
DIPLOMARBEIT

Innovative User Interfaces for accessing
Music on Mobile Devices

Ausgeführt am
Institut für Softwaretechnik und Interaktive Systeme

der Technischen Universität Wien

unter der Anleitung von Ao.Univ.Prof. Dr. Andreas Rauber

durch

Peter Hlavac
Deublergasse 37, 1210 Wien

Matr. Nr. 9625925

Wien, März 2007

Eidesstattliche Erklärung
Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benützt
und die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe.

2

Danksagung
Diese Arbeit ist meiner Oma gewidmet, deren größter Wunsch ist, meinen
Abschluß miterleben zu dürfen.

Danke Mama, daß Du seit es mich gibt, einfach immer für mich da gewe-
sen bist.

Speziellen Dank an meinen Freund Jörg, der mich stetig mit seinem weit-
sichtigen Blick von Oben und zahlreichen Motivationsschüben durch die End-
phase meines Studiums begleitet hat.

3

Zusammenfassung

In dieser Arbeit werden unterschiedliche Visualisierungsarten von Musik-
sammlungen auf mobilen Endgeräten vorgestellt. Weiters werden innova-
tive Ideen zum Navigieren durch Musiksammlungen präsentiert. Um die
angeführten Konzepte auf mobilen Endgeräten zu demonstrieren, wurde der
Prototyp MobileSOM (Mobile Selection of Music) entwickelt. Der Proto-
typ basiert auf einem Grid-Unit Verfahren, welches eine Musikbibliothek als
2-dimensionale Musiklandkarte (Grid) in unterschiedlichen Visualisierungen
darstellt, wobei Musikstücke mit ähnlichen Eigenschaften in Feldern (Units)
zusammengefasst werden. MobileSOM verfügt über ein intuitives User Inter-
face, das dem Benutzer ein einfaches Auswählen von beliebigen Musiktiteln
auf der Landkarte ermöglicht und diese in einer Playlist abspeichert. Die
Lieder können entweder direkt vom Gerät selbst oder von einem im Netzwerk
verfügbaren Server abgespielt werden. Außerdem kann das Gerät in Kom-
bination mit MobileSOM als Fernbedienung benutzt werden. Dabei werden
die ausgewählten Songs auf einem anderen Gerät abgespielt und die Wieder-
gabe durch die Software ferngesteuert. Abhängig von den Ausstattung des
mobilen Endgerätes kann der Prototyp Lieder in verschiedenen Audiofor-
maten wie mp3, wav, amr, usw. abspielen. MobileSOM wurde nicht dafür
konzipiert, um punktgenau einen bestimmten Titel zu entdecken. Es gibt
keine speziellen Suchmechanismen um genau einen vom Benutzer gewün-
schten Song zu finden. Vielmehr geht es darum, den Benutzer bei der Er-
stellung von Playlisten, abgestimmt auf dessen Stimmungslage oder Hörver-
halten, zu unterstützen.

MobileSOM wurde in Java Micro Edition (J2ME) programmiert und ist somit
einem breiten horizontalen Markt von mobilen Endgeräten zugänglich. Der
Prototyp ist der erste verfügbare Audioplayer in J2ME, mit dem das Erstellen
von Playlisten auf einer Musiklandkarte möglich ist. Zur Demonstration wur-
den zum Zeitpunkt der Implementierung die modernsten mobilen Endgeräte
bestimmter Hersteller ausgewählt, um maximale Ressourcen für die rechen-
intensive Multimedia-Anwendung bereitzustellen. Trotz erfolgreicher Tests
liefen auf Grund von eingeschränkter Leistungsfähigkeit der Hardware nicht
immer alle Bestandteile der Software fließend. Der Speicher für mobile An-
wendungen in J2ME ist sehr begrenzt, die Darstellung des User Interaces
zum Teil sehr schleppend, die Wiedergabe von mp3 Dateien in Java wird
nur auf wenigen Geräten unterstützt und das Streamen von Musikdateien in
hoher Qualität über das Netzwerk ist oft mit längeren Verzögerungen ver-
bunden. Bei den nächsten Generationen von mobilen Endgeräten werden die

4

5

erwähnten Schwachstellen der Vergangenheit angehören. Der in dieser Arbeit
präsentierte Prototyp bietet somit Anreiz für die Umsetzung der vorgestellten
Konzepte in kommerziellen Musikanwendungen in der nahen Zukunft.

Abstract
The thesis introduces a framework for displaying music libraries in differ-
ent visualisation styles on mobile devices. Furthermore innovative browsing
techniques for navigating through music collections are presented. To demon-
strate the concepts for exploring music on a mobile device the prototype
MobileSOM (Mobile Selection of Music) was implemented. The prototype
offers different visualisation styles of music libraries based on the Grid-Unit
concept which displays a music collection on a two-dimensional map (Grid)
where pieces of music with similar properties are grouped into Units. More-
over MobileSOM has an intuitive user interface that enables a simple way of
selecting music titles from the Grid and adding them to a playlist. Playlists
generated in this manner are played on a mobile device or streamed from a
web server. The device can also be used as a remote control, i.e. instead
of playing a piece of music, the software triggers another device to play the
song. Depending on the audio capabilities of the device the prototype plays
songs in various audio formats like mp3, wav, amr, etc. MobileSOM is not
designed for finding a specific piece of music. There are no special search
mechanisms implemented for locating exactly the one song that a user has
in his mind. MobileSOM assists in generating playlists that fit into a specific
mood or style and encourages the user to explore unknown music content
rather than to look for the latest Britney Spears hit.

MobileSOM is programmed in Java Micro Edition (J2ME) making the pro-
gram available to a wide horizontal market of mobile devices and it is the first
J2ME audio player ever that implements the concept of generating playlists
using a two-dimensional music map. For demonstration purposes a small set
of state-of-the-art devices were carefully selected from various manufactur-
ers to run a slimmed version of MobileSOM. Testing the prototype on real
world devices showed that the presented concepts are practicable however,
not all implemented features perform smoothly because of hardware limi-
tations: The maximum allowed size for a J2ME application running on a
mobile device is very small. The graphical computation power on most de-
vices is weak, only a few devices support an implementation of the JVM that
plays back mp3 files and last but not least the network speed for streaming
music in high quality needs to be increased.
MobileSOM has not yet reached a level, which would suggest its immedeate
commercial usage. However, next generation devices will overcome the tech-
nological bottle neck so that this work will be a great inspiration for com-
mercial music applications running on mobile devices in the near future.

6

Contents

1 Introduction 10
1.1 Mobile Music Market . 10
1.2 Consuming Music . 10
1.3 Scope and Overview of the Thesis 11

2 Related Work 13

3 Mobile Devices 15
3.1 Personal Digital Assistants (PDAs) 16

3.1.1 History . 16
3.1.2 Features . 16

3.2 Mobile Phones . 18
3.2.1 History . 18
3.2.2 Features . 18

3.3 Portable Music Players . 20
3.3.1 History . 20
3.3.2 Features . 20

3.4 Summary . 22
3.4.1 Interaction . 23
3.4.2 Memory . 23
3.4.3 Connectivity . 23
3.4.4 Synchronization . 23
3.4.5 Customization . 23
3.4.6 Devices selected for MobileSOM Evaluation 24

4 Concepts for Exploring Music Libraries 25
4.1 Music Libraries . 25

4.1.1 Tagging . 25
4.1.2 Automatic Metadata Generation 26
4.1.3 Collaborative Filtering 27

4.2 The Grid-Unit Concept . 27
4.3 Visualizing the Grid . 28

4.3.1 Plain Grid . 28
4.3.2 Pie Chart . 30
4.3.3 Album Covers . 30
4.3.4 Metaphoric Symbols . 30
4.3.5 Self Organising Map . 31

7

8 CONTENTS

4.3.6 Combined Views . 32
4.4 Playlist Generation on Mobile Devices 32
4.5 Summary . 33

5 Developing a Mobile Application 35
5.1 J2ME . 36

5.1.1 Connected Limited Device Configuration 37
5.1.2 Mobile Information Device Profile 38
5.1.3 A MIDlet . 38
5.1.4 Signing a MIDlet . 39
5.1.5 MMAPI . 39
5.1.6 User-Interface API . 40
5.1.7 Record Management System (RMS) 42

5.2 IDE . 42
5.2.1 NetBeans . 43
5.2.2 NetBeans Mobility Pack 43

5.3 Emulators . 43
5.3.1 Java Wireless Toolkit 44
5.3.2 Carbide.j . 44
5.3.3 Sony Ericsson SDK . 44

5.4 A “Hello World”-MIDlet . 45
5.5 Summary . 46

6 MobileSOM 49
6.1 Software architecture . 49

6.1.1 Resources . 50
6.1.2 Package IO . 52
6.1.3 Package Manager . 54
6.1.4 Package Map . 55
6.1.5 Package Player . 58
6.1.6 Package Utils . 58
6.1.7 Package MIDlet . 59
6.1.8 Manifest . 60

6.2 XPlayer: MobileSOM as Remote Control 62
6.3 Testing Environment . 63

6.3.1 Mobile Device Capabilities 63
6.3.2 Demonstration Music Libraries 63

6.4 Installation . 64
6.4.1 Emulator . 64
6.4.2 Real World Device: Nokia 7710 66

CONTENTS 9

6.5 Configurations . 68
6.6 User Interaction . 69

6.6.1 The User Interface . 69
6.6.2 Using the Stylus . 70
6.6.3 Hotkeys . 70
6.6.4 Welcome Assistant . 71
6.6.5 Roll the Dice . 73
6.6.6 Scrolling and Zooming 73
6.6.7 Playlist Editor . 74
6.6.8 The Player . 76

6.7 Emulators versus Real World Devices 77
6.8 Practical Experiences on Real World Devices 78

6.8.1 Interaction with the Stylus 79
6.8.2 Multimedia . 79
6.8.3 Sandbox . 79

6.9 Future Extensions . 80
6.9.1 Switching between different Representation Layers 80
6.9.2 Drag & Drop Functionality 80
6.9.3 Mouse Pointer . 81
6.9.4 Extended Playlist Generation 81
6.9.5 Progressive download 81
6.9.6 On-Device Feature Extraction & Map Image Re-design . . 81

6.10 Summary . 81

7 Conclusion 83
7.1 Innovative User Interfaces for accessing Music on Mobile Devices 83
7.2 Future Work . 84

A Appendix 85
A.1 Build a Map Item List . 85
A.2 Device Specifications . 88
A.3 Music . 91

Chapter 1
Introduction

1.1 Mobile Music Market

In the age of digital music distribution getting a specific piece of music is
easier than ever. Today’s commercial music download platforms like iTunes1

or the European counterpart OD22 offer catalogs with more than 1.5 million
songs. The number of legal downloads of single audio tracks increased in
Europe in 2006 from 65 to 111 millions, which is an increase by 80% [IFP07].
Thanks to the growing popularity of 3G networks the mobile market will be
a main distribution channel not only for ring tones but also for full track
downloads. Increasing bandwidth and lower data transfer costs encourage
users to access digital content over their mobile phones. Napster3 offers
over 3 Million tracks any time and anywhere for consumers to enjoy music
on the PC, their mobile phone or on an MP3 player. For a monthly flat
rate Napster customers can stream or download music online via fixed or
mobile devices and reproduce their songs without limitations, as long as the
monthly subscription is maintained. Mobile Operators extend their portfolio
with music services like the Austrian network operator ONE who launched
the “Ladezone” 4 in 2006. Beside ring tones, games and other styling assets
users can purchase and download music from a repertoire with more than
hundred thousand songs directly to their mobiles. More and more people use
their mobile devices for listening to music, which is confirmed by the number
of sold portable music players that totalled around 120 million in 2006, an
increase of 43 per cent on the previous year[IFP07]. To sum up: The mobile
music market is growing!

1.2 Consuming Music

For desktop machines many services for consuming music from the Internet
have evolved. Online radio stations like Pandora5 or last.fm6, commercial

1http://www.apple.com/itunes/
2http://www.od2.com
3http://www.napster.com/napstermobile/
4http://www.ladezone.at
5http://www.pandora.com
6http://www.last.fm/

10

1.3 Scope and Overview of the Thesis 11

download platforms offering different styles of music like Beatport7 or online
shops like the Black Market8 offer consumers easy access to their favourite
music. In case a user wants to listen to his music elsewhere than on his PC,
he might transfer his library to a mobile device. Consuming music on mobile
devices is less convenient because they have fewer resources compared to av-
erage desktop systems. Displays are much smaller and the lack of a keyboard
makes it difficult to find a specific song. User interfaces and program logics
must be adapted or even redesigned for those devices. The focus of the work
presented is on graphical user interfaces and navigation opportunities that
enhance the access to music on mobile devices. To demonstrate new ways
for exploring music, the prototype MobileSOM (Mobile Selection of Mu-
sic) was implemented. The prototype offers a framework for using different
visualisation styles of music libraries based on the Grid-Unit concept which
displays a music collection on a two-dimensional map where pieces of music
with similar properties are grouped into units. Moreover MobileSOM has
an intuitive user interface that simplifies selecting music titles from the map
and adding them to a playlist. Playlists generated in this manner can then
be played on the mobile device or sent to an external player. The prototype
is programmed in J2ME making the program available to a wide horizontal
market of mobile devices.

1.3 Scope and Overview of the Thesis

The main contribution of this thesis is the design and implementation of
the prototype MobileSOM. In the design phase intensive research has been
carried out to find a group of mobile devices of interest, setting up a suitable
developing environment and how to realize different visualization concepts
on mobile devices. The thesis introduces existing approaches to exploring
music libraries both on desktop machines and mobile devices in Chapter 2.

Chapter 3 discusses the evolution of mobile devices and their features.
Furthermore the state-of-the-art devices used for the demonstration of the
prototype MobileSOM are presented.

In Chapter 4 concepts for exploring and displaying music content on mo-
bile devices with respect to the application MobileSOM are shown.

Chapter 5 gives an overview of the integrated development environment
and shows how to design a mobile application in general.

The central chapter of the thesis, Chapter 6, provides a detailed descrip-
tion of the software architecture, followed by an installation guide for deploy-

7https://www.beatport.com/
8http://www.soulseduction.com/

12 1 Introduction

ing and running the prototype on real world devices. The user interface and
the interaction possibilities within the software are explained. At the end
of the chapter practical experiences of running MobileSOM on real world
devices and ideas for extending the software with new features are discussed.

Finally, in Chapter 7, the work presented in the thesis is summarized and
an outlook for using MobileSOM in commercial applications is given.

