surface level:

The process according to claim 6, wherein the inlet temperature is between about 90°C and about 120°C.

Part of Speech:

The/DT process/NN according/VBG to/TO claim/NN (*VBN) 6/CD ,/, wherein/WRB the/DT inlet/NN temperature/NN is/VBZ between/IN about/RB 90/CD DEG/NNP C/NNP and/CC about/RB 120/CD DEG/NNP C/NNP C./NNP

Noun Phrase Chunk:

[The/DT process/NN] according/VBG to/TO [claim/NN [(*VBN) 6/CD] ,/, wherein/WRB [the/DT inlet/NN temperature/NN] is/VBZ between/IN [about/IN 90/CD °/CD C/NN] and/CC [about/IN 120/CD °/CD C./NNP]

Constituent Information:

ROOT (FRAG (NP (DT The) (NN process)) (PP (VBG according) (PP (TO to) (NP (NP (NN claim) (CD 6)) (, ,) (SBAR (WHADVP (WRB wherein)) (S (NP (DT the) (NN inlet) (NN temperature)) (VP (VBZ is) (PP (IN between) (NP (NP (NP (QP (RB about) (CD 90))) (NP (NNP DEG) (NNP C))) (CC and) (NP (NP (QP (RB about) (CD 120))) (NP (NNP DEG) (NNP C.)))))))))))

Sentence marked with a type syntactic relations (Typed dependencies)

det(process-2, The-1) root(ROOT-0, process-2) dep(process-2, according-3) pcomp(according-3, to-4) pobj(to-4, claim-5) num(claim-5, 6-6) advmod(is-12, wherein-8) det(temperature-11, the-9) nn(temperature-11, inlet-10) nsubj(is-12, temperature-11) rcmod(claim-5, is-12) prep(is-12, between-13) quantmod(90-15, about-14) pobj(between-13, 90-15) nn(C-17, DEG-16) dep(90-15, C-17) cc(90-15, and-18) quantmod(120-20, about-19) conj(90-15, 120-20) nn(C.-22, DEG-21) dep(120-20, C.-22)

Raw text

Phrase chunker

Underlying layer

Example of a parser

Pre-processing: Token detection

- Token (i.e. words, letter strings, digits)
 - cat, dogs, U2, padd-227
- Rhetorical structure of a discourse (e.g. commas, punctuations, digits, etc.)
 - **Digits** numeration structure of text
 - Punctuations
 - Part of acronyms, digits marker and sentence boundaries
 - Commas
 - Clause binder: While she was cooking, her friend arrived
 - Numeration binder: mixtures of saturated hydrocarbon compounds, alicyclic hydrocarbons, aromatic hydrocarbons, etc.
 - Part of Chemical compound: 2,5-bis amidinophenyl

Pre-processing: Sentence detection

CELLULAR COMMUNICATIONS INC. sold 1,5500,000 common shares at \$21.75 each yesterday, according to lead underwriter L.F. Rothschild & Co.

Example No.	Regular expression	Correct	Errors	Ambiguities of full stop
1	$[A-Za-z]$ \.	1,323	30	14
2	$[AZa-z] \.([A-Za-z0-9] \.)+$	626	0	63
3	$[A-Z][bcdfgj-np-tvxz]+\backslash.$	1,397	33	26
Totals		3,876	63	103 ¹

Examples from Grefenstette et al (1994)

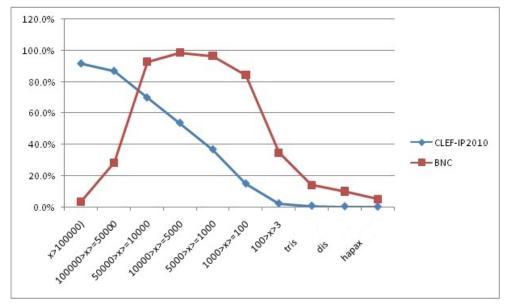
Definition of a sentence will differ from different domains, example from the patent text genre:

1. What is claimed is: 1. A control and communication system for a light-duty combustion engine, comprising: a circuit card; an ignition circuit carried by the circuit card and configured to control an ignition timing of the engine; and a short range wireless communication circuit carried by the circuit card.

Language Complexity: challenge for general NLP

- Language dependent features
 - Word formation in English
 - suffixes
 - (e.g. to dry versus a method of dry ing)
 - compound noun
 - (e.g. floppy disk, air flow, blood cell, bus slot card)
 - Complex syntactic construction.

Source and Test data, issue


The Penn Treebank (source data for NLP tools)

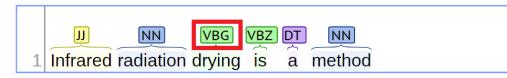
Description¤	Tagged for Pos (tokens)¤	¤
Dept. Of Energy¤	231,404¤	ğ
Dow-Jones-Newswire-stories¤	3,065,776¤	¤
Dept.·Of·Agriculture·bulletins¤	78,555¤	¤
Library of America text¤	105,652¤	¤
MUC-3·messages¤	111,828¤	ğ
IBM·Manual·sentences· ¤	89,121¤	¤
WBUR radio transcripts¤	11,589¤	ğ
ATIS-sentences¤	19,832¤	¤
Brown·Corpus·retagged¤	1,172,041¤	ğ
Total¤	4,885,798¤	¤

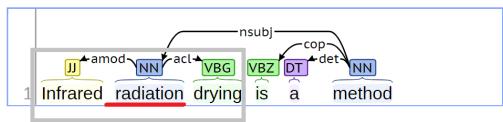
Table 2: (Marcus et al 1993 p. 327) ¶

	РТВ	MAREC_US_2500
Table	0	638
sentence	46 665	462 912
digits	67 690	1844824
noise	35 112	1674961
token type	41 311	1888838
tokens	947 139	10531164

WordNet coverage (the large LR – manually constructed)

British National Corpus (BNC)


	Ser	itence Length	Те	rm frequency
	РТВ	MAREC_US_2500	РТВ	MAREC_US_2500
average	23	43	22	55
median	20	70	2	1
max	173	10217	33 001	39858
average per document	50	5733	423	5733


A example of the limitation of the general NLP tools

- NLP identifies noun phrases
 - Source (news text) versus Target data (patent text)

Part-of-Speech:

Basic Dependencies:

Copyright © 2015, Stanford University, All Rights Reserved.

• Verb participles were discovered to be erroneous in patent text

Trick, is the know-how

Application 1: Question and Answering

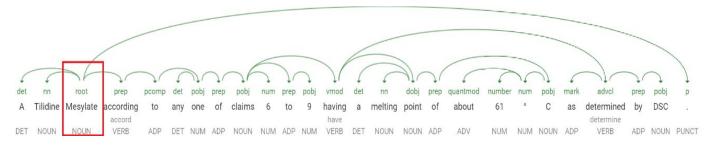
What substance have a melting point of about 61° C?

A **Tilidine Mesylate**, according to any one of claims 6 to 9, having **a melting point of about 61°C** as determined by DSC.