Chapter 2
Related Work

The work has originated in the project SOM-enhanced JukeBox (SOMeJB)
[RPM03], developed by the Institute of Software Technology and Interac-
tive Systems at the Vienna University of Technology. The SOMeJB is an
approach to automatically create an organization of a music archive follow-
ing the sound similarity of the music files. More specifically, characteris-
tics of frequency spectra are extracted and transformed according to psy-
choacoustic models. Resulting psychoacoustic rhythm patterns are further
organized using an unsupervised neural network, the Growing Hierarchical
Self-Organizing Map (GH SOM) [RMD02]. Particularly, a Self-Organizing
Map is employed to create a map of a musical archive, where pieces of music
with similar sound characteristics are organized next to each other on the
two-dimensional map display. Locating a piece of music on the map, leaving
a user with related music next to it, allows intuitive exploration of a music
archive. Different visualization techniques for a map can be found in Islands
of Music (IoM) [Pam01]. The applications PlaySOM [DNR05] and Pocket-
SOMPlayer [NDR05] enable users to browse music collections, select tracks,
export playlists as well as listen to the selected songs. The PlaySOM presents
a rich interface, offering different selection models, a range of visualizations,
advanced playlist refinement, export functionality to external player devices
and a basic playback mode of selected songs. The PocketSOMPlayer, on the
other hand, offers a slim version of the desktop application, optimized for
mobile devices. MobileSOM is an enhanced version of the PocketSOMPlayer
with more sophisticated features and is the first SOM-based audio player
entirely programmed in J2ME.

Other applications that inspired the design of MobileSOM were ZuiScat[BR05]
and CoMIRVA[Sch06]. ZuiScat is a visualization concept for querying large
information spaces on Personal Digital Assistants (PDAs). Retrieval results
are presented in a dynamic scatter plot, which is enhanced by geometric and
semantic zoom techniques to provide smooth transitions from abstract visual
encodings to data content. CoMIRVA1 is a framework implemented in Java
for hosting various algorithms concerning music, multimedia, information re-
trieval, information visualization, and data mining.

1http://www.cp.jku.at/people/schedl/Research/Development/
CoMIRVA/webpage/CoMIRVA.html

13

14 2 Related Work

Figure 2.1: iPhone: Browsing through albums using the RSVP technique

Figure 2.2: LyricShow Player: A audio player programmed in J2ME showing
the lyrics while playing the song

The latest invention from Apple, the iPhone2, uses a smart technique called
Rapid Serial Visual Representation (RSVP)[dBS00] for browsing through
a user’s entire music collection on the device (see Figure 2.1). LyricShow
Player3 is an audio player programmed in J2ME that runs song lyrics syn-
chronously to pieces of music while played.

2http://www.apple.com/iphone/
3http://www.mobile-mir.com/en/LyricShow.php

Chapter 3
Mobile Devices

Before discussing sophisticated user interfaces for exploring music on mobile
devices, the first question to answer is: What is a mobile device? Let’s start
with some definitions that straiten the imagination of what a mobile device
is and what it is not or to put it differently: What kind of mobile devices
do we need to run innovative music browsing software on? At the end of
this chapter the reader will understand the prerequisites a device must be
capable of in order to put into practice the concepts that will be presented
in the thesis.

In general, a mobile device is a light-weight technical accessory a user
can carry and interact with. A primitive pocket calculator or a wristwatch
already fits this definition. For more complex user interaction a mobile de-
vice provides physical elements for interaction like a keyboard, a pointing
device for touch sensitive devices, a control pad or a wheel for pointing to or
selecting from the information displayed. Less conventionally, some devices
have position and movement sensors. Even squeezing a device is used for
interaction [HFG+98]. To give feedback to the user about its own state, the
device it is equipped with visual or aural output capabilities like a display,
loudspeakers or mechanical powered functions like vibration. Figure 3.1 on
page 16 groups mobile devices into three categories: PDAs, communication-
and music devices. This is only a small subset of groups of mobile devices
available but puts the focus on the devices of interest to run music browsing
software on. Every category shows four representatives (a-d) chronologically
ordered. After discussing the evolution and features of mobile devices the
reader knows about the actual state-of-the-art devices and which devices ac-
cording to the following features are suitable for the prototype MobileSOM
presented in this work:

• Interaction

• Memory

• Connectivity

• Synchronization

• Customization

15

16 3 Mobile Devices

PDA

Music

Communication

Pa Pb Pc Pd

Ca Cb Cc Cd

Ma Mb Mc Md

Figure 3.1: Mobile Devices divided in three Categories: PDAs,
Communication- and Music Devices

3.1 Personal Digital Assistants (PDAs)

3.1.1 History

The term “personal digital assistant” got popular at the Consumer Electronics
Show in Las Vegas, Nevada in 1992 used by the Apple Computer CEO John
Sculley [Kob05]. In fact, PDA forerunners were available as early as the mid-
1970s; first as very advanced calculators, see Figure 3.1-Pa, then as electronic
organizers like palmtops or pocket PC’s in Figure 3.1-Pb,c and today as pda-
mobile-phone hybrids like the Nokia 7710 shown in Figure 3.1-Pd.

3.1.2 Features

Interaction

PDAs are equipped with touch screens for user interaction, some buttons
that are usually reserved for shortcuts to primarily used programs and a de-
tachable stylus. Interaction is done by tapping the stylus on the screen for
example to click on buttons and menu items or dragging the stylus to high-
light text. For entering text into a PDA one possibility is to use a virtual
keyboard that is shown on the screen. Text input is done by tapping the
letters. Another way is to use text recognition, where letters or words are

3.1 Personal Digital Assistants (PDAs) 17

drawn on the touch screen, and then translated to letters filled in the current
textbox. Although many years of research and development have been done
to improve word recognition, this input method is still a time consuming task
for the user and it tends to be rather inaccurate [Mas98]. Some PDAs, like
for example the BlackBerry, have a full keyboard and scroll wheels to facil-
itate data entry and navigation in addition to the input methods described
above. Another way for interacting with a stylus on a touch screen is to use
gestures. Gestures are small movements that are used as shortcuts to execute
customized functions. For example: Dragging the stylus from right to the left
is interpreted for deleting a letter. There are plenty of possible gestures that
can be defined by the user and assigned to specific actions [Rub91] [MC02].

Memory

PDAs use internal memory for running the operating system and executing
programmes. For personal data that is too big to be kept in internal memory,
like photo albums, music files or even video collections, PDAs provide slots
for external memory cards with capacities currently up to 8GB.

Connectivity

All PDA’s have at least an infrared port (IrDA) for connectivity. This ensures
communication between different PDAs or between a PDA and a computer
with an IrDA interface. Today’s PDAs also have a Bluetooth port or a WiFi
interface for faster wireless connectivity.

Synchronization

Synchronization is used to keep personal data like contacts, emails and in
context to this work music libraries on both the mobile device and the user’s
desktop machine up to date. Because of time consuming text input methods,
slower connectivity and less memory capabilities on PDAs most data is cre-
ated at the host computer and then transferred to the PDA. Data created on
the PDA when exchanging contacts or sharing files between mobile devices
is copied back to the PC during the synchronization process. The PC acts
as a backup storage in case the device gets lost or corrupted.

Customization

PDAs can be customized by installing third party software or connecting
external gadgets like foldable keyboards for quicker text input or GPS devices
to use a PDA as a navigation instrument.

18 3 Mobile Devices

3.2 Mobile Phones

3.2.1 History

The term “mobile” or “cellular telephone” is used for portable electronic de-
vices designed primarily for personal telecommunications over long distances,
see Figure 3.1-Cb,c, unlike “cordless telephones” which communicate with a
base station connected to a fixed telephone landline, see Figure 3.1-Ca. Mar-
tin Cooper is one of the most important inventors of the cell phone. He
made the first call on his cell phone in 1973 [WIK05]. Until the mid to late
1980s, most mobile phones were installed in vehicles as car phones because
they where to big to be carried permanently. With the advance of minia-
turization, current mobile phones are now used as handhelds. Moreover,
modern cell phones merge with PDAs as pda-mobile-phone hybrids (called
Smartphones) like the Nokia 9500 Communicator in Figure 3.1-Cd.

3.2.2 Features

In addition to the standard voice function of a telephone, a mobile phone
supports additional services such as SMS for text messaging and MMS for
sending and receiving photos and video. They can also send and receive bi-
nary data and faxes, access WAP services, and provide full Internet access
using technologies such as GPRS. Most current models have a built-in digital
camera plus sound and video recording capabilities. GPS receivers are start-
ing to appear integrated or connected via bluetooth to cell phones. Push to
talk is a feature that allows a person to talk to another one by holding a
speech button similar to walkie-talkies.

Interaction

At the time when mobile phones were used for voice communication only, a
small black and white display and a numeric keyboard for dialling numbers
was sufficient. For more complex features, like browsing through web pages,
a bigger display is required. For example the Nokia 7710 is equipped with a
3.5 inch TFT wide screen with 65.536 colours and a resolution of 640 x 320
pixels. Because the popularity of writing emails on mobile devices increased,
some phones also feature full alphanumeric keyboards, such as the Nokia
6820 or the BlackBerry. Another interaction feature is voice recognition that
can be used to command the device to dial a number or to inform the user
about the next appointments.

3.2 Mobile Phones 19

Memory

With the significant enhancement of the camera capability of mobile phones
the memory capacities of mobile devices have to increase as well. The Nokia
N90 has a 2M pixel camera and can record video at 352x288 pixels and 15
frames per second. The Nokia N93 is reported to provide DVD quality video
at 30 frames per second with an internal memory of 50 MB and an external
slot for cards with capacities up to 2GB [Nok].

Connectivity

Besides sharing contact information over infrared and Bluetooth mobile phones
are now heavily used for data communications such as SMS messages, brows-
ing web sites or even streaming audio and video files. Connection speed is
based on network support. The data part of the GSM protocol is called
GPRS. A significant number of models already support third-generation (3G)
communications UMTS1 - generally a downlink of up to 384kb/s and an up-
link of up to 64kb/s. Recent models such as the Nokia 6680 and the Nokia
N90 have access to the Web via a free download of the Opera browser.

Synchronization

Like PDAs, Mobile Phones can synchronize their contacts, messages and
dates with a desktop machine. For example Nokia phones use the software
Nokia PC Suite2 to connect with the PC. The application offers synchro-
nization and backup facilities, direct access to the file system on the device,
composing ring tones and much more.

Customization

A big milestone in the mobile phone history is the implementation of a Java
Virtual Machine (JVM) on mobile devices. The Java Platform, Micro Edi-
tion (Java ME or J2ME)3 makes it possible to execute third party software
programmed in Java on a mobile device. Other customisation options are
styling features aimed toward personalisation, such as downloadable or self
composed ring tones, logos and interchangeable covers.

1http://en.wikipedia.org/wiki/Universal_Mobile_Telecommunications_System
2http://www.nokia.de/de/service/software/pc_suite/114940.html
3http://java.sun.com/javame/index.jsp

20 3 Mobile Devices

3.3 Portable Music Players

3.3.1 History

Portable music players are handheld devices that playback any desired music.
In the 1980s Sony invented the Walkman, a device that was able to play
music from compact cassettes with durations up to two hours (see Figure 3.1-
Ma). Cassettes were replaced by Compact Discs (CD) and the player for
that medium was called Discman (see Figure 3.1-Mb). The advantage of
a CD is that the quality of the digitally recorded music stays the same as
long as the CD is not damaged unlike analogue sound material that gets
worse the more often it is played or the older it gets. Derivatives of the
Discman were the MiniDisc Players. They use a compressed audio format
and the medium is physically a little smaller than a CD. Newer players that
play digital audio files, like the iPod in Figure 3.1-Mc, are called digital
audio players (DAP) or colloquially Mp3 Players. They have much more
capacity and more interaction features than the generations of audio players
had before. Today cellphone-walkman-hybrids like the Sony Ericsson W550i
Walkman in Figure 3.1-Md are even able to stream music from different
sources over the Internet.

3.3.2 Features

Interaction

Every portable music player has buttons for navigating through its music
content. Cassette Players were able to start or stop the playback at any
time and fast forward the tape. With Discmans it is even possible to skip
whole audio tracks with one click. Loudness is controlled with buttons or a
wheel by the user. Some players even have equalizers where given frequencies
can be manipulated with sliders in real-time. Most Discmans are equipped
with a small LCD that shows the current time of the song playing, the track
number of the CD, the battery status and much more. To navigate through
big music libraries Apple invented the “iPod wheel” [App], where it is easy to
skip a big number of tracks by turning the wheel. The wheel is also used for
fast forwarding within a track or to control the volume. Bigger displays of
portable music players are able to show more information like metadata for
songs (e.g. title, artist, and album) or a directory structure ordered by artist
name or genre where users can step through different folders with primitive
cursor buttons. The high resolution colour display of an iPod even shows the
album cover of the currently played song if available.

3.3 Portable Music Players 21

Memory

Compact cassettes had a capacity up to two hours and compact discs can
hold up to 90 minutes of audio material recorded in 44khz/16bit stereo. With
the invention of the MPEG-1 Audio Layer 3[Bra03], more commonly referred
to as mp3, in the beginning of the 1990s it was possible to compress music
from ten CDs into a single one with almost no audible loss. The first mp3
players with storage of only 64MB where able to play back a complete CD.
Modern players are able store up to 80GBs which is equal to a playtime of
about 20.000 Songs (=one and a half month non-stop music(!)). However,
the trend will be not to have overblown amounts of memory - it goes the
other way around. Audio players of the future will have no or very little
music on them at all. Like the name says they will play audio but the source
can be anywhere, like on a private desktop PC or on the favourite artist’s
webpage. Music will be dynamically streamed to the device so there is no
need to have unlimited memory capabilities [Eri]. Streaming is a method
for making music, video, radio and other multimedia available in real-time
or near real-time, over different types of networks. The data in the file is
split into small packets that are sent in a continuous flow, or a “stream”, to
the end user’s computer or mobile phone. The user can begin listening to
the content in the first packets, while the rest are being transferred. There
is a short delay at the start to allow the client to buffer a small amount of
data. This buffer makes it possible for the client to play the stream without
interruption, even if the rate of received data varies slightly. In the case
of streaming, the audio file is not stored on the user’s device, so in order
to listen again, the user will have to reconnect to the streaming server and
initiate another streaming session.

Connectivity

Digital audio players are connected over USB2.0 or Firewire to the PC. This
theoretically allows transfer rates up to 480 MBit/s. In practice an album
with approximate 80MB needs about 30 seconds to be copied to a device.
Microsoft’s latest DAP, called Zune4, released in November 2006, has IEEE
802.115 networking built in for wireless connectivity with transfer rates up
to 54 MBit/s [Mic07]. In practice sending a piece of music with about 4MB
over the air takes about 2 seconds. Sony Ericsson W550i Walkman is able
to stream music files over GPRS with a pre-delay of about 20 seconds which
is the time a song needs to be buffered in the device first.