Application 2: Automatic Terminology Extraction

Every local **bus slot card** willing to master the bus will have to mimic 030, so it appears the 040-to-030 cycles translation adapter will always be in between the CPU and the local bus, no matter be it 040 or 060

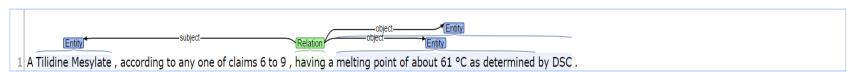
Infrared radiation drying is a method used to process food.


Application 1: Quantity linking

Ground truth:

Subject: *Tilidine Mesylate* Predicate: *having* object: *melting point of about 61°C*

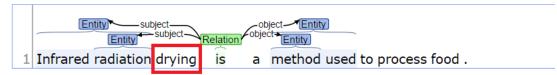
Google


Subject: *Tilidine* Predicate:**Mesylate* Object: *according*

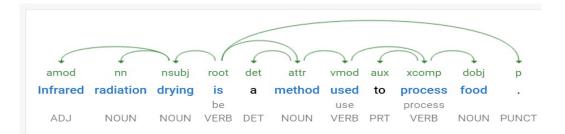
Stanford (corenlp.run)

Subject: *Tilidine Mesylate* Predicate: *having* Object: *a melting point of about 61°C as determined by DSC.*

Open IE:

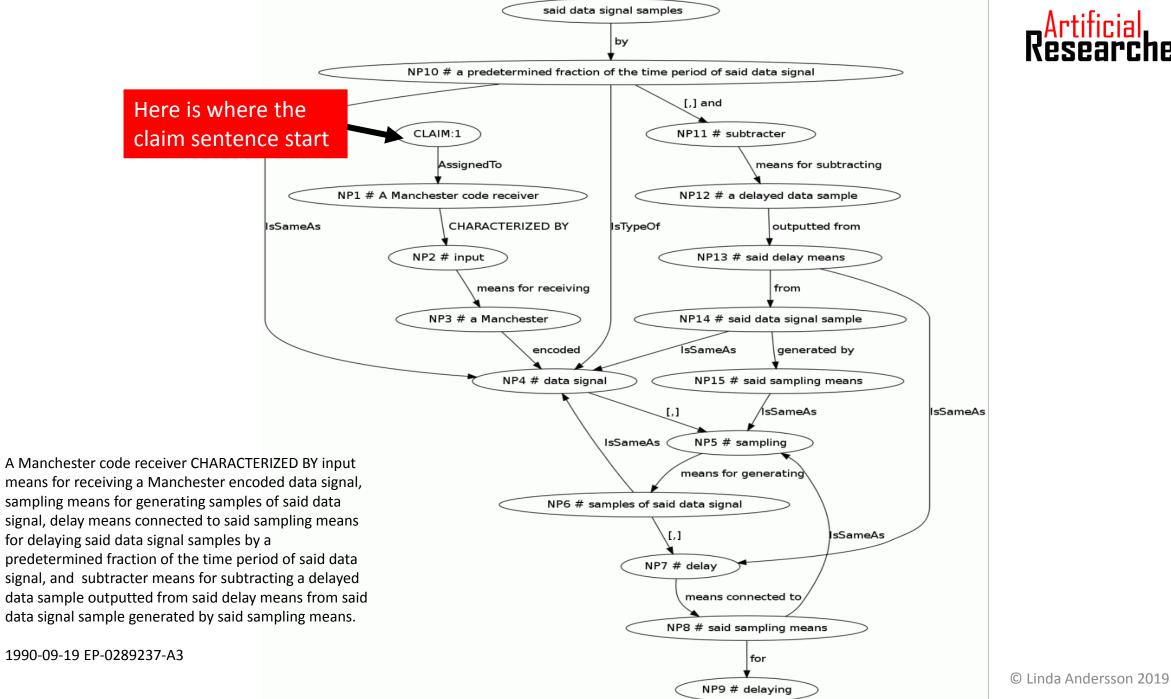

Application 2: Automatic Terminology Extraction

Ground truth: Infrared radiation drying


Stanford

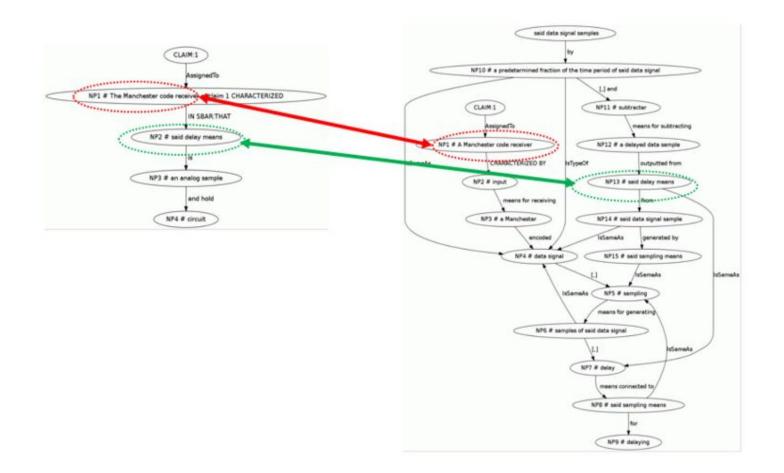
Infrared radiation

Open IE:


Google Infrared radiation drying

Dependency Claim Graph

From A-Z, towards a patent text mining application



means for receiving a Manchester encoded data signal, sampling means for generating samples of said data signal, delay means connected to said sampling means for delaying said data signal samples by a predetermined fraction of the time period of said data signal, and subtracter means for subtracting a delayed data sample outputted from said delay means from said data signal sample generated by said sampling means.

1990-09-19 EP-0289237-A3

Link internal and external relations

<NLP>[A/DT method/NN] of/IN generating/VBG [illumination/NN characteristic/JJ data/NNS] around/IN [an/DT image/NN display/NN device/NN] ,/, comprising/VBG :/: making/VBG [predetermined/JJ illumination/NN characteristic/JJ data/NNS] around/IN [the/DT image/NN display/NN device/NN] into/IN [a/DT type/NN block/NN indicating/VBG information/NN] on/IN [a/DT type/NN] of/IN [illumination/NN] ,/, [the/DT information/NN] on/IN [the/DT type/NN] of/IN [illumination/NN] comprising/VBG [at/IN least/JJS one/CD] of/IN [a/DT color/NN temperature/NN] of/IN [illumination/NN] and/CC [a/DT coordinate/JJ value/NN] in/IN [chromaticity/NN] coordinates/VBZ of/IN [illumination/NN] ;/: and/CC making/VBG [the/DT predetermined/JJ illumination/NN characteristic/JJ data/NNS] into/IN [an/DT illuminance/NN block/NN indicating/VBG information/NN] on/IN [the/DT illuminance/NN] of/IN [illumination/NN] ,/, [the/DT information/NN] on/IN [the/DT illuminance/NN] of/IN [illumination/NN] on/IN [the/DT illuminance/NN] of/IN [illumination/NN] ,/, [the/DT information/NN] on/IN [the/DT illuminance/NN] of/IN [illumination/NN] being/VBG [a/DT numerical/JJ illuminance/NN value/NN] [which/WDT] is/VBZ represented/VBN in/IN [the/DT units/NNS] of/IN [Lux/FW] ./.