4http://www.zune.net
5http://en.wikipedia.org/wiki/IEEE_802.11

22 3 Mobile Devices

Synchronization

Synchronization between a digital audio player and a desktop PC is usually
a one way process. The entire music archive or a subset is transferred from
the PC to the player. If new songs are purchased from the Internet or ripped
from CDs, they are automatically synchronized with the player. The iPod
uses a docking station connected via FireWire to the PC and the software
iTunes 6 that manages all transfers from and to the device. Microsoft’s player
Zune has wireless synchronization facilities. It is possible to share songs be-
tween Zune players with some restrictions, for example a shared song can be
listened for three times only. Using synchronization software like the Win-
dows Media Player has one big restriction called digital rights management
(DRM7). Pieces of music are using a protected file format called WMA-DRM
and they can be played only on the PC where they were downloaded or on
the portable player they were transferred to.

Customization

The most obvious customization of any music player is of course the music
itself. But there are plenty other customization possibilities, like designing
an own case for an iPod seen on ifrogz8, connecting special headphones with
extra bass enhancement, install third party software for more convenient user
interaction or even replace the existing operating system (e.g. iPodLinux9).

3.4 Summary

This chapter described three different types of mobile devices grouped into
PDAs, communication- and music devices. The newer devices are, the more
difficult it is to assign them to a specific group. For example the Nokia 7710
fits in any of these groups because it may act as a portable music player,
has all functionality of a PDA and it can be used as a mobile phone as well.
These devices are called Smartphones and the focus of this work will be in
such all-in-one devices for the following reasons:

6http://www.apple.com/en/itunes/
7http://www.microsoft.com/windows/windowsmedia/forpros/drm/default.mspx
8http://ifrogz.com/
9http://ipodlinux.org/

3.4 Summary 23

3.4.1 Interaction

The main limiting factors of user interaction are the screen size, the lack of
a keyboard, processing power and connection speed. With Smartphones the
screen resolution has become bigger and the computation power got much
stronger. The newer generation of phone CPUs run at over 400 MHz and
their displays are rich of colours and support resolutions up to 640 x 320.
The built-in touch screen allows complex interaction tasks like drawing an
object on the screen or dragging elements from one position to another.

3.4.2 Memory

Smartphones have enough memory capabilities (up to 8GB) to store music
or even video collections on them, which makes them an optimal portable
music player.

3.4.3 Connectivity

Even if memory capacity is limited the ability to connect to the Internet
using UMTS enables Smartphones to stream or download new music from
the Internet with a downlink of up to 384kb/s.

3.4.4 Synchronization

Music downloaded on the mobile device or on the PC can easily be exchanged
with simple file synchronisation mechanisms.

3.4.5 Customization

The support of a JAVA runtime environment (J2ME) on most Smartphones
makes it easy to experiment with ideas for user interaction. Implementing
concepts for user interfaces is a straight forward process and programming
in J2ME is very similar to programming JAVA applets or JAVA swing com-
ponents. A drawback for rich multimedia applications is the fact that appli-
cations that are accessing the file system need a fee required certificate and
playing music files, no matter if they come from internal memory or expan-
sion cards, is coupled with a long pre-delay. Device specific code works more
efficient but to get a look and feel about the prototype, the performance of
J2ME is sufficient. J2ME is called to be a device independent programming
language. Why this is not the case will be discussed in detail in section 6.7.

24 3 Mobile Devices

More powerful Smartphones of the next generations will overcome those bot-
tle necks so that this work will be a great inspiration for commercial music
applications on mobile devices in the near future.

3.4.6 Devices selected for MobileSOM Evaluation

After a precise research about mobile devices available today, studying their
features and experimenting with a few of them the following devices were
used and tested successfully with the prototype MobileSOM:

• Nokia 7710

• Sony Ericsson M600

• Qtek 9100

• Benq P50

All those Smartphones are able to run J2ME applications. They support
multimedia facilities, touch screen interaction and high speed Internet access.
Detailed Information about the devices can be found in Appendix C.

Chapter 4
Concepts for Exploring Music Libraries

In this chapter concepts for exploring and displaying music content on mobile
devices with respect to the application MobileSOM are presented. The first
section deals with music libraries in general and how metadata from music
files are generated. In the following section the Grid-Unit concept is intro-
duced and the reader is given an idea of how pieces of music are organised
on a 2-dimensional music map. Different visualisation styles as well as meth-
ods for arranging units on a grid are presentend in section 4.3. Finally, an
approach for generating playlists using the Grid-Unit Concept on a mobile
device is discussed.

4.1 Music Libraries

A music library is a collection of pieces of music that is typically organised in
an ordinary folder structure on a device. Most popular file formats that com-
press audio data are .mp3, .wma, .aac in contrast to uncompressed audio data
like .wav or .aif files. Some of these formats use copy protection mechanisms
better known under the term “Digital Rights Management” (DRM)[Med01]
or less restrictive techniques like watermarking an audio file[Arn99]. The
more music libraries grow, the easier a user loses track of the location for
specific pieces of music and the task finding music concerning a user’s taste
gets more complex. Different approaches for accessing music more enjoyably
have evolved and are discussed in the following sections.

4.1.1 Tagging

Digital audio files may contain, in addition to the audio signal, related text
information (e.g. lyrics) or graphical data (e.g. an album cover). Typical text
attributes are for example the song title, the artist name, the album name,
the release date, the genre, etc. The process of including information other
than sound into these digital audio files is commonly referred to as “tagging”.
The original standard for tagging digital files was developed in mid-1990s
by Eric Kemp 1 and he coined the term ID3 which simply means “IDentify
an MP3”. A user can find pieces of music by additionally adding those

1http://www.id3.org/

25

26 4 Concepts for Exploring Music Libraries

tags in a search request instead of searching for filenames only. However,
tagging is done by humans, who may describe the same piece of music with
inconsistent data. Ambiguous tags like genre [AP03] may be associated with
different styles of music by different people. The spelling of artists may differ
as well, particularly if a name contains special characters, like ’,# or &. If
users are searching for music from the genre “alternative rock” in a foreign
music library they might get different results than they are associating with
this category.

4.1.2 Automatic Metadata Generation

To overcome the ambiguity of tagging the same songs with different values an
approach called feature extraction is used to automatically generate objective
metadata without the need of human input.

Feature Extraction

The audio signal of a music files are analysed by the computer to auto-
matically extract measurably attributes called features which are stored
in a feature vector. The more features are extracted the potentially more
accurate a piece of music is described. Figure 4.1 shows two songs in a sim-
plified 2-dimensional feature space using the features loudness and tempo.
Songs that have about the same tempo and loudness are mapped closer to
each other than the ones that have different values. In research projects
[MUNS05],[RF01] feature spaces are using a much higher dimensionality
ranging from 20 to 4352 dimensions.

The Distance

Now that songs are arranged in an n-dimensional feature space it is possible
to find “similar” pieces of music to each song. This is typically done by
computing the Euclidian distance between two feature vectors. The resulting
value gives an indication about the similarity of two songs; the smaller the
distance is, the more the songs are related to each other. This distance
can then be used to generate playlists or help users to explore music libraries
more intuitively. Soundscout2 is a demonstrator for browsing through a music
library containing about 60.000 songs. After a base song is chosen by the
user, soundscout recommends songs ordered by their smallest distance to the
given song.

2http://soundscout.researchstudio.at/

4.2 The Grid-Unit Concept 27

Tempo

Loudness

v1

v2

Song a: v1 = (30, 90)
Song b: v2 = (10, 140)

d

Figure 4.1: Two songs represented as feature vectors (v1, v2) in a 2-
dimensional feature space with the features tempo on the x-axis and loudness
on the y-axis. The distance d is euclidian distance between the two vectors.

4.1.3 Collaborative Filtering

A recent technique for creating metadata is called collaborative filtering
which is a method of making automatic predictions (filtering) about the
interests of a user by collecting taste information from many users (collabo-
rating). The underlying assumption of the approach is that users who agreed
in the past tend to agree again in the future. A collaborative filtering or rec-
ommendation system for music tastes could make predictions about which
music a user should like given a partial list of that user’s tastes (likes or
dislikes). Pandora 3 and last.fm4 which are interactive radio stations on the
web, are using this technique to bring personalized music to the people.

4.2 The Grid-Unit Concept

A simple way of displaying content on a graphical user interface is to use a
Map Grid that is divided into a set of Units. Every Unit contains one or
more Map Items but might be empty as well (see Figure 4.2). A Map Item
is identified by its unique id and is described by attributes like its name,
size or creation date. The idea of using Units is to group items with similar
properties together. In case Map Items are pieces of music a Unit either

• contains songs from the same artist

3http://www.pandora.com/
4http://www.last.fm/

28 4 Concepts for Exploring Music Libraries

Unit(4,3)

(0,2)

Unit(0,0)

Unit (0,2)

• Map Item 1

• Map Item 2

• …

MAP Grid

Figure 4.2: A MAP Grid with 20 Units subdivided into five columns with
four rows displaying two Map Items associated with Unit(0,2)

• is a placeholder for an album or a sampler

• stands for a specific genre

• groups similar sounding pieces of music together

• is an abstraction for a specific mood.

• or is manually filled with items

Depending on the metaphor that is used for the Units the number of items
associated with a Unit differs. For example a Unit containing songs from a
specific genre like “Pop” might has thousands of items in it where as a Unit
that is a placeholder for a newcomer artist might only include his or her
debut song.

4.3 Visualizing the Grid

In the previous section the idea of organising items on a grid with units that
contain items with common properties was presented. Now some ideas for
visualizing a grid and its units are given.

4.3.1 Plain Grid

In Figure 4.3(a) every unit is displayed as a box showing the number of the
items contained in that unit. The plain grid shows no other information
about a unit’s content and is only used as an additional layer to be combined
with different visualization techniques.

4.3 Visualizing the Grid 29

5 21 11

8 17 4

16 3 26
(a)

(c)

(e)

(b)

(d)

(f)

Figure 4.3: Visualizing the Grid

30 4 Concepts for Exploring Music Libraries

4.3.2 Pie Chart

A visualization technique for describing the content of a unit is to display
a pie chart on it. The diagram groups the items of a unit by a specific
attribute like genre (e.g. Pop, Rock ...) or realease decade (80tes, 90ties ...).
In Figure 4.3(b) a grid with nine pie charts is shown. We assume that every
colour stands for a specific genre, like purple for pop, pink for rock, yellow
for alternative and cyan for classics. As the reader can see most of the units
contain songs from the genre pop. Above the center unit, there is a unit
containing all defined genres in the following ratio: 50% of the unit are pop
songs and the other occurring genres are euqi-distributed with 16,67% per
category.

4.3.3 Album Covers

An intuitive way to visualize the grid is to display an album cover for each
unit like shown in Figure 4.3(c). The underlying pieces of music are either all
from the same album or the cover belongs to a song that is a representative
prototype of that unit. A prototype is chosen randomly or the average feature
vector (afv) of all songs in that unit is computed and the piece of music with
the smallest distance to the afv is taken.

4.3.4 Metaphoric Symbols

A subjective way to describe a unit is with user defined icons. For exam-
ple a unit containing pieces of music with rock elements may use an icon
with a guitar on it. The visualization technique is also suitable for mapping
music content to moods and situations. Many case studies in this sector
have been done like [LO03] or the EmoMusic project [Bau06][BR06] which is
about classifying music according to emotions (or the mood of the listener).
The emotions used are fear, hostility, guilt, sadness, joviality, self-assurance,
attentiveness, shyness, fatigue, serenity, and surprise. In Figure 4.3(d) emoti-
cons 5 are used to represent the content of a unit. Every unit is associated
to a specific mood or situation. For example the center unit may contains
pieces of music for romance and love or the angry looking emoticon below is
a place holder for aggressive music. The mapping of songs to a unit is not
objective because music associated to a mood differs from person to person.
Some people listen to heavy metal music to wake up others use this type of
music to get relaxed.

5http://en.wikipedia.org/wiki/Emoticon

4.3 Visualizing the Grid 31

4.3.5 Self Organising Map

An approach to automatically assign music to units is to apply a Self Or-
ganising Map (SOM). A SOM is an unsupervised learning algorithm that is
used to project high dimensional data points on a 2-dimensional map. The
high dimensional data points are extracted feature vectors from music files
(see Section 4.1.2) where each vector is assigned to a specific unit in the 2-
dimensional grid. The algorithm causes similar songs to be grouped in units
close together. In order to display the resulting map in the software Mo-
bileSOM some pre-processing steps have to be done on a desktop machine
first. To define how the songs are related to each other regarding their simi-
larities SOMeJB [RPM03] is used to analyse and process the audio files in a
way that a computer is able to distinguish between different kinds of music.
Features like timbre, loudness and rhythm are extracted by computing the
power spectrum of the audio signal to obtain loudness values for specified
frequency bands over a certain time period. For a detailed description on
feature extraction see [RPM02]. Those features are used to describe a piece
of music in a mathematical representation and are stored in a feature vec-
tor. The more similar two pieces of music regarding their extracted features
are, the smaller the (Euclidian) distance between their vectors is. Using
those vectors the Self-Organizing Map (SOM) [Koh95] algorithm is applied
in PlaySOM [DNR05] to organize the music files on a two-dimensional map
display in such a way that similar pieces are grouped close together. The
algorithm works as follows: The SOM consists of a set of units, which are
arranged on a two-dimensional grid. Each of the units is assigned to a ran-
domly initialized model vector that has the same dimension as the feature
vectors. In each learning step a randomly selected feature vector is matched
with the closest model vector (winner). An adaptation of the model vector
is performed by moving the model vector closer to the feature vector. The
neighbours of the winner are adapted as well but not as much as the model
vector of the winning unit. This enables a spatial arrangement of the feature
vectors such that alike vectors are mapped onto regions close to each other
in the grid of the units. Once the learning phase is completed, the feature
vector of each music file is mapped to its closest unit on the map.

Visualizations

In the next step different algorithms, such as e.g. the smoothed data his-
togram (SDH) [PRM02] algorithm, are applied to graphically visualise the
SOM. Units are coloured regarding to the amount of songs per unit, starting
from white (high density) over yellow to green (lower density), which can

32 4 Concepts for Exploring Music Libraries

Feature
Extraction

Music

Files

Feature

Vectors

Get Best
Matching Unit
Adapt Model

Vectors

SOM Grid Smoothed SOM

Compute SDH

(Tempo, Loudness, Timbre, …)

Export

SOM.jpg

(= Map Image)

Data File

(= Map Source)

Figure 4.4: Pre-processing Content

be interpreted as mountains, where as units with fewer assigned vectors are
painted blue, which is a metaphor for water (see Islands of Music [Pam01]
for more details). Finally the visualisation of the SOM and the mapping be-
tween all titles with their corresponding units are exported to a jpg (=Map
Image) and a data file (=Map Source), which are used as input for the Mo-
bileSOM. The SOM may consist of e.g. 280 units arranged with 20 units per
row. The resolution of the jpg is 200x140 pixels. Hence every unit belongs
to a square with dimensions 10x10 pixels on the map. Figure 4.4 illustrates
all pre-processing stages at a glance.

4.3.6 Combined Views

The visualization techniques described above can also be combined in dif-
ferent layers. An example is to display a Self Organising Map with a layer
containing user defined icons like shown in Figure 4.3(f).