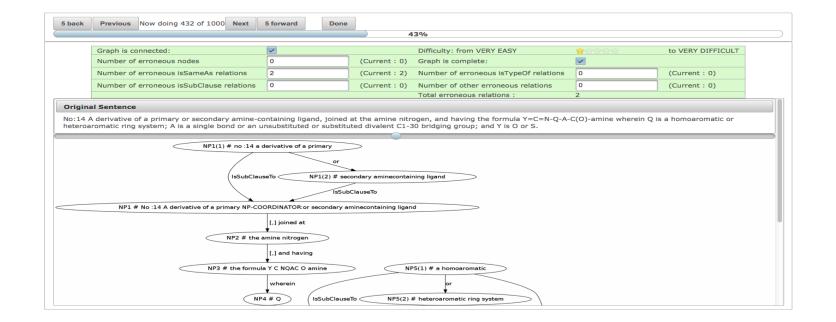
<DomainNLP>[A/DT method/NN of/IN generating/VBG illumination/NN characteristic/JJ data/NNS] around/IN [an/DT image/NN display/NN device/NN] ,/, comprising/VBG :/: making/VBG [predetermined/JJ illumination/NN characteristic/JJ data/NNS] around/IN [the/DT image/NN display/NN device/NN] into/IN [a/DT type/NN block/NN indicating/VBG information/NN] on/IN [a/DT type/NN of/IN illumination/NN] ,/, [the/DT information/NN] on/IN [the/DT type/NN of/IN illumination/NN] comprising/VBG [at/IN least/JJS one/CD of/IN a/DT color/NN temperature/NN of/IN illumination/NN NP-COORDINATOR:and/CC a/DT coordinate/JJ value/NN] in/IN [chromaticity/NN] coordinates/VBZ of/IN [illumination/NN];/: and/CC making/VBG [the/DT predetermined/JJ illumination/NN characteristic/JJ data/NNS] into/IN [an/DT illuminance/NN block/NN indicating/VBG information/NN] on/IN [the/DT illuminance/NN of/IN illumination/NN], [the/DT information/NN] on/IN [the/DT illuminance/NN of/IN illumination/NN] on/IN [the/DT illumination/NN] chromaticity/NN] coordinates/VBZ of/IN [illumination/NN];: and/CC making/VBG information/NN] on/IN [the/DT illumination/NN characteristic/JJ data/NNS] into/IN [an/DT illuminance/NN block/NN indicating/VBG information/NN] on/IN [the/DT illuminance/NN of/IN illumination/NN], [the/DT information/NN] on/IN [the/DT illuminance/NN of/IN illumination/NN] being/VBG [a/DT numerical/JJ illuminance/NN value/NN] SBAR:which/WDT is/VBZ represented/VBN in/IN [the/DT units/NNS of/IN Lux/FW] ./.

SENTENCE

A method of generating illumination characteristic data around an image display device, comprising: making predetermined illumination characteristic data around the image display device into a type block indicating information on a type of illumination, the information on the type of illumination comprising at least one of a color temperature of illumination and a coordinate value in chromaticity coordinates of illumination; and making the predetermined illumination characteristic data into an illuminance block indicating information on the illumination on the illumination, the information on the illumination being a numerical illuminance value which is represented in the units of Lux.

We need to targeting the English Noun Phrase

Rule	Original NP Sequence	Modified NP Sequence	Modifiying
"said" as an article	said/VBD [supercritical/JJ fluid/NN]	[said/VBD supercritical/JJ fluid/NN].	PoS-tagger
preposition within the preamble phrase	[The/DT soccer/NN shoe/NN] of/IN [claim/NN 4/CD]		Chunker
include present participle	[A/DT method/NN] of/IN fabricating/VBG [a/DT semiconductor/NN device/NN]	[A/DT method/NN of/IN fabricating/VBG a/DT semiconductor/NN device/NN]	Chunker
infinitive verb tagged as NN	[said/VBD laser/NN radiation/NN] to/TO [exit/NN] [said/VBD exit/NN system/NN]	[said/VBD laser/NN radiation/NN] to/TO exit/VB [said/VBD exit/NN system/NN].	PoS-tagger
include digits into the NP	NP [The/DT method/NN of/IN any/DT of/IN claims/NNS] [12/CD to/TO 16/CD]		PoS-tagger
list of NPs	in [the/DT group/NN] consisting/VBG of/IN [a/DT photoresist/NN] ,/, [a/DT photoresist/NN residue/NN] ,/, and/CC [a/DT combination/NN]	into [the/DT group/NN] consisting/VBG of/IN [a/DT photoresist/NN ,/, a/DT photoresist/NN residue/NN ,/, and/CC a/DT combination/NN]	
	A sub rule to 7, Identifying, transition phrases listing sub clauses		Claims discourse adaptation
	as seen in figure 2.B		specific rules



Experiment

- CLEF-IP2012 EN 35 topics
 - 600 sentences (three assessors per sentence)
- Assessors
 - Experts (3) vs non-experts (14)
 - We defined seven parameters we ask the user to assess for each graph:
 - graph is complete,
 - graph is connected,
 - number of erroneous nodes,
 - number of erroneous IsSameAs relations,
 - number of erroneous IsSubClauseTo relation,
 - number of erroneous IsTypeOf relations,
 - number of other erroneous relations.

Evaluation: Inter-annotation agreement

Assessor Pair	No of sentences	Connected Graphs	Erroneous Nodes	Erroneous IsSameAs	Erroneous IsTypeOf	Erroneous IsSubClauseTo	Erroneous Other Relations	Complete graphs	Graph Difficulty
Non-expert vs Expert	182	98.35	68.13	87.91	97.80	96.15	69.78	84.62	26.37
Expert vs Expert	193	97.41	61.14	84.97	97.93	98.45	64.77	74.09	56.48

Results, for different IPC Section

Only Experts

IPC	No of Sentences	Erroneous Nodes	Erroneous IsSameAs	Erroneous IsTypeOf	Erroneous IsSubClause	Erroneous Other Relations	Complete Graph	Connected Graph	Difficulty
А	107		0.02 (0.07)	0 (0 01)	0 (0 02)	0.04 (0.08)	0 92 (0 24)	0.00 (0.11)	1 72 /1 1)
D	182	0.05 (0.08)	0.03 (0.07)	0 (0.01)	0 (0.02)	0.04 (0.08)	0.83 (0.34)	0.99 (0.11)	1.73 (1.1)
В	158	0.11 (0.13)	0.02 (0.05)	0 (0.01)	0 (0.02)	0.08 (0.11)	0.81 (0.35)	0.98 (0.12)	1.71 (1.1)
С	165	0.09 (0.12)	0.02 (0.05)	0 (0.02)	0 (0)	0.06 (0.11)	0.8 (0.35)	0.97 (0.16)	1.69 (1.08)
D	27	0.03 (0.06)	0.01 (0.03)	0 (0.01)	0 (0)	0.02 (0.04)	0.89 (0.28)	1 (0)	1.41 (0.91)
F	27	0.08 (0.08)	0.01 (0.05)	0 (0)	0 (0)	0.04 (0.05)	0.72 (0.37)	0.98 (0.09)	1.63 (0.67)
G	99	0.13 (0.13)	0.02 (0.05)	0 (0.02)	0 (0)	0.1 (0.12)	0.81 (0.35)	0.97 (0.16)	1.81 (1.17)
Н	()		0.04 (0.07)	0 (0 02)				0.02 (0.27)	
	62	0.11 (0.11)	0.04 (0.07)	0 (0.02)	0 (0)	0.07 (0.09)	0.73 (0.41)	0.92 (0.27)	2.17 (1.39)
Total	720	0.09 (0.12)	0.02 (0.06)	0 (0.01)	0 (0.01)	0.06 (0.1)	0.81 (0.35)	0.97 (0.15)	1.75 (1.12)