4.4 Playlist Generation on Mobile Devices

Traditional ways of generating playlists like dragging and dropping pieces
of music from a file explorer in to a player need not be suitable for mobile
devices. Browsing through large directory structures on devices with small
displays is a complex and inconvenient task. If a user is searching for a specific
song he might want to find the piece of music by typing in the title or artist
name which is, because of the lack of a keyboard on most devices, again a
burdensome task. The idea of displaying a user’s entire music collection as
a single map on his device opens new possibilities in creating playlists more

4.5 Summary 33

(a) (b) (c) (d)

Preview Mode Creation Mode Edit Mode Play/Remote Mode

Figure 4.5: Playlist Generation

intuitively and efficiently. Like described in the previous section the map is
structured that similar pieces of music are grouped together. Song titles are
displayed on the screen by pointing on a specific location on the map, so the
user is able to get a feeling where different styles of music are located (see
Preview Mode, Figure 4.5(a)). After familiarizing with the map, the user can
change from the preview into the playlist Creation Mode. By drawing a path
or pointing on a single position on the map, one or more songs are selected
and added to the playlist (see Figure 4.5(b)). Now just after view clicks
and movements a playlist is generated quickly with the following advantages:
Playlists generated in that way always contain different content, because it
is hard to ever draw exactly the same path again. Users will not get bored
in listening to the same songs in the same order. The playlists are more
homogeneous than random generated ones because of music similarity. So
the user might create different paths for different moods. Playlists are also
heterogen as the trajectory covers units with different content. Accordingly
the list can be altered by removing or changing the position of music titles
(see Edit Mode in Figure 4.5(c)). The items from the final playlist can be
played back from the device, streamed from a server or sent to a server (see
Figure 4.5(d)). In the latter case the mobile device acts as a remote control.
Figure 4.5 illustrates the stages for generating a playlist at a glance.

4.5 Summary

In this chapter the reader learned how metadata from digital audio files is
generated and how this data is used to visualize music libraries on mobile
devices. Songs are tagged by humans with attributes like song name, artist

34 4 Concepts for Exploring Music Libraries

or genre. This may lead to inadequate and inconsistent labelling, because
people may associate different genres with the same music. To overcome this
problem metadata is automatically computed from the audio signal itself.
This process is called feature extraction. Features like timbre or rhythm
are extracted and stored in a feature vector for each song. Approaches for
defining a similarity measure between pieces of music are for example com-
puting the Euclidian distance between their feature vectors or the use of
collaborative filtering techniques. A music library is visualized as a music
map which is split into units that contain pieces of music with similar prop-
erties (Grid-Unit Concept). A unit might be a placeholder for an album or
a group of similar sounding songs. Depending on the type of content units
are displayed as album covers or metaphoric symbols like emoticons that are
placeholders for a specific mood. Another visualization technique is to dis-
play the grid as a topographic map where similar sounding songs are grouped
together on islands. An intuitive and efficient way for generating playlists on
mobile devices was described in the last section.

Chapter 5
Developing a Mobile Application

Since manufacturers of mobile devices opened their operating systems to be
merged with third party software, many different platforms for developing
mobile applications evolved. In the design phase of the prototype Mobile-
SOM an important issue was to find the right setup for a suitable developing
environment. The following platforms were evaluated:

.NET Compact Framework 1 is a light version of the .NET Framework
that was designed to run on mobile devices such as PDAs or mobile
phones. It uses class libraries from .NET Framework but also a few
modules specifically designed for mobile devices. Applications are pro-
grammed in Visual Studio.NET and the resulting software runs on any
device supporting the.NET Compact Framework runtime (e.g. Win-
dows Mobile 5 devices).

Java Micro Edition 2 (formerly J2ME) technologies contain a highly op-
timized Java Runtime Environment that specifically addresses PDAs
and mobile devices. J2ME uses a subset of classes from the Java Enter-
prise Edition (J2EE). Applications are programmed in freely available
integrated development environments (IDEs) like NetBeans or Eclipse.
The software is tested on emulators provided by the device manufac-
turers and runs on any mobile device that supports the K (kilobyte)
Virtual Machine (KVM) which is a light version of the Java Virtual
Machine (JVM).

Applications for both platforms run inside virtual machines that manage
security, memory usage and runtime optimization. Both platforms come
with a rich set of libraries for advanced UI (user interface), network connec-
tivity and data management. J2ME and .Net Compact Framework allow
desktop developers to migrate their skills to mobile development. For ex-
ample, the Java Abstract Window Toolkit (AWT) UI can be directly used
in certain J2ME profiles, and the Windows Forms controls can be used in
Compact Framework applications. Many generic IDEs, development toolk-
its, and command-line tools are available from leading vendors in the J2ME

1http://msdn2.microsoft.com/en-us/netframework/aa497273.aspx
2http://java.sun.com/javame/index.jsp

35

36 5 Developing a Mobile Application

space. Microsoft’s flagship development tool, Visual Studio .Net, is also fully
integrated with Compact Framework.

The reasons for using J2ME as programming language were on one hand
the existing programming skills by the author and on the other hand the
simplicity of setting up a complete developing environment. Moreover J2ME
runs on a range of devices from Smartphones to Set-top boxes from all major
vendors, while .Net Compact Framework runs only on devices from Microsoft
Pocket PC licensees. This chapter gives an overview about the J2ME technol-
ogy, describes the features of the used IDE NetBeans3 and discusses different
emulators by various manufacturers. In the end a tutorial of how to create
a “Hello World”-MIDlet is demonstrated.

5.1 J2ME

Java Platform, Micro Edition or Java ME (formerly referred to as Java 2
Platform, Micro Edition or J2ME), is a collection of Java APIs for developing
applications for resource-constrained devices such as PDAs or mobile phones.
Java ME is formally a specification, although the term is frequently used to
also refer to the runtime implementations of the specification. Java ME was
designed by Sun Microsystems and is a replacement for a similar technology,
PersonalJava4. Sun Microsystems has tended not to provide free binary
implementations of its Java ME runtime environment for mobile devices,
rather relying on third parties to provide their own, in stark contrast to
the numerous binary implementations it provides for the full Java platform
standard on server and workstation machines. J2ME architecture is designed
to be modular and scalable. This modularity and scalability are defined by
J2ME as three layers of software built upon the Host Operating System of
the device:

Java Virtual Machine This layer is an implementation of a Java virtual
machine that is customized for a particular device’s host operating
system and supports a particular J2ME configuration.

Configuration The configuration is less visible to users, but is very im-
portant to profile implementers. It defines the minimum set of Java
virtual machine features and Java class libraries available on a partic-
ular group of devices. In a way, a configuration defines the “lowest
common denominator” of the Java platform features and libraries that
the developers can assume to be available on all devices.

3http://www.netbeans.org/
4http://java.sun.com/products/personaljava/

5.1 J2ME 37

Profiles e.g. MIDP 2.0
Supporting Audio (MMAPI)

Configurations

Java Virtual Machine

Host Operating System

e.g. CDLC 1.1
Supporting Float Operations

e.g. KVM

e.g. Symbian OS

Figure 5.1: J2ME software layer stack

Profile The profile is the most visible layer to users and application providers.
It defines the minimum set of Application Programming Interfaces
(APIs) available on a particular “family” of devices. Profiles are im-
plemented upon a particular configuration. Applications are written
for a particular profile and are thus portable to any device that sup-
ports that profile. A device can support multiple profiles.

Figure 5.1 shows the layer architecture of J2ME at a glance. The Java
Virtual machine running on the host operating system of a mobile device
is implemented by the device manufacturers themselves. A Configuration
defined by the Java Community Process ensures that the implementation of
the JVM supports a certain set of classes and libraries. On top of a specific
Configuration sits a Profile which implements the API’s that are visible to
the programmers.

5.1.1 Connected Limited Device Configuration

The Connected Limited Device Configuration (CLDC) is a specification of
a framework for Java ME applications targeted at devices with very limited
resources like PDAs and mobile phones. Today there are two configurations
for mobile devices: The CLDC 1.0 which was developed under the Java
Community Process as JSR 30 and the CLDC 1.1 developed under JSR
139. The CLDC 1.0 did not support any form of floating point arithmetic,
which results in a lack of mathematical functions like sqrt, sin, cos.This

38 5 Developing a Mobile Application

limitation was fixed with the CLDC 1.1. Requirements for devices using this
configuration are a 16-bit CPU, a total of 160 KB memory available to the
JVM and a limited connection to some kind of network.

5.1.2 Mobile Information Device Profile

The mobile Information Device Profile (MIDP) is a specification published
for the use of Java on embedded devices such as mobile phones and PDAs.
MIDP is part of the Java ME framework and sits on top of a “configuration”,
such as the Connected Limited Device Configuration. It was developed under
the Java Community Process as JSR 37 (MIDP 1.0) and JSR 118 (MIDP
2.0). As of 2006, MIDP 3.05 is being developed under JSR 271. Any devices
only supporting MIDP 1.0 are not sufficient for rich multimedia applications
and therefore cannot be used for MobileSOM. In MIDP 2.0 this limitations
were solved by adding the following API’s:

javax.microedition.media The Multimedia API (MMAPI) specified in
JSR 135 contains the base classes of the multimedia playback.

javax.microedition.io.file The FileConnection API specified in JSR 75
gives access to the local file systems on a device.

For some devices there also exist vendor-specific APIs like the “Nokia User
Interface 1.0”. They are not part of a profile and using them obviously reduces
the portability of an application and is not recommended if the application
is targeting the horizontal market of mobile devices.

5.1.3 A MIDlet

A MIDlet is a Java program for embedded devices that is executed by the
device’s Java Virtual Machine. In general these are commercial games and
applications but also prototypes for realising innovative concepts like Mo-
bileSOM. A MIDlet requires a device that implements at least one of the
standardized MIDPs in order to run. Like other Java programs, MIDlets in
theory have a “compile once, run anywhere”-potential. This is not always the
case, because devices have specific firmware bugs or incomplete API imple-
mentations. To write a MIDlet, the Sun Java Wireless Toolkit from the Java
website6 can be used. It is available on several platforms and is completely
free. MIDlet distributions also consist of a .jad file describing the contents
of the JAR file.

5http://jcp.org/en/jsr/detail?id=271
6http://java.sun.com/products/sjwtoolkit/download.html

5.1 J2ME 39

A MIDlet has to fulfill the following requirements in order to run on a
mobile phone:

• The main class needs to be a subclass of javax.microedition.midlet.MIDlet

• The MIDlet needs to be packed inside a .jar file

• In some cases, the .jar file needs to be signed to access specific system
resources.

A .jar file may contain more MIDlets. A pool of MIDlets is called a MIDlet
Suite.

5.1.4 Signing a MIDlet

In case a MIDlet wants to access specific system resources like the file system,
the user is explicitly asked to allow this by the operating system. To avoid
confirming manually those message boxes all the time, a MIDlet is signed.
The procedure for signing MIDlet suites works like this: First a key pair
(containing a public and a private key) is generated in the J2ME Wireless
Toolkit in the MIDlet signing window. Then a Certificate Signing Request
(CSR) is generated which is sent to an official certificate authority (CA) like
Verisign 7. The CA needs personal information to verify someone’s identity.
After paying a fee a certificate from the CA that certifies the public key is sent
to the programmer. Now this certificate is imported into the J2ME Wireless
Toolkit and the programmer can use his own private key to sign MIDlet
suites. The J2ME Wireless Toolkit will take care of the details of placing the
certificate into the MIDlet suite. Detailed Information can be found in the
Java Wirelss Toolkit User’s Guide in Chapter Security and MIDlet Signing8.

5.1.5 MMAPI

The Multimedia Java API (MMAPI) is an API specification for the Java ME
platform targeting mobile phones. Depending on how it is implemented, the
APIs allow applications to play or record sounds and video from different file
formats. MMAPI was developed under the Java Community Process as JSR
135.

7http://www.verisign.com/products-services/security-services/code-
signing/index.html

8http://java.sun.com/j2me/docs/wtk2.2/docs/UserGuide-html/security.html

40 5 Developing a Mobile Application

Implementation

As with most Java ME specifications, implementations differ despite the best
efforts of the specification authors to ensure consistency. An obvious area
for differences are the accepted file types. In Table 5.1 on page 48 a list
of Nokia devices with their playable audio types is shown[Nok07]. Even-
though the devices are from the same brand, there is a huge diversity in the
MMAPI implementations. More obscure areas are whether mixing is sup-
ported (e.g. playing a MIDI track and layer PCM sound effects on top).
Another source of extreme variance is in performance. For example, if an
HTTP clip is requested, at what point does the clip get downloaded? The
specification recognises this by providing two Player methods that can be
called in advance of actually playing: realize and prefetch. Depending on
the implementation, these may do some of the work of getting the clip into
a playable state, thus making it quicker to actually play the clip when it is
needed. Some implementations are sophisticated enough to actually stream
a clip on request whilst it is being played. Symbian OS contains a very com-
plete implementation of JSR 135, but even this is highly dependent on the
underlying multimedia capabilities of the device, and some device manufac-
turers may choose not to expose the more obscure parts of Java ME such as
recording.

5.1.6 User-Interface API

Programs written in J2ME are distinguished between applications running
in the background or the ones that interact with a user. To design User In-
terfaces (UI) for MIDlets the package “javax.microedition.lcdui” is used. The
developer can choose between a Low- and a High-Level-API (see Figure 5.2).

High-Level-API

The High-Level-API consists of form elements like text fields, lists and alert
boxes. Those elements cannot be customized and there are only rudimentary
layout functions for placing the elements on the screen available.

Low-Level-API

With the Low-Level-API pixels are addressed directly. Programming user
interfaces is more sophisticated but the results are more pleasing like the
comparison of two user interfaces in Figure 5.3 shows. All painting opera-

5.1 J2ME 41

Figure 5.2: Low- and High-Level-API of the MIDP

Figure 5.3: Comparison of a User Interface designed with the Low-Level-API
(left) and an interface composed with the High-Level-API (right)

42 5 Developing a Mobile Application

tions are available in the “Graphics”-Object which is rendered in the “paint”-
Method of the “Canvas”-Object. Those operations include drawing pixels or
complex objects like circles, filled bars and images. Images in general are
stored as separate files in the .jar file of the MIDlet. It is important to keep
their file size as small as possible because of heap limitations. The native for-
mat used for images is .png but on most devices .jpg decoding is possible too.

Both APIs inherit from the “Displayable”-Object which is set in the “Dis-
play”-Object with the “setCurrent()”-Method. The “Displayable”-Object is
the parent class of the “Screen”-Object (High-Level-API) and the “Canvas”-
Object (Low-Level-API). The following code snippet uses the High-Level-API
element “alert” which shows a message on the display of a device.