Automatic Terminology Extraction

From A-Z, towards a patent text mining application

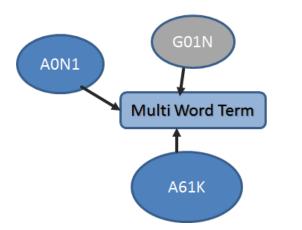
What is a Multi Word Term and what is not? Depends on who you are asking?

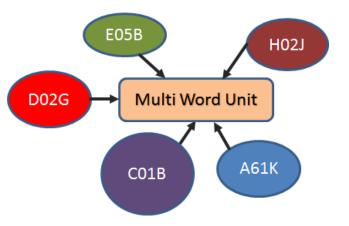
Candidate Term	Word2Vec	C-Value	Pointwise Mutual information	Human
Remote communication	Yes	No	No	No
Communication link	Νο	Yes	Yes	Yes
Resin particle	No	Yes	No	Yes
washed washing	No/Yes (0.642)	Yes	No	No
Bar code	No	Yes	No	Yes
Wet strength	Not	Yes	No	Yes

Automatic Terminology Extractions

- Finding Termhoodness among phrases
 - State-of-the-art: C-Value (Frantzi et al 2000)
 - The C-value reflects a phrase technical significance :
 - To what degree a noun phrase should be consider a technical concept.
 - Computation consists of two parts,
 - Linguistic filter -> Natural language Processing (NLP)
 - Statistical-based evidence for terminological unit by computing nested NPs

Experiment


- All sentences in the corpus containing the candidate terms need to be PoS tagged and chunked
 - 40,149,317 parsed sentences
 - 5 months processing time
- Random sample of 637 phrases.
 - 222 negative, 451 positive
 - Manually assessed
- Tested 13 different features
 - Syntax, phrase length, C-value, *IPC-distribution-values*, document frequency, mutual information



Domain knowledge: IPC-distributional-values

• Our assumption

Phrases having a homogenous distribution of IPC codes will reflect the termhoodness compared to phrases with heterogeneous distribution

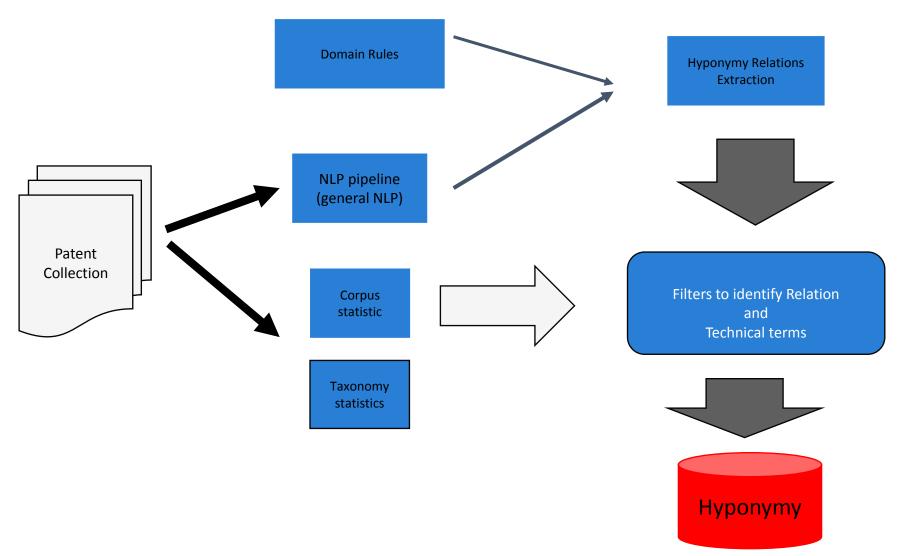
Result: Learning Termhoodness

Fea	atures			Feature combination																									
NLP	syntax	x	х	x	х	x	x	x	х	x			х	×	x	x	x	x		x	х		x	х	х				
NLP	Syntax frequency	x	х	x	x	x		x	х	x			х	x	x	x				х	x								
n-gram	Phrase length	x	х	х	х	х		x	х	x			х	x	x	x	,			х			х						
NLP & Statistics	C-value	x	х	х										х	x	x	x					х						х	
Co-occurrence	DF	x	х		х	х		x	х				х	x	x		x	х	х								х		
Probability	MI	x	х		х	х		x	х	x			х	x			x	х	x					х		x			
C-value and IPC	IPC:CValue	x	х	х					х		х											x							x
	IPC:sum	x	х	х	х	х	x	x	х	x	х	x																	
	IPC:count	x	х	х	х	х	x	x	х	x	х	x																	
IPC-distributional-	IPC:mean	x	х	х	х	х	x	x	х	x	х	x																	
values	IPC:median	x	х	x	х	х	x	x	х	x	х	x																	
	IPC:variance	x	х	х	х	х	x	x	х	x	х	x																	
	IPC:stddev	x				х	x				х	x																	
Correct	y Classified	77	77	77	78	76	71	77	77	78	77	71	77	76	77	75	75	69	70	76	67	71	73	68	68	65	68	66	71

<u>IPC-distributional-values</u> Using **Random Forest Regression** model obtained F1 score of 0.845 in accuracy (Sample data of 4,000)

Domain ontology populations

From A-Z, towards a patent text mining application



Ontology

- ...description basic categories and there relation
- Why would someone want to develop an ontology?
 - To share common understanding of the structure of information among people or software agents
 - To enable reuse of domain knowledge
 - To make domain assumptions explicit
 - To analyze domain knowledge
 - To make a Browsable search aid

Automatic Knowledgebase Ontology

© Linda Andersson 2019

Extracting Lexico- Semantic relation with different techniques

- Embedding identifies similarities between different words
 - Word: underwear Similar to: underpants , undergarment, panties, sportswear, undergarments, underclothes
 - Word: strength Similar to: strengths, strength, toughness, stronger, sfrength

(Extracted 0.6 threshold based upon Rekabsaz et al 2016 and Rekabsaz et al 2017)

- NLP technical term relation between multi words term
 - Multi word term: synthetic fibers Similar to: polyester fibers
 - Word: fabric Similar to: non cellulose fibers, melt-extruding thermoplastic synthetic resin fiber, nonwoven fabric, woven fabric (different type of fabrics)

With a wider semantic definition of the hyponym property

Include both 'part of' and 'member of' in the definition:

"... an expression A is a hyponym of an expression B iff the meaning of B is part of the meaning of A and A is subordinated of B. In addition to the meaning of B, the meaning of A must contain further specifications, rendering the meaning of A, the hyponym, more specific than the meaning of B."

Löbner 2002)

Hypernym a word with a broad meaning constituting a category

Hyponym a word of more specific meaning than a general or superordinate term applicable to it.

Distributional Semantic models

- Gives attributional relations in a given sample
- The usage define the meaning of a word?
- Linguistic hypothesis behind the popular usage statement

"You shall know a word by the company it keeps"

(Firth 1957 p. 11)

• ... is this true for all meaning of a word?

Assessment word2vec similarity candidates

The 0.6 threshold (Rekabsaz et al 2016 and Rekabsaz et al 2017)

The	e related words	Lexi	ico-semar	ntic relatio	ins	t						Similarity according to the w2v model trained on CLEF-IP
word_1	word_2	hypernym	hyponym	synonym		Spelling variant	word forms	Closeness* (context)	Other relation	Same word	No relation	Cosine
court	court	0	0	0	0	C) c) () () 1	0	1,0000
march	july	0	0	0	0) C) () 1	ι ο	0	0,9124
log	logs	0	0	0	0	C) 1	. () (0 0	0	0,7181
hard	soft	0	0	0	1	C) C) () (0 0	0	0,7509
feline	cat	1	0	0	0	0) () (0 0	0	
close	proximity	0	C	1	0	C) () (0	0	0,7395
certain	however	0	0	0	0	C) C) () (0 0	1	0,7101
display	lcd	0	0	0	0	C) C)	. (0 0	0	0,8296
light	hght	0	0	0	0	1) () (0 0	0	0,7021
patient	physician	0	0	0	0	() 1	L O	0	0,7344
perfume	perfiime	0	0	0	0	1	L C) () (0 0	0	0,7317
patient	patients	0	0	0	0	1	1) () 0	0	0,7596
light	illumination	0	0	1	0	() C) () () 0	0	0,7057
chair	furniture	0	1	0	0	0) C) () (0 0	0	

The month march, or to march

The rela	ated words	l	.exico-sema	ntic relation	S		Other r	relations				Similarity according to the w2v model trained on CLEF-IP
ward 1	used 2					Spelling	Word		Other	Same	No	Casing
word_1		hypernym	hyponym O		antonym	variant	forms	closeness	relation	word	relation	Cosine
march	march		0			, °					0	1,0000 0,9280
march march	april		0	, v		-				0	0	0,9280
march	august february		0					, <u> </u>		0	0	0,9244
		0	0						/ <u> </u>	0	0	0,9240
march	september	0	0	C	C	0 0	C	0	1	0	0	0,9202
march	october	0	0	C	C	0 0	C	0	1	0	0	0,9185
march	november	0	0	C	c c) C	C	0	1	0	0	0,9176
march	july	0	0	C	C) (C) (1	0	0	0,9124
march	january	0	0	C	C) C	C) (1	0	0	0,9121
march	june	0	0	C	C) C	C) () 1	0	0	0,9087
march	december	0	0	C	0) C	C		1	0	C	0,8844
march	filed	0	0	C	C) C	C	0	0	0	1	0,7487
march	entitled	0	0	C	C) C	C	0	C	0	1	0,7477
march	jan	0	0	C	C) C	C) C	1	0	0	0,7356
march	published	0	0	C	C	0 0	C	0 0	1	0	1	0,7293
march	feb	0	0	C	C) (C) (1	0	0	0,7261
march	dated	0	0	C	C) C	C) 0	0	0	1	0,7260

The rela	ated words	Le	xico-sema	ntic relatio	INS			Ot	ther relatio	ns		Similarity according to the w2v model trained on CLEF-IP
						Spelling	-	closeness		Same	No	
word_1		hypernym	hyponym	synonym	antonym	variant	forms	context	relation	word	relation	Cosine
address	address	0	0) C	0	(0 0	0	0	0	1	1
address	addresses	0	0		0	C) 1	0	0	0	0	0,918
address	register	0	0) C	0	0) C	1	0	0	0	0,771
address	registers	0	0) C	0	() C	1	0	0	0	0,757
address	memory	0	0) C	0	0) C	1	. 0	0	0	0,755
address	addr	0	0) C	0	0) C	0	0	0	1	0,753
address	accessed	0	0) C	0	() C	1	. 0	0	0	0,746
address	addressing	0	0) C	0 0	() C	1	0	0	0	0,744
address	byte	0	0) C	0 0	0) C	1	. 0	0	0	0,731
address	write	0	0) C	0 0	() C	1	. 0	0	0	0,726
address	accesses	0	0) C	0 0	() C	1	. 0	0	0	0,726
address	logical	0	0) C	0 0	0) C	1	. 0	0	0	0,718
address	written	0	0) C	0 0	() C	1	. 0	0	0	0,706
address	fetch	0	0) C	0 0	() C	1	0	0	0	0,702
address	bytes	0	0	0 0	0	() C	1	0	0	0	0,701
address	destination	1	0) C	0	() C	0	0	0	0	0,700

More Examples

The relat	ted words	Lex	kico-semar	ntic relatio	ons			Ot	her relatio	ons		Similarity according to the w2v model trained on CLEF-IP
						Spelling			Other	Same	No	
word_1	word_2	hypernym	hyponym	synonym	antonym	variant	forms	context	relation	word	relation	Cosine
bus	Bus	0	0	0	C	0 0	0	0	C	1	0	1
bus	Buses	0	0	0	C	0	1	0	C	0	0	0,8456
bus	Busses	0	0	0	C) 1	1	0	C	0	0	0,8360
bus	memory	0	0	0	C) 0	0	0	1	0	0	0,7023
spring	spring	0	0	0	C) 0	0	0	C	1	0	1
spring	springs	0		0	C	0 0	1	0	C	0	0	0,8654
spring	resilient	0	0	1	C	0 0	0	0	C	0	0	0,7260
spring	resiliently	0	0	1	c	0 0	0	0	C	0	0	0,7151
spring	urges	0	0	0	C) 0	0	0	C	0	1	0,7119
spring	urging	0	0	0	C) 0	0	0	C	0	1	0,7103
table	table	0	0	0	C) 0	0	0	C	1	0	1
table	tables	0	0	0	C	0 0	1	0	C	0	0	0,8684
table	results	0	0	0	C) 0	0	0	C	0	1	0,7539
mouse	mouse	0	0	0	C) 0	0	0	C	1	0	1
hive	hive	0	0	0	C	0 0	0	0	C	0	1	1

Our approach

	Patent	MedIR	MathIR	CLEF paper	Brown
Domain Rules	92,702	1,643,254	48,922	3,698	762
Simple Rules	135,550	2,084,529	70,822	5,748	950
No Rules	135,946	2,252,056	73,472	6,164	944

NLP adaptation methods

- No rules (NoRules) was used to modifying the NLP pipeline analyses
- Three rules (SimpleRules) addressing observed errors among sentence fitted the LSP patterns.
- Domain rules, (DomainRules) here we applied the simple rules (2) and the rules.