1 import javax . m i c ro ed i t i on . l c du i . ∗ ;
2 . . .
3 Aler t a l e r t = new Aler t (’ myAlert ’) ;
4 a l e r t . s e t S t r i n g (’ He l lo ! ’) ;
5

6 Display d i sp l ay = Display . getDi sp lay (this) ;
7 d i sp l ay . se tCurrent (a l e r t) ;

5.1.7 Record Management System (RMS)

The Record Management System (RMS) is used to permanently store data
on a device. It allows an application to save and retrieve data from the device
without the need for accessing the file system. The same technique is used
by a browser saving information (cookies) from a user session on the local
machine. The web server can read this information anytime the user visits
the website again. The storage of custom data on a device is persistent. Even
if the battery is changed the data will still remain on the device.

5.2 IDE

For developing a mobile application using an Integrated Development En-
vironment (IDE) is inescapable. Various free available IDEs for creating
software written in J2ME like NetBeans9 or Eclipse 10 exist. Prerequisites
for using a specific IDE are seamless integration of external emulators for

9http://www.netbeans.org/
10http://www.eclipse.org/

5.3 Emulators 43

testing purposes, configuration options in the source code and deploying fa-
cilities to real world devices. The IDE used by the author for developing
MobileSOM was NetBeans and its features are described in the following
sections in more detail.

5.2.1 NetBeans

NetBeans is a fast and feature-rich tool for developing Java software. It is
standards-compliant and runs on any operating system where a Java Virtual
Machine is available. While the IDE is modular (its functionality can be ex-
tended by plug-ins), the focus is on providing all the tools a Java developer
needs in one download, with no additional set-up or configuration needed to
begin productive work quickly. The base product includes support for desk-
top (AWT/Swing), web tier (Servlets/JSP/JSF/Struts) and Java Enterprise
Edition (EJB and web Services) development, and bundles a database and
Java EE application server. The NetBeans IDE is open-source and can be
used free of charge for any type of software development.

5.2.2 NetBeans Mobility Pack

The NetBeans Mobility Packs add to the NetBeans IDE everything needed
to immediately start writing, testing and debugging Java applications for
mobile phones and other Java Micro Edition (Java ME) technology-enabled
devices. The NetBeans Mobility Pack provides comprehensive support for the
Connected, Limited Device Configuration (CLDC) 1.1, Mobile Information
Device Profile (MIDP) 1.0 and 2.0, and includes visual design tools for mobile
applications, integrating mobile applications with web services. It includes
the Java ME wireless toolkit and device emulators, so that no additional
downloads are needed to start working with mobile technologies even though
it is easy to integrate third-party emulators 11 and SDKs for a robust testing
environment.

5.3 Emulators

Emulators are used to test a MIDlet Suite on the PC first before it is deployed
on a real world device. Besides the Java Wireless Toolkit third-party emu-
lators from various manufacturers like Nokia or Sony Ericsson, which have
extended features like on-device-debugging, exist. The following section de-
scribes the emulators that were used to test MobileSOM in more detail.

11http://www.netbeans.org/kb/50/midpemulators.html

44 5 Developing a Mobile Application

5.3.1 Java Wireless Toolkit

The Sun Java Wireless Toolkit 12 (formerly known as Java 2 Platform, Micro
Edition (J2ME) Wireless Toolkit) is a state-of-the-art toolbox for developing
wireless applications that are based on J2ME’s Connected Limited Device
Configuration (CLDC) and Mobile Information Device Profile (MIDP), and
designed to run on cell phones, mainstream personal digital assistants, and
other small mobile devices. The toolkit includes the emulation environments,
performance optimization and tuning features, documentation, and examples
that developers need to bring efficient and successful wireless applications to
market quickly.

5.3.2 Carbide.j

Carbide.j (formerly Nokia Developer’s Suite for J2ME) 13 is a software de-
velopment tool for Java Platform, Micro Edition (Java ME) developers that
enhances the development and verification of applications for Nokia devices.
It provides tools for creating Mobile Information Device Profile (MIDP) and
Personal Profile (PP) applications and deployment packages, signing appli-
cations, and deploying applications to devices. It is also an essential tool
for managing, configuring, and running emulators for various Nokia platform
and device SDKs.

SDK vs. Prototype SDK

SDKs emulate the phone behaviour of Nokia devices as closely as possible,
because their emulators are based on the same software as the specified Nokia
devices.

The emulators of a prototype SDK are based on the reference implemen-
tation of the Java APIs of the corresponding Platform. The main benefits of
prototype SDKs are early availability and fast performance. Each prototype
SDK package contains several Platform emulators to create and compile an
application and verify its functionality for different Platforms and devices.

5.3.3 Sony Ericsson SDK

This suite 14 of Java ME tools supports Java MIDP 1.0, MIDP 2.0, Java 3D
API and Javadoc for the Sony Ericsson handsets. The SDK supports Java

12http://java.sun.com/products/sjwtoolkit/
13http://www.forum.nokia.com/main/0,6566,1_84,00.html
14http://developer.sonyericsson.com/site/global/docstools/java/p_java.jsp

5.4 A “Hello World”-MIDlet 45

Micro3D emulation and includes all the necessary tools to support On Device
Debugging for mobile applications.

5.4 A “Hello World”-MIDlet

This tutorial shows the reader how to create and run a “Hello World”-MIDlet
within the NetBeans IDE. In a later step the functionality of the MIDlet is
extended by adding a music player that is able to stream a wav file from any
given URL. Both, the NetBeans Mobility Pack and NetBeans IDE, have to
be installed first. After starting the IDE the “New project” item is chosen
from the file menu like shown in Figure 5.4. A project wizard opens up
and from the category “Mobile” the Project “Mobile Application” is chosen
(see Figure 5.5). The “Next”-Button is pressed and on the following page
the name and the location of the project are set. If the “Finish”-button
is clicked the wizard creates a dummy mobile application with the default
java wireless toolkit simulator selected. A click on the “Play”-button (see
Figure 5.6) packs the application in a .jar file and runs the MIDlet in the
emulator. The program displays a “Hello World” message on the screen. Now
the MIDlet is extended with a simple audio player. In the project explorer,
the package “hello” is expanded and the “HelloMidlet” class is double clicked
like shown in Figure 5.7. In the source code window the MMAPI is imported
by adding the line

1 import javax . m i c ro ed i t i on . media . ∗ ;

to the other import clauses on top of the code window. The method “initial-
ize()” is complemented with the following code for playing an audio file.

2 Player p ;
3 try {
4 p = Manager . c r ea t eP laye r (
5 "http ://www. i f s . tuwien . ac . at /mir/" +
6 "pocketsom/mobilesom/wav/pop . wav") ;
7 p . s t a r t () ;
8 } catch (MediaException ex) {
9 ex . pr intStackTrace () ;

10 } catch (IOException ex) {
11 ex . pr intStackTrace () ;
12 }

46 5 Developing a Mobile Application

Figure 5.4: Creating a new mobile project in NetBeans

Figure 5.5: NetBeans Project Wizard

After starting the application the MIDlet wants to access the network, which
has to be confirmed by the user one time. If the network resource exists the
file is downloaded to the device and played back.

5.5 Summary

In this chapter the reader learned about the software architecture of J2ME.
The most important APIs for creating rich multimedia applications like the
Multimedia API or the Low-Level User Interface API were introduced. A
mobile application in J2ME is called a MIDlet. The IDE NetBeans assists
the programmer in developing such MIDlets, testing them on third-party
emulators and deploying them to real world devices. A brief tutorial at the

Figure 5.6: Start the MIDlet in the emulator

5.5 Summary 47

Figure 5.7: Edit Source Code of the MIDlet

end of this section demonstrated how to create a “Hello World”-MIDlet and
how to deploy and run it in the Java Wireless Toolkit emulator.

48 5 Developing a Mobile Application

Platform baseline Real MP3 AAC WAVE AU
Audio

devices Extensions .ra,.rm .mp3 .aac, .mp4 .wav .au
.3gp, m4a

Series 40 2nd Edition:
3220, 5140i, 6230 - - - - -

6230i - x aac 1) -
Series 40 3rd Edition: - x aac 1) -

6111 - aac -
6280 - 5) also m4a 1), 2) -
7370 - 5) also m4a 1), 2) -

S60 1st Edition: - - - 2) -
3650, N-Gage QD - - - 2) -
S60 2nd Edition: x x aac x x

3230
6600 - - 2),3) 3),4)
7610 also 3gp

6630, 6680 also 3gp, mp4
N70, N90 also 3gp, mp4

S60 3rd Edition:
E60 x x aac, 3gp, mp4 x x

Series 80 2nd Edition:
9300, 9500 x x aac, 3gp x x

Nokia 7710: x x aac x x

Table 5.1: Audio capabilities of Nokia Device: x = Tested to work. 1) Tested
OK using the audio/wav MIME type. 2) Tested OK using the audio/x-wav
MIME type. 3) Tested OK using the audio/basic MIME type. 4) Tested
OK using the audio/au MIME type. 5) The device should also support
ID3v2 metadata for MP3 and AAC (three tags supported: title, artist, URL).
MIDP: Mobile Media API Support In Noki a Devices 3 (11)

Chapter 6
MobileSOM

MobileSOM1 is a prototype entirely programmed in Java Micro Edition
(J2ME). It allows users to browse through their music collection that is dis-
played as a two-dimensional map on their mobile device. Pieces of music are
played locally or are streamed from a web server. Moreover, the prototype
can be used as a remote control. Instead of playing a piece of music on the
mobile device, the software triggers another device to play the song.

MobileSOM offers a framework for using different visualisation styles of music
libraries based on the Grid-Unit Concept introduced in Section 4.2 on page
27. It is the first J2ME application available that implements the paradigm
of generating playlists using a self organising map.

MobileSOM is not designed for finding a specific piece of music, as there
are no special search mechanisms implemented for locating exactly the spe-
cific song a user has in mind. MobileSOM assists in generating playlists that
fit into a specific mood or style. The software supports the user exploring
music content rather than looking for the latest Britney Spears hit.

MobileSOM was built from scratch. No existing frameworks like J2ME Pol-
ish2 or other software libraries were used. This chapter contains detailed
description of the software architecture, followed by an installation guide
and a section on how to set up a test environment for deploying and run-
ning the software on real world devices. The reader will learn about the user
interface and how to interact with the software. At the end of the chapter
practical experiences of running the software on real world devices and ideas
for extending the software with new features are given.

6.1 Software architecture

The software MobileSOM is grouped into packages and resources. All files
are packed into a .jar file, called “MobileSOM.jar”, which will be installed on
a mobile device in a later step. The structure of the .jar file is separated in

1http://www.ifs.tuwien.ac.at/mir/pocketsom/mobilesom/
2http://www.j2mepolish.org/

49

50 6 MobileSOM

• Resource folders containing data files

• Package folders containing classes in context of their package name

• a META-INF directory containing the manifest file

In the following section an overview of the classes and resources used is given.
Detailed information about all classes can be found in the Java Documenta-
tion of MobileSOM3.

6.1.1 Resources

Resources are files with either binary (e.g. images) or textual data (e.g.
configuration files), that are packed together with the classes into the jar file
and loaded into memory if needed during runtime. They can be exchanged
or modified before the software is installed on the mobile device. MobileSOM
uses the following resources:

• Icons

• a map representing the underlying items (=Map Image)

• a data file mapping each item to a location on the map (=Map Source)

• a configuration file

• a dummy mp3

• and a language file (by default English)

Icons are symbolic menu items, that are displayed dynamically on the
screen, depending which user actions are possible at a certain state. Fig-
ure 6.1 shows all icons, stored as gif files in the “\img” folder of the .jar file.
The default Map Image (see Figure 6.2) is the visual representation of the
data stored in the Map Source and is encoded as a jpeg file. It is loaded
when the software is started for the first time and then transferred to the
RMS of the mobile device. The Map Source is a text file using the following
syntax:

1 5 // Number o f Columns in the Grid
2 4 // Number o f Rows in the Grid
3 −
4 0 0 Hoobastank − The Reason .mp3

3http://www.ifs.tuwien.ac.at/mir/pocketsom/mobilesom/doc/

6.1 Software architecture 51

5 0 0 Lenny Kravitz − Fly away .mp3
6

The first three lines specify the layout of the Grid, which divides the Map
Image into Units, where as the rest of the file contains the Map Items (one
per line). The first two values assign the Map Item to a Unit followed by the
name of the item. Once the file is loaded its items and their locations are
stored to the RMS as well. The configuration file “conf.properties”, stored in
the “\resources” folder, contains the initial values of the following properties:

• the path to the Map Source

• the path to the Map Image

• the mp3 server

• the remote server (if device is used as a remote control)

• the path to the local mp3 directory (on device or memory card)

• the mode (whether the application is used in demo(0), live(1) or re-
mote(2) mode)

• the language

• the boolean value “randomize unit items” (if set to 1 items from a Unit
are returned randomly, rather than in the sequential order in which
they are listed)

On the basis of the following configuration example its properties are de-
scribed in more detail.

1 mapimage=/r e s ou r c e s /demo . jpg
2 mapsource=/r e s ou r c e s /demo . l i s t
3 mp3server=http : //mymp3server . com/
4 remotese rver=http : // remote . com/ makep l a y l i s t . php? song=
5 l o ca lmp3d i r e c to ry=f i l e : ///d :/MobileSOM/mp3/
6 mode=1
7 p lay l i s tname=standard
8 language=en
9 randomizeunit i tems=0

52 6 MobileSOM

The default “mapimage” and “mapsource” are loaded from the resources folder
within the jar file. The URL of the “mp3server” points to a location in the
web from where the music files, which are defined in the Map Source, are
streamed. The address of the “remoteserver” takes as an argument the song
to be played on the remote machine (e.g. ?song=kelis-milkshake.mp3). The
“localmp3directory” points to a location on the mobile device where the audio
files are stored. MobileSOM tries to read the files from the local directory
first. If they are not available on the device, the software connects to the
Internet to stream the songs from the mp3 server. In case a piece of music is
neither on the device nor in the web present a “Song not found. Check your
Settings!” message is displayed to the user. If the property “mode” is set to
1, MobileSOM is playing songs on the device. In mode 2 the songs titles are
sent to the remote server and played on another device. If the property is
set to demonstration mode (mode=0) no songs are played at all. This mode
is used to test the user interface. The “playlistname” is used to identify a
user’s playlist on the remote server. If multiple users are streaming from the
same remote server their playlists will not get mixed up. The “language”
property is set to English (“en”) by default, which assumes a language file
“en.properties” to be present in the “\resources” folder. The parameter can be
set to any other language (“xx”) as long the corresponding “xx.properties” file
exists in the .jar file. The last configuration parameter “randomizeunititems”
determines that songs picked from a unit are either played back sequential
(0) or by random (1).

Another resource is the dummy mp3 which is a very short silent audio
file used for pre-buffering. On some devices playing a long mp3 file takes the
audio player about one minute to initialize the song before it can be played.
In case the short dummy file is played before, the initialization time is re-
duced to about one second. Last but not least there is the language resource
file. It contains all text elements displayed to the user during runtime. The
default language used is English. An advantage of having all text elements
in a separate file is that no changes in the source code have to be done when
switching to a different language.