Hyponymy lexical relation extraction using Lexico-syntactic patterns

Exam	ple sentences	LSP
1	work such author as Herrick, Goldsmith, and	
	Shakespeare	-such NP as {NP, }* {(or and)}
2	Even then, we would trail behind other	
	European Community member, such as	
	Germany, France and Italy	
3	Bruises, wounds, broken bones or other injuries	SNP{, NP}*{,} or other NP
4	Temples, treasuries, and other important civic	NP{, NP}*{,} and other NP
	buildings	
5	All common-law countries, including Canada	NP{,} including {NP,}*
	and England	{or and} NP
6	most European countries, especially France,	NP{,} especially {NP,}*
	England, and Spain	{or and} NP

(Hearst 1992)

PATENT

"The novel conjugate molecules are provided for the manufacture of a medicament for gene therapy, apoptosis, or for the treatment of diseases such as cancer, autoimmune diseases or infectious diseases "

the_treatment_of_diseases		Property assertions: the_treatment_of_diseases	310
Types 🕒		Object property assertions 🕕	_
term	@×0	hasExample 7	3(
hypernym	?@	isHypernymOf autoimmune_diseases	(
		sHypernymOf cancer	(
Same individuals 💮		isHypernymOf infectious_diseases	(

BROWN CORPUS

"Long-lived carbon-14 from the fusion process would cause four million embryonic, neonatal or childhood deaths and stillbirths over the next 20 generations, and between 200,000 and one million human beings now living would have their lives cut short by radiation-produced diseases such as leukemia"

by_radiation-produced_diseases	Property assertions: by_radiation-produced_diseases
Types 🕒	Object property assertions 📀
●term @⊗⊙	hasExample 9 💿 🏼
hypernym	isHypernymOf leukemia

Experiment & Evaluation

- For the evaluation only a smaller set was sampled out (1,647 instances) for manual assessment, approximately 100 instances per data collection and method.
 - one instance correspond to one relation extracted from a sentences
- Three groups: linguist, expert and non-expert.

5 back	Previous	Now doing 1	567 of 1647	Next	5 forward	Done				
						95%				
Lists of	households	were obtaine	d from popul	ation regi	stries , voter li	sts , manual enumeration , c	or other met	nods		
						wrong boundary				
				manua	l enumeration	is a kind of	methods	*		
				manua	l enumeration	is a part of	methods			
				manua	l enumeration	is a member of	methods			1
			Previous	manua	l enumeration	is in another relation with	methods		Next	
				manua	l enumeration	has no relation to	methods			
						Cannot say anything abo	out the two			
						The sentence make	s no sense			
				Difficu	lty:	* ***				

Inter-annotator agreement: different assessment groups

- The inter-annotation agreement for identifying relations range between 81% and 88%
- The inter-annotation agreement decreases for wrong NP boundary identifications

	Ма	thIR	Brown	CLEFpaper
	Linguist vs Expert	Linguist vs None Linguist	Linguist vs None Linguist	Linguist+Domain knowlege vs Expert
Relations	85%	81%	83%	88%
No relation	68%	72%	72%	75%
Cannot tell	86%	77%	83%	89%
Makes no sense	90%	89%	80%	93%
hypernymBoundaryWrong	64%	67%	83%	67%
hyponymBoundaryWrong	62%	67%	85%	82%

Results: All made from each sample

Number of positive extraction in relation to all extraction made for each sample and method

Group: Linguist	DomainRules	NoRules	SimpleRules
Brown	39%	40%	40%
MedIR	52%	33%	54%
MathIR	44%	66%	33%
CLEFpaper	50%	47%	56%
Patent	64%	71%	81%

The table displays the percentage of all examined sentences matching the LSP patterns where a positive and correct extraction was identified. For three out of five data set the method SimpleRules was preferred.

Combining NLP & Distributional Semantics

Embedding identifies similarities between different words

- Underwear **similar to** underpants , undergarment, panties, underclothes
- Strength similar to strengths, strength, toughness, stronger, sfrength

(Rekabsaz et al 2016 and Rekabsaz et al 2017)

But technical semantic relations are a mixture of single words and phrases

$$JoinedSimilarity = \sum_{\substack{i,j=1,n\\i\neq j\\i< j}}^{N} \frac{\cos\left(\stackrel{\rightarrow}{w_i}, \stackrel{\rightarrow}{w_j}\right)}{N}$$

- w_i , w_j represent each word vector pair cosine similarity of a MWT
- *N* is the number of words for a MWT
- synthetic fibers synonym to polyester fibers
- thrips hypernym to bulb fly larvae

Joined Similarity

- Does "Network lan" and "communication link" have (hyponymy) relation? Yes
- Does "mechanical stress" and "communication link" have a (hyponymy) relation? No

$$JoinedSimilarity = \sum_{\substack{i,j=1,n\\i\neq j\\i< j}}^{N} \frac{\cos\left(\underset{w_i}{\rightarrow}, \underset{w_j}{\rightarrow}\right)}{N}$$

- w_i , w_j represent each word vector pair cosine similarity of a MWT
- *N* is the number of words for a MWT

Automatic Query Formulation and Expansion

	Dyson e	d States Design Pater	(45) Date o		**	Dec. 21, 2004
(54)		BILE BODY	Primary Examiner (74) Attorney: Ag			Smith
(75)	Inventors:	Andrew P Dyson, West Blocenfield, MI (US); Joseph S Dohner, Blocenfield,	(57)	CLAIN	4	
		MI (US); David C McKinnon, Biovenfield, MI (US); Glenn W Abbott, West Bloomfield, MI (US)	The cenamental d and described.	ksign for an ar	noesobi	le body, as showe
(73)	Anignee:	DaimlerChrysler Corporation, Aubura		DESCRIPT	TON	
		Hills, MI (US)	FIG. 1 is a front		rw of at	a automobile hody
(**)	Term	14 Years	showing our new			
(21)	April No.	29/201.094	FIG. 2 is a side v FIG. 3 is a mar p		diamond	
(22)	Filef	Mar. 10, 2004	FIG. 4 is a front y			-
1513	1.00 (7)		EIG. 5 is a mar vi			
(52)		D12/92	FIG. 6 is a front			
(58)	Field of 5	earch	showing a second FIG. 7 is a side v		C OUT IN	ew design;
(56)		References Cited	FIG. 8 is a rear p			. 6.
1.000		S. PATENT DOCUMENTS	FIG. 9 is a front v			
			FIG. 10 is a rear			
	D476,603 S D477,253 S	* 11/2002 Delawr et al		Itustration only,		es presented in the not form a part of
	of by exami	001	1.0	Claim, 8 Druw	ine She	with

Claims (1)

1. The ornamental design for an automobile body, as shown and described.

Example of automatic query generation

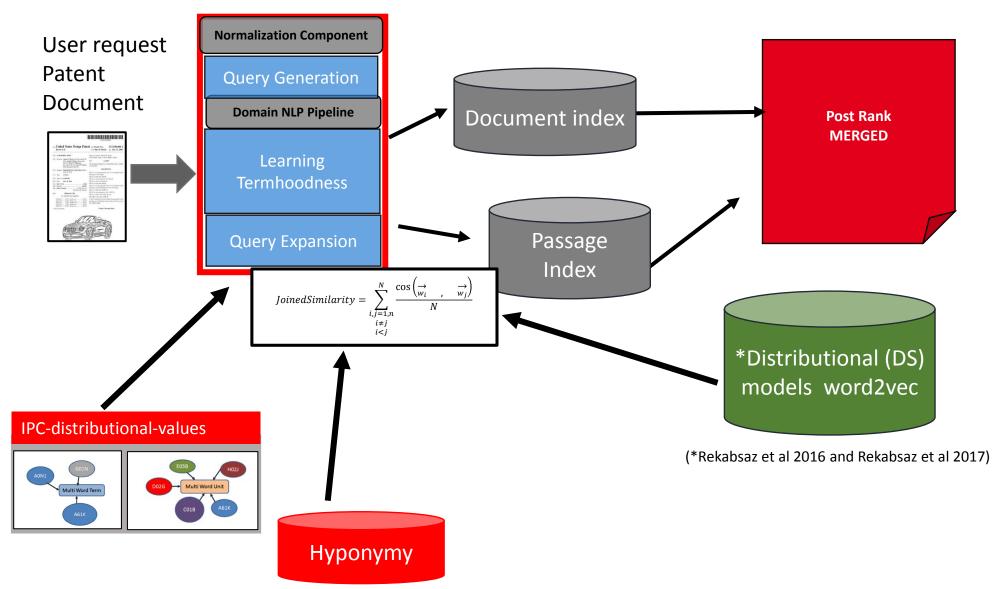
<QUERY>

(conured OR clutch OR connectability OR nmofs OR fclp OR dnsr OR slippage OR anda OR rotational OR acceleration OR backlash OR subordinate OR estimating OR ure OR brake OR torque OR stopped OR vehicle OR wheel OR command OR outputting OR estimate OR shock OR nsr OR driving OR pedal OR wheels OR shaft OR prohibiting OR determining OR sensor OR tws OR drive OR occurrence OR estimated OR prescribed OR stopping OR elapsed OR motor OR speed OR gdv OR instruction OR input OR output OR controller OR rotating OR accelerator OR electric OR force OR flag) AND

("vehicle driving force control apparatus" OR "driver beau" OR "clutch connection command" OR "rear whee

path" OR "output rotational speed" OR "input ro "detected parameter" OR "generation load torqu "determination occurrence" OR "four-wheel driv proceed" OR "wheel speed sensor" OR "output s "backlash elimination" OR "drive mode switch" (range" OR "transition time" OR "wheel speed" C connection" OR "motor torque" OR "generator la "high rate" OR "electric motor" OR "throttle ope force" OR "connected state" OR "previous equat "prescribed rotational speed difference" OR "12-"disconnected state" OR "electric clutch" OR "foo </DUC

Automatic query expansion terms


brake pedal:

vehicle operating pedal, conventional hydraulic brake system pedal devices position brake actuating member brake actuating member hydraulically-assisted rack pinion steering gear brake operating member conventional braking system pair pedals

accelerator pedal case pedal device pedal device

Domain Knowledge makes Al smart

Experiment

- CLEF-IP 2013 Collection (~3 M)
 - English topics (50)
 - Patent document represent a topic
- Solr Lucene (4.7.2)
 - Select handler

- Query Generation
 - Query length
 - NLP and Statistical
 - Text section (claims or entire document)
 - Four Technical terms filters
 - Query expansion using NLP and Word Embedding
- Baseline, log(tf)*IDF (Cetintas et al 2012)

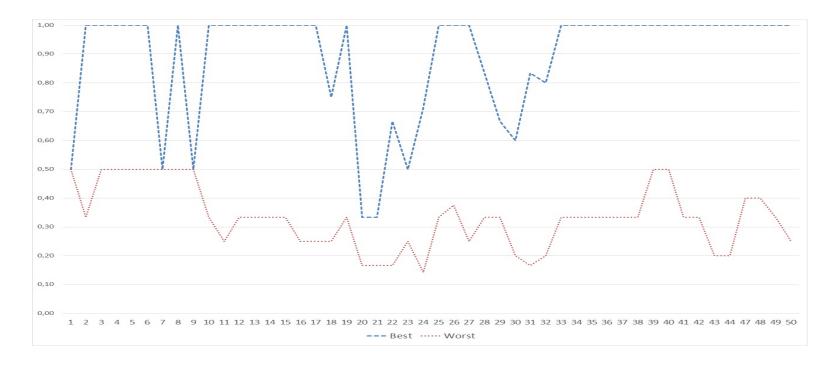
<topic ucid: EP-1287743-A2 query: PSG-47> (freezing OR start OR liquid OR dough OR glucose OR bake-off OR coating OR foodstuff OR pre-glaze OR syrum) AND ("complex sugar"~5 OR "glucose syrup"~5 OR "dough

product"⁵ OR "dough mixture"⁵ OR "form liquid"⁵ OR "pre-glaze composition"⁵ OR "coating step"⁵ OR "coating part outer surface dough mixture"⁹)

Patent Passage Retrieval CLEF-IP 2013 (1000 Passages per topic, max 100 doc)

	Run	Query lengths	IR model	PRES	Recall	МАР	MAP(P)	Prec(P)	Post Ranking
hest methods	NLP, Expanded, Word, Technical terms (IPC), skip- gram (NLP1)	100	LMJM	0.544	0.631	0.285	0.112	0.218	Merged
(m		100	lmjm	0.492	0.574	0.300	0.114	0.208	Merged
Ton	Statistical, only claim, unigram	100	LMJM	0.444	0.560	0.187	0.146	0.282	Merged
	Baseline - unigram	100	LMJM	0.536	0.622	0.226	0.132	0.229	Merged
Best official runs clef-IP	Document, word, hyphened MWUs, Upper bound IDF	N/A	BM25	0.433	0.540	0.191	0.132	0.213	N/A
	Document, word, hyphened MWUs, No upper bound IDF	N/A	BM25	0.432	0.540	0.190	0.132	0.214	N/A

Patent Passage (Paragraph) Retrieval CLEF-IP 2013 Results with Automatic Query Expansion