The following subsections give a detailed description of all classes used
by MobileSOM

6.1.2 Package IO

This package includes classes for accessing the local files system, the Record
Management System (RMS) and the Internet via the HTTP protocol.

6.1 Software architecture 53

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 181

Figure 6.1: Menu Icons

Figure 6.2: Default Map

Class ResourceHandler

The Resource Handler manages to fetch resources from the jar file itself or
from an external location like the local file system, the web or the RMS.

Class FileHandler

This class is used for dealing with file operations. Files can be loaded into
memory as a String or a DataInputStream. Depending on the mobile device
or emulator used files are accessed in different ways. To read files from Sony
Emulators the URL

1 f i l e : /// root1 / f i l ename . e x t

is used. Files on a Nokia 7710 are accessed with

1 f i l e : ///c :/ f i l ename . e x t

Class HttpHandler

This class handles HTTP traffic between the mobile device and any server
in the web containing music content or data files. Requesting response from
an URL is a blocking process. As long the mobile device is waiting for
response no user interaction (e.g. clicking on a button) can be done. For

54 6 MobileSOM

that reason the class is implemented as a thread running in the background
so the program flow will not be interrupted. The class can be used in one of
the two ways:

• calling an URL asynchronously not waiting for any response. Such
calls are done when using the device as a remote control (e.g. sending
a STOP command to the remote machine to stop playing a piece of
music)

• using the static method “getResponseFromURL(url)” to get the re-
sponse as a byte stream or converted to a string from a given URL.
The method is called when requesting configuration or data files from
the web (e.g. the Map Source or the Map Image).

Class RMSHandler

The class RMSHandler is used to read and store variables permanently on
the mobile device using the Record Management System (RMS). There are
two record stores saved on the device. One is used to save the properties
(settings) of the Application as key value pairs in the property object. (e.g.
key: “mapimage”, value: “gztan.png”). The other one saves binary data like
the mapping of items to units (Map Source) or the graphical representation
of the items (Map Image).

6.1.3 Package Manager

This package manages the run-time configuration of the software in setting
up the language and the properties stored on the device.

Class LanguageManager

This class enables multi language support. The language is set in the prop-
erties manager. Labels in the program code are not hard coded but they are
read from the “language.properties” file (e.g.:en.properties). A language file
looks like this

1 . . .
2 #Aler t Labels
3 ALERT_SUCCESS=Success
4 ALERT_ERROR=Error
5 #Messages
6 MESSAGE_SETTINGS_LOADED=Se t t i n g s are loaded s u c c e s s f u l l y

6.1 Software architecture 55

7 . . .

Those labels are used in the source code like in the following example

1 t ex t . setText (languageManager .MESSAGE_SETTINGS_LOADED) ;

Class PropertyManager

This class is used to read, write and initialize properties for running the
software. If the application is executed on the mobile device for the first
time, the default properties (declared in the resource “conf.properties”) are
loaded and then stored to the RMS. If settings are changed by the user at
runtime the properties in the RMS are overwritten with the new values. From
now on every time the software is started properties are read from the RMS,
like a cookie from a web browser when visiting a specific page.

Class Properties

The Properties class holds all properties as key-value pairs. They can be
accessed with “getProperty(String key)” or “setProperty(String key, String
value)”.

6.1.4 Package Map

This package is a collection of classes that implement the Grid-Unit concept
introduced in chapter 4.

Class Unit

A Unit is a collection of Items that have similar properties. For example a
unit contains pieces of music that sound similar or pieces of music from the
same artist. Every unit can be labelled to describe its content.

Class MapItem

A Map Item is an item that belongs to a Unit on the Grid, saved with its
name (e.g. the filename of an mp3 file). Figure 6.3 shows Unit(2,1) with x
Map Items.

56 6 MobileSOM

x

y

… Path

Unit(0,0)

(1,1) (2,1)

(0,2)

(2,3)

(0,3) Unit(4,3)

MAP Grid

Map Point
(x,y)

2

3

1

Unit (2,1)

• Map Item 1

• Map Item 2

• …

• Map Item x

Figure 6.3: A MAP Grid with 7 Map Points. Map Point 1 has the coordinates
(x,y) and is mapped to Unit (0,3). Unit(2,1) has x Map Items.

6.1 Software architecture 57

1

2

3

4

n

m

max

ID 4
Name
#ItemList
#Next Unit

Kelis

Unit

Unit Table

Trick Me
Milkshake
…
Marathon

Item List

ID 15
Name
#ItemList
#Next Unit

Anastacia

Unit
Seasons Change
Left Outside Alone
…
Maybe Today

Item List

…

4

15

Map Image

Figure 6.4: The Unit Table implemented as a Hash Table and the corre-
sponding Map Image with the Units highlighted shown in the Hash Table

Class Grid

A Grid is divided into a set of Units (Figure 6.3). The first Unit is in the
upper left corner with the values (0,0). Every Unit in the grid is assigned to
a Unit Id that is put together by multiplying the row of the Unit with the
total number of Units per row and adding the column of the Unit + 1. A
Unit contains one or more Map Items but can be empty as well. Map Items
with their corresponding Unit are loaded the first time from the default Map
Source and then from the RMS directly into the Unit Table (Figure 6.4).
The Unit Table is implemented as a Hash Table with the Unit ID as the key
and the Unit Object itself as the value. Every Unit has a Vector holding the
Map Items.

Class MapPoint

A Map Point is a point on the Grid that is assigned to a specific Unit, created
for example by tapping the stylus on a specific location on the Grid. Coherent
Map Points (see Figure 6.3) are stored in a vector (= Path). The path is
used for creating MapItemLists in later step. Note: A Map Point is not a

58 6 MobileSOM

Map Item!

Class MapItemList

The class MapItemList extends a vector holding a collection of Map Items.
A Map Itemlist is generated by assigning each Map Point to a Unit from the
Grid. In Figure 6.3 Map Point 1 is mapped to Unit (0,3). From that Unit a
predefined collection of Map Items is taken and added to the Map Itemlist.
The procedure is repeated through all Map Points (=Path). The algorithm
for building a Map Item List is printed in Appendix A.1 and works as follows:
The method “build” is called to build a Map Itemlist from the path that was
drawn by the user. In an iteration every single Map Point is fetched with
its corresponding Unit. From that Unit a vector of Map Items is retrieved.
This can be an empty vector or a vector with one or more Map Items. If the
number of Map Items is smaller than the maximal allowed number of Map
Items per Unit (parameter “maxNumberOfMapItems”) all Map Items from
the vector are added to the Map Itemlist. Otherwise the maximal allowed
number of Map Items are added. The Map Itemlist may not contain any
Map Item twice, i.e. a Map Item that is already in the Map Itemlist and
that shows up again in any other Vector, will not be added. Map Items are
chosen from the Vector either randomly if the parameter “bRandomize” is
set to true or sequentially. The default value for “maxNumberOfMapItems”
is 1, i.e. that each Map Point corresponds to maximal one Map Item.

6.1.5 Package Player

This package contains a class Audioplayer that is able to stream or play items
from the device itself or from the network.

Class AudioPlayer

The class is implemented as a thread to sustain user interaction during play-
back. The player can play a single Map Item or a list of items (= MapItem-
List). Depending on the configuration the player streams audio files from a
server or plays them from the device. The player can also act as a remote
control, i.e. instead of playing a piece of music, the player will trigger another
device to play the song. Possible audio formats are .wav or .mp3 depending
on the implementation of the MMAPI for a specific device.

6.1.6 Package Utils

This package contains utilities for Graphic and String manipulation.

6.1 Software architecture 59

Class StringUtils

This class provides methods for manipulating strings, like a “replace”-function,
that is not supported by the J2ME framework by default. The method “UR-
LEncode” encodes a given string to an URL. Alphanumeric letters [0-9a-
zA-Z], special characters $-_.+!*’(), and reserved characters used for their
reserved purposes are left unencoded within a URL. All other characters are
encoded as Hex Values.

Class DrawUtils

The class DrawUtils is a helper class for showing alerts and rescaling or
blending images.

6.1.7 Package MIDlet

This package contains all MIDlets that are used for user interaction in Mo-
bileSOM.

Class ChangeSettings

This MIDlet lets the user modify the current settings that were described in
section 6.1.1.

Class LoadSettings

Settings are stored in configuration files with the extension .som. This MIDlet
gives the user the opportunity to load such files from a customised URL
(file:/// or http:///) or to choose between different predefined Settings. Fig-
ure 6.5 shows two screenshots of the Settings Dialog “ChangeSettings” and
“LoadSettings”. Both MIDlets use the High-Level API of J2ME.

Class MapViewer

The MapViewer is the main MIDlet of the application MobileSOM in which
the user can interact with the Map Image and the music items that are placed
on the map. The display variable of the MIDlet is set to an instance of the
MapCanvas class.

Class MapCanvas

The MapCanvas extends the Canvas class which is the entry point for a user
interface using the Low-Level API. MapCanvas displays the Map Image or

60 6 MobileSOM

Figure 6.5: The High-Level API user interfaces to load new or modify current
settings.

the Playlist Editor. It handles pointer events (e.g. clicking a menu item or
drawing a path) and key strokes.

6.1.8 Manifest

The manifest of a MIDlet Suite gives the mobile device information about
the minimal configuration needed in order to run the containing MIDlets. It
also includes the vendor name, the version, the MIDlet labels and the name
of the suite itself. The manifest file of MobileSOM is shown in the following
listing:

1 Manifest−Vers ion : 1 . 0
2 . . .
3 MIDlet−3: Load Customized Set t ing s , , mid let . LoadSett ings
4 MIDlet−2: Change Set t ings , , mid let . ChangeSett ings
5 MIDlet−1: Map Viewer , , mid let . MapViewer
6 MIDlet−Vendor : IFS − TU Wien
7 MIDlet−Vers ion : 2 . 0
8 MIDlet−Name : MobileSOM
9 MicroEdition−Conf igurat ion : CLDC−1.1

6.1 Software architecture 61

10 MicroEdition−P r o f i l e : MIDP−2.0

There are three MIDlets “Load Customized Settings”, “Change Settings”,
“Map Viewer” included. The minimal device configuration needed is the
CLDC-1.1 and the required device profile is the MIDP-2.0.

62 6 MobileSOM

Remote Call: Play Song

Figure 6.6: XPlayer: The mobile device sends a remote call to play a song
which is processed by the XPlayer

6.2 XPlayer: MobileSOM as Remote Control

MobileSOM can be used to make a mobile device work like a remote control.
The prototype sends remote calls (e.g. for playing a music file) which are
processed by the XPlayer. The scenario is shown in Figure 6.6. XPlayer is
realized as a web page4 containing an applet that communicates with the
remote server and an applet that plays the audio files. In case a user selects
a song on his mobile, the URL of the song is sent to the remote server. The
server creates a playlist which is a text file containing the URL of the song.
The playlist is checked by the communication applet every two seconds. In
case there is a new entry, the audio player applet streams the song from the
given URL. The playback is stopped by either clicking the stop button on
the mobile device or in the web browser. For security reasons the location of
the applet has to be on the same server where the mp3’s are streamed from.
Otherwise a cross scripting error prevents the applet from accessing files on
a different machine. Java does not support native playback of mp3’s. The
applet includes a library from the “javazoom”-project5 to decode audio files
in a PCM stream that is then processed by the Java sound system.

4http://www.ifs.tuwien.ac.at/mir/pocketsom/mobilesom/xplayer/XPlayer.html
5http://www.javazoom.net/javalayer/javalayer.html

6.3 Testing Environment 63

6.3 Testing Environment

Before the software MobileSOM is able to run on a mobile device, some
requirements need to be met first.

6.3.1 Mobile Device Capabilities

In case MobileSOM will be installed on a real world device the MIDlet Suite
“TestHandyAPIs.jar”6 is used to test the connectivity and multimedia capa-
bilities of the device. Without the ability to connect to a network, the soft-
ware can neither be used as a remote control nor can music files be streamed
from a server. To check connectivity the MIDlet “Internet” requests a re-
sponse from a user defined URL and displays the result on the device. In
case of success the response is printed in plain html. Otherwise an error
message with a detailed description is shown. If the mobile device is used
as a music player, it must be able to play audio files. Most devices support
native audio formats like .wav or .au in Java, but not all of them support
playback of mp3 files. To find out about the multimedia capabilities the
MIDlet “PlayMP3” tries to play an mp3 file, that is included as a resource
within the jar file. If the piece of music can not be played an error message
is displayed.

6.3.2 Demonstration Music Libraries

To demonstrate the functionality of MobileSOM two music libraries are used.
In the first library “Album Snippets” are 16 albums of various artists with a
total number of 208 songs. The second audio collection “GTZAN” was used
by George Tzanetakis in his master thesis [Tza02]. It consists of 1000 songs
equi-distributed among 10 popular music genres. In Appendix A.3 the con-
tent and its visualisation (Map Images) are described. The demonstration
package “MobileSOM.rar”7 contains the “Album Snippets” library with 20
seconds mp3 snippets sampled in 48kbits/mono and ten prototypes 15 sec-
onds long from the GTZAN library sampled in 32kbits/mono. The package
also includes the Map Sources, the Map Images and the configuration files
(see Section 6.1.1) for the two libraries.

6http://www.ifs.tuwien.ac.at/mir/pocketsom/mobilesom/dist/TestHandyAPIs.jar
7http://www.ifs.tuwien.ac.at/mir/pocketsom/mobilesom/dist/MobileSOM.rar

64 6 MobileSOM

6.4 Installation

MobileSOM can either be installed on an emulator or on a real world device.
This section guides through an installation process for running the software
on a Sony Ericsson M600 Emulator followed by a section that shows how to
install MobileSOM on real Nokia 7710.