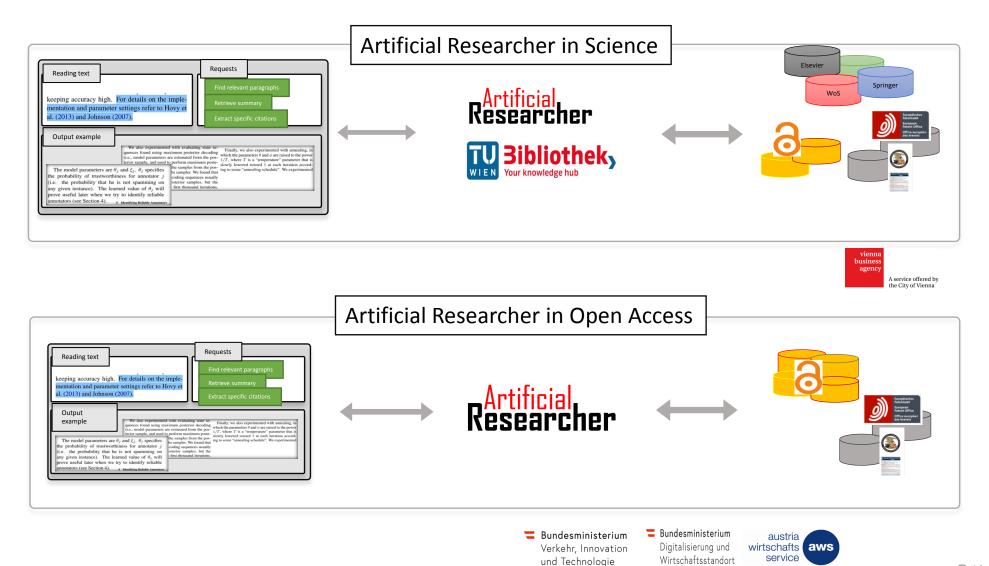


Main method	AQE	PRES	Recall	МАР	MAP (P)	Precision (P)
NLP1	Hyper_Sem5	0,563	0,653	0,271	0,106	0,207
NLP1	HyperHypo_Sem5	0,558	0,649	0,269	0,104	0,204
NLP1	Hyper_Sem15	0,554	0,634	0,273	0,109	0,205
NLP1	HyperHypo_Sem15	0,549	0,633	0,270	0,102	0,202
NLP1	Hyper_Sem10	0,548	0,628	0,266	0,105	0,203
NLP1		0,544	0,631	0,285	0,112	0,218
NLP1	Seed Ontology	0,486	0,564	0,266	0,098	0,194

- Hyper_SemN: Expansion with only hypernym relations, the top N(5,10,15) most similar words
- Hypo_SemN: Expansion with only hyponym relations, the top N(5,10,15) most similar words
- HyperHypo_SemN: Expansion with hyponym and hypernym relations, the top N(5,10,15) most similar words

What can we learn in terms of Recall?

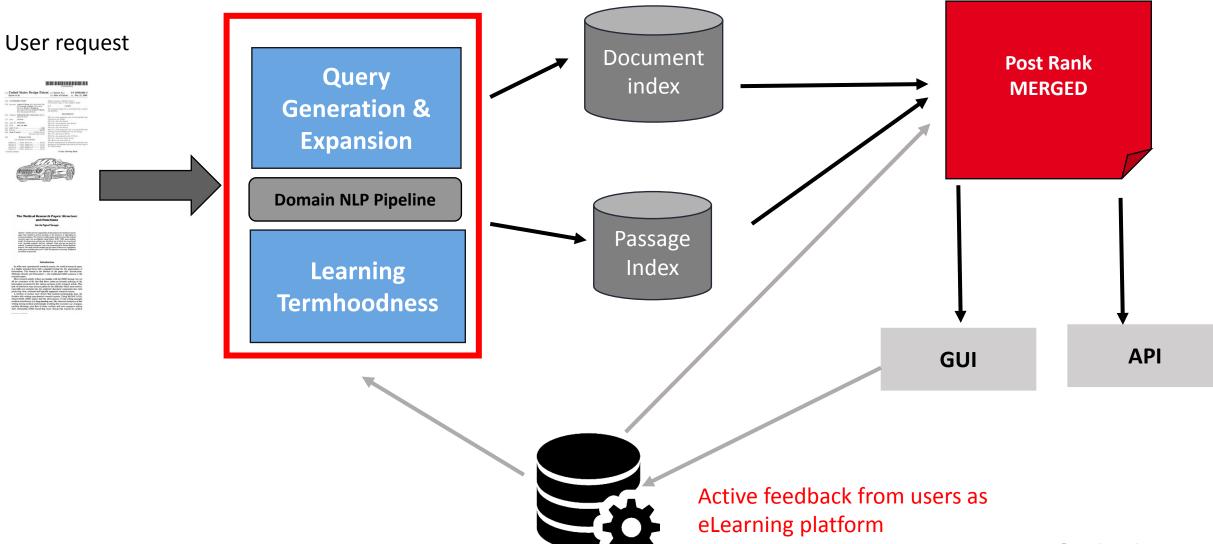
- For 26 topics we achieve a recall of 1 with at least for one of the QF methods presented in this experiment
- However there are significant limitation in doing ML since 50 topics are extracted form 37 patent documents



Conclusion

- A successful text mining solution does not only focus on developing the technology or the best deep learning algorithm, it is much more complex.
 - My PhD research shows it is as important to know how to customise the text mining solution to the language, the domain, and the users need
- Language Complexity
 - Word formation of new words are particular important for the patent text genre.
- Domain Complexity
 - Multi word terms
- Task Complexity
 - Information need, retrieve relevant paragraphs and not just documents

Two up coming projects



© Linda Andersson 2019

Cross Genre retrieval Domain knowledge is the key

© Linda Andersson 2019

Questions?

Please assess the sample examples and send your assessments to <u>andersson@ifs.tuwien.ac.at</u>, we will put up the statistics on our web page <u>http://www.ifs.tuwien.ac.at/patentsemtech/</u>

Go online and give feedback with this survey https://forms.gle/PiYYYgx27E8mGGzf6

References

- Grefenstette G. and Tapanainen P. (1994) What is a word, what is a sentence?:problems of Tokenisation. Rank Xerox Research Centre,
- Firth J.R. .(1957) A synopsis of linguistic theory 1930-1955. Studies in linguistic analysis, pages 1–32.
- Rekabsaz, N., Lupu, M., Hanbury, A., and Zuccon, G. (2016). Generalizing translation models in the probabilistic relevance framework. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016, pages 711–720.
- Rekabsaz N., Lupu M., Baklanov A., Hanbury A., Dur A, and Andersson L. (2017). Volatility prediction using financial disclosures sentiments with word embedding-based IR models. In Proc. of ACL. Association for Computational Linguistics, Stroudsburg, PA, USA.
- Löbner, S. (2002). Understanding Semantics. London
- Frantzi K., Ananiadou S., and Mima H. (2000). Automatic recognition of multi-word terms:. the c-value/nc-value method. Internat. Journal on Digital Libraries.
- Cetintas S. and Si L. (2012) Effective query generation and post processing strategies for prior art patent search. J. AM. Soc Info. Tec..
- Hearst A. M. 1992. Automatic acquisition of hyponyms from large text corpora. In Proceedings of the 14th conference on Computational linguistics - Volume 2 (COLING '92), Vol. 2. Association for Computational Linguistics, Stroudsburg, PA, USA, 539-545. DOI: <u>https://doi.org/10.3115/992133.992154</u>
- Marcus M. P, Santorini B., and Marcinkiewicz M. A.(1993) Building a large annotated corpus of english: The penn treebank. Computational Linguistics, 19(2):313–330.