6.4.1 Emulator

In order to run the Sony Ericsson M600 Emulator following system require-
ments have to be met:

Operation System : Microsoft Windows 2000/XP

Required hardware & memory 8 :

• 140 MB hard disk
• 256 MB system RAM
• 500 MHz CPU

Download of the :

• Sony Emulator Basic Package9

• Sony Emulator Add-on Package (5 & 6)10

• MobileSOM.jar file11

• MobileSOM.jad file12

The packages are installed on the machine. Before the emulator is started a
default device has to be selected. This is either done from the start menu
by clicking the “Default Device Selection” link (see Figure 6.7) or from the
command line13. The emulator for the device “SonyEricsson_M600_Emu”
is chosen from the drop down menu and the selection is confirmed by press-
ing the “ok”-button (see left screenshot in Figure 6.8). Now the emulator

8http://developer.sonyericsson.com/site/global/docstools/java/p_java.jsp
9http://www.ifs.tuwien.ac.at/mir/pocketsom/mobilesom/dist/

Sony_Ericsson_Emulatoren/semc_java_me_sdk.2-2-3.exe
10http://www.ifs.tuwien.ac.at/mir/pocketsom/mobilesom/dist/

Sony_Ericsson_Emulatoren/semc_java_me_sdk[1].2-2-3-addon5.exe
Sony_Ericsson_Emulatoren/semc_java_me_sdk[1].2-2-3-addon6.exe

11http://www.ifs.tuwien.ac.at/mir/pocketsom/mobilesom/dist/MobileSOM.jar
12http://www.ifs.tuwien.ac.at/mir/pocketsom/mobilesom/dist/MobileSOM.jad
13<program folder>\SonyEricsson\J2ME_SDK\PC_Emulation\WTK2\bin\

DefaultDevicew.exe

6.4 Installation 65

Figure 6.7: Start the device selection tool from the start menu

Figure 6.8: Left: Select a default device for emulation; Right: Select the
MIDlet “MobileSOM” to run on the emulator

is started from the “Run MIDP Application” link in the start menu (see
Figure 6.7) or from the command line14. A dialog opens up and asks for
a .jad file to be executed. Now the downloaded file “MobileSOM.jad” is se-
lected and after confirming, an emulation of the Sony Ericsson M600 running
MobileSOM is shown (see in Figure 6.9). The prototype runs in demonstra-
tion mode by default, i.e. no songs are played. To change this behaviour
the MIDlet “Load Customized Settings” is opened and from the predefined
settings the last entry15 is selected like shown in Figure 6.9. MobileSOM
connects to the Internet and downloads a Map Image16 showing a 4x4 Grid
with 16 album covers, the Map Source17 assigning 208 songs to the map and
sets up the Mp3 Server18 offering mp3 snippets 20 seconds long and sam-
pled in 48kbits/mono. The Map Image, the Map Source and the settings are
stored to the RMS of the device which in case of the emulator is a directory

14<program folder>\SonyEricsson\J2ME_SDK\PC_Emulation\WTK2\bin\
emulatorw.exe -gui -Xdescriptor:

15http://www.ifs.tuwien.ac.at/mir/pocketsom/mobilesom/soms/samples.som
16http://www.ifs.tuwien.ac.at/mir/pocketsom/mobilesom/soms/samples.jpg
17http://www.ifs.tuwien.ac.at/mir/pocketsom/mobilesom/soms/samples.list
18http://www.ifs.tuwien.ac.at/mir/pocketsom/mobilesom/muke/samples/48/

66 6 MobileSOM

Figure 6.9: Left: The welcome screen of the MobileSOM Suite; Right: The
“Load Customized Settings”-MIDlet with a predefined setting selected.

on the hard disk19. The first attempt from any MIDlet trying to connect to
the network has to be confirmed by the user one time. The software is now
in live mode and the “Map Viewer”-MIDlet may be started to interact with
the Map Image.

6.4.2 Real World Device: Nokia 7710

This section describes the installation of MobileSOM on a Nokia 7710. To
transfer MobileSOM to a Nokia device, the Nokia PC Suite20 needs to be
installed first. Following system requirements have to be met:

Operation System : Windows 2000 (Service Pack 4), Windows XP SP2

Connectivity : USB cable, Infrared or Bluetooth

19<program folder>\SonyEricsson\J2ME_SDK\PC_Emulation\WTK2\
appdb\SonyEricsson_M600_Emu

20http://www.nokia.de/de/service/software/pc_suite/download/114962.html

6.4 Installation 67

Figure 6.10: Nokia Application Installer: Send a MIDlet to a Nokia Device

Required hardware & memory :

• 200 MB free hard disk space

• 256 MB system RAM

• 500 MHz CPU

Now the “MobileSOM.jar” file21 has to be downloaded. A double-click on the
file opens the Nokia Application Installer (see Figure 6.10). After establish-
ing a connection to the Nokia 7710, the file will be transferred by selecting
it and clicking the button with the green arrow next to it. The rest of the
installation process is done on the device itself by confirming all message
boxes that show up. In the next step the demonstration package “Mobile-
SOM.rar”22, which contains the music files, is download and unzipped. With
the help of the PC Suite the extracted folder “MobileSOM” is moved to the
memory card (drive letter “d:”) of the mobile device. On the Nokia phone the
“Load Customized Settings”-MIDlet is double clicked and from the “Prede-
fined Settings” menu the second entry23 is loaded. During the loading process
the Map Image and the Map Source are transferred to the RMS and the lo-
cal mp3 directory is set to the directory on the memory card24 where the
music snippets are stored. Now the “Map Viewer”-MIDlet may be started to

21http://www.ifs.tuwien.ac.at/mir/pocketsom/mobilesom/dist/MobileSOM.jar
22http://www.ifs.tuwien.ac.at/mir/pocketsom/mobilesom/dist/MobileSOM.rar
23file:///d:/MobileSOM/nokia7710.som
24file:///d:/MobileSOM/pezzo/

68 6 MobileSOM

Figure 6.11: A screenshot of MobileSOM running on a real world Nokia 7710

interact with the Map Image (see Figure 6.11). Note: Because the MIDlet
suite is not signed, every files access has to be confirmed manually by the
user. In case of a network access the user has to confirm only once.

Other Devices

The installation of MobileSOM on other mobile devices may work directly
from the internal web browser. For example using the Qtek 9100 the software
is downloaded and installed to the device by calling the URL of the jar file
in the address bar of the browser.

6.5 Configurations

MobileSOM can either run in

• 0 Demonstration Mode,

• 1 Live Mode or

• 2 Remote Mode.

Between Live and Remote Mode is switched in the “Map Viewer”-MIDlet by
pressing the key “1” or in the “Change Setting Viewer”-MIDlet by choosing
any of the three modes. The Demonstration Mode is for user interface testing
but does not play any music files. In Live Mode music files are streamed
from the network or played back from the local memory of the device. In
Remote Mode pieces of music are played on a different machine which is

6.6 User Interaction 69

Information Bar

Map Image (1)
or

Playlist Editor (2)

Menu Bar

(2)

(1)

Figure 6.12: The User Interface partitioned into an Information Bar, the
Map Image or the Playlist Editor and a Menu Bar

remote controlled by the MobileSOM. Map Images and Map Sources are
either downloaded from the Internet or taken from the local file system of
the device and can be exchanged during run-time in the “Change Setting
Viewer”-MIDlet. The local mp3 directory and the mp3 server are set to any
local or web folder containing the songs listed in the Map Source.

6.6 User Interaction

6.6.1 The User Interface

The user interface (Figure 6.12) of the “Map Viewer”-MIDlet is divided into
three parts:

• a semi-transparent Information Bar placed on the top of the screen

• a display filling Map Image or the Playlist Editor

• a semi-transparent Menu Bar placed at the bottom of the screen

The Information Bar is able to display two lines of text (e.g. tooltips
or song names). The number of characters per line depends on the default

70 6 MobileSOM

font size and the pixel resolution of the screen, which is different on every
device. If a message is too long and therefore would be truncated a news
ticker algorithm was implemented that smoothly scrolls the message from
left to the right and vice versa. The Menu Bar shows icons that allow the
user to switch between different interaction modes. Like discussed in [JM06],
see chapter 8.4, it is hard to pick an icon that unambiguously represents a
function. A solution is to display icons in combination with text to reinforce
the idea. Because of limited screen size, the icons are used without text in
MobileSOM. They are explained by the Welcome Assistant (see section 6.6.4)
that shows a short description in the information bar the first time an icon is
displayed. The Map Image is displayed on the whole screen. From the Map
Image pieces of music are selected by the user and may be rearranged in the
Playlist Editor.

6.6.2 Using the Stylus

For convenient user interaction the software responds to any action taken by
the user within a very short time. This ensures that the user is always aware
about any state change or what is going to happen next. A simple feedback
mechanism is that any click with the stylus on a specific location on the screen
produces a small circle on that place which fades out within a half second
(Figure 6.13(1)). The user knows immediately, if the click was registered by
the software and where exactly the stylus was placed on the screen. With
a click on the device either a menu icon is pressed or a piece of music is
selected. For selecting multiple music items the stylus is placed on the Map
Image and a path is drawn over the screen as long the stylus is not taken
off (Figure 6.13(2)). Another interaction method is to mop or circulate the
stylus over a specific menu icon (Figure 6.13(3,4)). This simulates multiple
clicks on that icon without the need of removing the stylus from the display.
For example the more mopping the stylus on the rubber icon, the more the
path drawn by the user is shortened.

6.6.3 Hotkeys

Even if all features in the “Map Viewer”-MIDlet can be accomplished with
the stylus, some hotkeys enhance the usability of the software like pressing

• “1” to switch between Live- and Remote Mode

• “2 or 3” to change the volume of the playback

• “5” to activate or deactivate Drawing Mode

6.6 User Interaction 71

(1) (2) (3) (4)

Figure 6.13: Stylus Moves: (1) clicking, (2) drawing, (3) circulating, (4)
mopping

• “Up”, “Down”, “Left” & “Right” to scroll Map Image

6.6.4 Welcome Assistant

The first time the “Map Viewer”-MIDlet is started an assistant will guide the
user through the first interaction steps. On the screen the Map Image and
two white semi-transparent bars are shown. In the information a suggestion
for moving the stylus on the display is displayed to the user (Figure 6.14(1)).
As soon the stylus is tabbed on the screen and moved around, the top bar
shows the name of the underlying items for every Unit (Figure 6.14(2)). If
there are many items on a Unit, the item names are displayed by circulating
the stylus on that Unit. After deducting the stylus, the assistant suggests the
user to click on the pencil icon at the left bottom to draw a path on the map
(Figure 6.14(3)). If the pencil is clicked, the desaturated icon turns red and
the assistant informs the user that it is possible now to draw a path on the
map (see Figure 6.14(4)). If the stylus is moved, a path consisting of white
filled circles is painted (see Figure 6.14(5)). The longer the path gets, the
more the circles fade from the top of the path to the tail to a darker colour
tone. This history function ensures that the user is always aware, where he
tabbed the stylus for the last time. If drawing the path is done, the assistant
suggests to click on the white list icon at the right bottom (Figure 6.14(6))
to show the path’s underlying items Figure 6.14(7). The playlist shown in
this figure is built the following way: Every circle from the path is painted
somewhere over a unit (in this case a unit is represented as an album cover).

72 6 MobileSOM

(1) Move Stylus

(4) Pencil Clicked

(2) View Songs

(5) Draw Path

(3) Pencil Click

(6) List Items

(7) Play List (8) Trim Path (9) Trimming

(10) Delete All (11) Deleted

Figure 6.14: Welcome Assistant

6.6 User Interaction 73

From that unit one song is taken and added to the playlist. If more circles
are painted on one unit, different tracks are chosen from it. In case there are
more circles painted on a cover than songs are available, no further action is
taken (no item is added twice to a playlist by design). The user can either
listen to the songs or edit the playlist on the map or in the Playlist Editor
(see section 6.6.7). On the map the path is trimmed by rubbing the icons
above the pencil (Figure 6.14(8)). The left rubber cuts away circles from
the tail and the other one from the head. The trimmed path is shown in
Figure 6.14(9). During trimming the pencil has to be deactivated. A playlist
is deleted by clicking the red cross next to the pencil. After tabbing the icon
one time, the assistant tells the user to click the red cross twice to delete the
entire path (see Figure 6.14(10)). This function is implemented for security
reasons as not to erase the whole playlist by accident.

6.6.5 Roll the Dice

If a path is drawn over an album, each circle selects a song from the album.
The way the songs are added to the playlist is either sequentially or by
random. If the “Roll the Dice”-function is deactivated, the first circle painted
on the cover adds the first song of the album to the playlist, the second circle
the second song of the album and so on. So any time a path is drawn over
an album cover the first songs of the album are taken and the user might
never listen to pieces of music placed at the end of the album. If the “Roll the
Dice”-function is activated, the first circle painted on the cover adds a random
selected song of the album to the playlist, the second circle another random
selected song of the album that is not already in the playlist and so on (see
Figure 6.15). The advantage of the function is that playlists generated by
the user will differ every time, even if they draw exactly the same path. To
enable the “Roll the Dice”-function the dice icon at the bottom right of the
menu bar is clicked until is pink coloured and deactivated by tabbing on it
again so the colour of the icon will change back to gray.

6.6.6 Scrolling and Zooming

The Map Image can have any desired dimensions as long the file size does not
exceed the memory capabilities of the mobile device. If the map is clipped
by the border of the display, navigation arrows will blend in the menu bar.
The user scrolls the map either by clicking the red arrows in the middle of
the menu bar or moves the stylus to one of the four regions close to the red
highlighted borders in Figure 6.16. A feature that was used in an earlier
version of MobileSOM is zooming in the map. With a magnifier icon for

74 6 MobileSOM

3

2
1

01 When You say nothing at all
02 Life is a rollercoaster
03 The way you make me feel

12 Father and son
05 If tomorrow never comes
08 The long goodbye

1

2

3

Ronan Keating
10 Years Of Hits

1

2

3

Sequentially Ordered

Random Selection

Figure 6.15: “Roll the Dice”-function: Songs are chosen from an album ran-
domly or in a sequentially order

zooming in and out it was possible to switch between four different levels
of zoom. Because of the fact that the whole Map Image was decoded into
an integer array, on most mobile devices a heap overflow occurred and the
device had to be rebooted. The function was impracticable on real world
devices and was therefore removed.

6.6.7 Playlist Editor

In the Editor all songs that where selected are displayed in a list view (see
Figure 6.17). If the list is to long, scrolling icons appear in the menu bar
recognizable as red arrows. For fast scrolling the stylus can be mopped on
one of the arrows instead of singly pointing on them. The created playlist
can be altered by removing songs or changing their position. To perform
operations on an item, it is selected first by clicking on it. The selected item
is now highlighted light green. By clicking the red cross icon, the song is
removed from the playlist and its successor is selected. To move a song up
or down in the list, one of the list icons in the upper left menu bar is clicked.
For quickly moving an item through the list the stylus is mopped on one of
the list icons. Mopping the stylus simulates multiple clicks on the screen. To

6.6 User Interaction 75

Figure 6.16: Scrolling and Zooming

Figure 6.17: Playlist Editor

76 6 MobileSOM

Figure 6.18: Editing features from left to the right: Red arrows for scrolling
up and down in the list, list items for moving a selected song up or down,
rubber for deleting a single item, play/stop button for playing items from
the playlist, blue arrows for skipping tracks, map icon to switch to the map
interface

switch back to the Map Image the map icon on the right is clicked.

6.6.8 The Player

The Player is located as a transparent bar at the top of the screen and can
be activated as soon as any songs are added to the playlist by clicking the
play icon either on the Map Image or in the Playlist Editor. The name of
the current played song and the time progress are displayed in the player
window. In Playlist Editor the actual played song is highlighted pink. Titles
are skipped by clicking on the forward or backward icon. The player is
stopped by clicking on the stop button. There are three player modes:

1. Play files from the local file system

2. Stream files from a server

3. Play files on a remote machine

In the first case all pieces of music are available on the mobile device and are
played locally. The other modes require a network connection. An issue to
overcome is that streaming of audio files is not supported by the MMAPI.
The files are first downloaded to the device and played again locally. This
results in long waiting times which is very obvious when the media file is
big. A special feature for devices that are not able to play audio files is the
remote mode. Music files are stored on a PC that is connected to a network
and a server application is waiting for incoming item requests. After creating
a playlist on the mobile device, the device acts as a remote control telling
the server which song to play. It is even possible to switch between remote
and local mode at runtime. An “R” placed at the right top of the play icon
indicates that the song is played on another device remotely. The remote
mode is switched on or off by pressing key “1” on the device. Figure 6.19
shows the player in the two different modes.

6.7 Emulators versus Real World Devices 77

Figure 6.19: Player in remote mode on the left and playing music from the
mobile device on the right side

Figure 6.20: Deployment of a MIDlet

6.7 Emulators versus Real World Devices

The prototype was developed in Netbeans which is an open source Java IDE
that provides creating mobile applications straight out of the box. Once a
MIDlet is ready to distribute, it is tested on an emulator first. Netbeans sup-
ports direct integration of emulators by various manufacturers. MobileSOM
was tested on the following emulators

1. Prototype 4.0 Nokia 7710 MIDP Emulator

2. Sony Ericsson MIDP 2.0 and CLDC 1.1 P900/P910 Emulator

3. Sony Ericsson MIDP 2.0 and CLDC 1.1 M600 Emulator

Moreover the IDE supports developing applications for multiple devices by
adding and executing device-specific code as configurations within a single
MIDlet, called “device fragmentation”. If the program passed all functional
tests in the emulator environment there are several ways to deploy it on a
device for example via Cable, Bluetooth or IR, over WAP-Push or download
it directly from a server. Figure 6.20 shows the deployment from a MIDlet
to a Nokia device. Unfortunately the deployment procedure described above
turned out to be impracticable in many aspects. The MobileSOM Player
loads many Images at the beginning, which can result in an out of runtime
memory error on real devices. A cold restart of the device is necessary.
Running out of heap memory (=runtime memory), has nothing to do with the

78 6 MobileSOM

maximal size of a MIDlet suite (=jar File). For example, a compressed image
might only take 6K in the JAR file, but it uses about 10 times more heap
space during runtime. Pictures take about 2 byte/pixel memory regardless
of file size. The fact that this error occurs is a sign that the software is
trying to allocate more memory than is available as a single chunk. This
usually occurs when a program attempts to load a large image after loading
many smaller ones. The smaller images used up half the heap and the large
one can not be provided a large enough chunk in which to fit. In general a
program must avoid loading such large resources into memory. The only way
to tell whether a MIDlet is too big to run on the phone is to test it on the
actual device. Emulators cannot be accurate in simulating the heap memory
management.

The Multi Media API (MMAPI) is implemented differently by every man-
ufacturer. Most of the mobile device do not support mp3 playback at all.
The most complete implementation of the JSR-135 can be found on various
Sony Ericsson devices (e.g. M600 or P910) followed by some Nokia mobiles.
Playing mp3’s using the MMAPI works on a Nokia 7710 but it does not work
on its Prototype 4.0 Nokia 7710 MIDP Emulator.

Lemma 1 (Deployment) If a MIDlet works on the emulator, it may not
work on the device.

Lemma 2 (Deployment) If a MIDlet works on the device, it may not work
on the emulator.

6.8 Practical Experiences on Real World Devices

An evaluation of the MobileSOM running on a Nokia 7710 and a Sony Erics-
son P910 is given. Because of heap memory limitations the zooming feature
is disabled. Due to the fact that streaming is performed in downloading the
songs first to the device, which leads into long waiting times, all devices stored
the music content locally. The audio archive used contains 10 Songs from
10 genres. After installing MobileSOM on both devices the first observed
difference is how a MIDlet Suite is organised on the device. On the Nokia
7710 every MIDlet of the suite is shown as a labelled icon in the program
manager ordered by its names. If there are more MIDlet Suites installed, the
user will lose track of which MIDlet belongs to which suite. On the P910
MIDlet Suites are displayed as folders containing the MIDlets. If the user
opens a suite he can choose in a list box between the available MIDlets.

6.8 Practical Experiences on Real World Devices 79

6.8.1 Interaction with the Stylus

In this section a closer look at the “Map Viewer”-MIDlet considering user
interaction with the stylus is taken. Clicking menu icons is an easy task on
the emulators but could be a tricky one on all real world devices because of
calibration problems or hitting wrong icons because they are too small. It
has to be ensured that the icons are big enough and well separated. Because
of different screen resolutions the size of the menu items and the distance
between them has to be adjusted for every device. Drawing a path is smooth
on all Sony Ericsson devices but a fatiguing task on the Nokia 7710. The
graphical computation power of the Nokia 7710 is much weaker than on Sony
Ericsson ones both on the emulators and the real world devices. On Sony
Ericsson devices the path is drawn as soon the screen is touched with the
stylus. On the Nokia 7710 is a noticeable delay between tabbing the screen
until the path is drawn on the device. This delay increases as the path gets
longer. Once a path is drawn, the rubbing effect is tested. Mopping the
stylus over the rubber icon feels like erasing a painting with a real rubber.
Using the stylus like an “ink-killer” is much more intuitive then using the
mouse for the same task on the emulator.

6.8.2 Multimedia

The next section concentrates in the multimedia capabilities of the tested
devices. Excluded is the Prototype 4.0 Nokia 7710 MIDP Emulator because
of the lack of mp3 support. Songs start to play on the emulators instantly but
with a noticeable delay on the real world devices. The initialization process
to play an mp3 on real world devices takes about one to four seconds. Using
the mobiles as a remote control works fine on all devices. As soon they were
connected to a network, remote commands worked with almost no noticeable
delay.

6.8.3 Sandbox

The sandbox is a set of rules that are used when creating an MIDlet that
prevents certain functions when the MIDlet is running on a mobile device.
It creates an environment in which there are strict limitations on what kind
of system resources the MIDlet is allowed to access. Sandboxes are used
when executable code comes from unknown sources thus allow the user to
run untrusted code safely. MobileSOM is recognized as an untrusted source
by every real world device, because it is not signed. For the first time Mo-
bileSOM wants to access a system resource like the local file system, the

80 6 MobileSOM

network or the RMS, the user has to confirm the request. The security set-
tings on a Nokia 7710 are even stricter. Every access to the file system has
to be confirmed by the user. This makes it impossible to listen to a gen-
erated playlist without interrupting the playback. After a song finished the
user has to acknowledge the access to the file system for the following track
again. MobileSOM has not been signed yet, because the costs for signing a
MIDlet bear no relation to software that is still in a prototype state.

6.9 Future Extensions

In this section challenging ideas for future extensions of MobileSOM are
given.

6.9.1 Switching between different Representation Layers

The current version of MobileSOM implements a zooming algorithm, that
interpolates a given image to an arbitrary size. Because of heap limitations
on real world devices it is not possible to scale the Map Image during runtime
which would lead into a buffer overflow. Another approach to overcome this
problem is to split the Map Image into Unit Images. A Unit Image is saved in
different sizes for every zooming layer. Depending on the part of the map that
is viewed, the corresponding Unit Images are shown on the screen. Having
images of different size for every Unit makes it easy to realise the concept of
growing hierarchical Self-Organizing Maps[RMD02], where from a Unit that
has more items than a given threshold a new SOM is computed. At a certain
zooming level the graphical visualisation of a Unit could be combined with
a textual representation of the corresponding map items. This was done in
[NDR05] where the names of all songs were displayed in a unit.

6.9.2 Drag & Drop Functionality

So far MobileSOM does not offer any interaction facilities to manipulate the
Map Image or to rearrange the Map Items on the Grid. A way of reorganising
a map is to exchange Units. This could be done by holding the stylus on a
specific Unit for about two seconds to activate the drag mode. Now the Unit
is dragged over the map and dropped over any other Unit. In the same way
Map Items can be moved from one Unit to another.

6.10 Summary 81

6.9.3 Mouse Pointer

The current version of MobileSOM requires a device with touchscreen in
order to draw a trajectory on the display. An implementation of a “mouse
pointer” which is controlled with the keys up, down, left and right would
enable the entire controll of the prototype with the keyboard and would
make the application available for a wider range of mobile devices.

6.9.4 Extended Playlist Generation

As described in Section 6.1.4 the algorithm for generating a playlist takes
a fixed number of songs from every slice of the path and adds them to the
playlist. A different approach is to let the user define a desired duration of the
playlist before any items are selected. After a path is drawn an appropriate
number of songs is taken where the sum of the durations matches the user
defined length.

6.9.5 Progressive download

With progressive download, playback can start as soon as a certain amount of
data has been buffered in the phone memory. This allows the user to listen to
a song while it is still being downloaded. The current version of MobileSOM
has to download the whole song to the device before the playback begins.
With newer devices, that implement this technique already in the JVM25,
this problem will be solved.

6.9.6 On-Device Feature Extraction & Map Image Re-design

With increasing memory capabilities and faster computation power on mo-
bile devices it will be possible to extract features of audio files on the device
itself. Similarity matrices or Map Images are created during runtime without
the need of external hard- and software. MobileSOM would act as a com-
plete independent software package, which is able to deal with growing music
libraries and dynamically organising them on the device.

6.10 Summary

In this chapter the prototype MobileSOM and the XPlayer were introduced.
The reader learned about the software architecture and the environment that

25http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/
p_new_features_mobilemedia_api_jsr135.jsp

82 6 MobileSOM

is necessary in order to run MobileSOM on a mobile device. An installation
guide showed how to deploy the prototype on a emulator and on a real
world device. In the next sections the reader learned about the configuration
possibilities and how to interact with the prototype. A comparison of running
MobileSOM on a emulator and real world device was given and practical
experiences of using the prototype on a Nokia 7710 and on a Sony Ericsson
P910 were discussed. In the end of this chapter ideas of how to extend
MobileSOM with new features were given.

Chapter 7
Conclusion

In this chapter the work of the thesis is summarized and in addition, opportu-
nities for future research and further development of the presented prototype
are discussed.

7.1 Innovative User Interfaces for accessing Music on
Mobile Devices

The work presents innovative concepts for visualizing and interacting with
music libraries on mobile devices. The basic idea is to display a music archive
as a two-dimensional map. The map is split into units that contain pieces
of music with similar properties, for example a unit contains music from a
specific artist or genre. Even more abstract similarities like songs that sound
similar or pieces of music of the same mood can be identified using feature
extraction techniques. To arrange units in the grid a self-organizing map al-
gorithm is applied which places units that contain similar songs next to each
other on the map. Units can be visualized as album covers or emoticons
representing a specific mood. A more abstract visualization type is to use a
topographic map which displays units with a high density of songs as islands
and units with fewer pieces of music as water.
The concepts were realized in a mobile application called MobileSOM (Mo-
bile Selection of Music) using Java Micro Edition (J2ME) as programming
language. In order to run MobileSOM, the software needs a map image,
which visualizes the music archive and a data file, which contains the path
to the music files and the location of them on the map, as input parameters.
During runtime songs can be selected from the music map and played on
the device. The prototype can also be used as a remote control. Instead of
playing a piece of music on the mobile device MobileSOM triggers another
device to play the song.

Today only a limited number of real world devices have enough computation
power and multimedia capabilities to run MobileSOM in its full functional-
ity. For demonstration purposes a small set of state-of-the-art devices were
carefully selected from various manufacturers to run a slimmed version of
MobileSOM. Testing the prototype on real world devices showed that the

83

84 7 Conclusion

described features are practicable. They will perform smoother if the hard-
ware becomes more powerful and the network connections for accessing music
content get faster.

MobileSOM has not reached a level, that suggests its commercial usage. Still,
devices of the next generations will overcome the technological bottle neck so
that this work will be a great inspiration for commercial music applications
on mobile devices in the near future.

7.2 Future Work

The demonstration music libraries used in MobileSOM contained less than
thousand songs. An interesting task will be to investigate the performance
and usability of MobileSOM working with huge audio collections. Another
issue is to find out if the concept of music maps is suitable for commercial
audio archives containing millions of songs or if MobileSOM works better
with private audio collections. A challenging task will be the integration of
feature extraction techniques and the implementation of the self-organizing
map algorithm on mobile devices. MobileSOM would then be able to place
new songs to corresponding units on the map without the need for external
soft- or hardware.

Appendix A
Appendix

A.1 Build a Map Item List

1 /∗∗
2 ∗ Bui lds a MapItemList from the path , t h a t was drawn
3 ∗ by the user . The path c on s i s t s o f Map Points . Every
4 ∗ Map Point b e l ong s to a Unit . From tha t Units Map
5 ∗ Items are taken and added to the MapItemList . Map
6 ∗ Items are choosen from a Unit e i t h e r randomly or in
7 ∗ a ordered manner from the f i r s t to the l a s t item .
8 ∗

9 ∗ An example : <code>bu i l d </code> i s c a l l e d wi th <code>

10 ∗ bRandomize</code> s e t to <code>f a l s e </code> and
11 ∗ <code>maxNumberOfMapItems</code> s e t to 3 . For a Map
12 ∗ Point p laced in Unit X the f i r s t 3 Map Items o f t h a t
13 ∗ Unit are added to the MapItemList .

14 ∗ The MapItemList never conta ins any Map Item twice .
15 ∗
16 ∗ @param mapPoints the l i s t o f Map Points
17 ∗ @param gr i d the Grid con ta in ing Map Items
18 ∗ @param bRandomize i f s e t to <code>true </code> Map
19 ∗ Items from a Unit are s e l e c t e d randomly .
20 ∗ @param maxNumberOfMapItems the maximum number o f Map
21 ∗ Items taken from a Unit
22 ∗/
23 public void bu i ld (
24 Vector mapPoints ,
25 Grid gr id ,
26 boolean bRandomize ,
27 int maxNumberOfMapItems)
28 {
29

30 Vector i t emLi s t ;
31 MapPoint mapPoint ;
32 MapItem MapItem ;
33 int itemCounter = 0 ;

85

86 A Appendix

34

35 this . removeAllElements () ;
36

37 // go through the po in t s (mapPoints) t h a t the user
38 // pa in ted on the screen
39 for (Enumeration e = mapPoints . e lements () ;
40 e . hasMoreElements () ;)
41 {
42 mapPoint = (MapPoint) e . nextElement () ;
43

44 // a Map Point has a corresponding Unit .
45 i t emLi s t = gr id . getMapItems (
46 mapPoint . getUnit Id ()) ;
47

48 // i f t h e r e are Map Items in t ha t Unit , add them
49 // to the MapItemList (t h e r e i s a f i x e d number o f
50 // i tems per Map Point (MAX_SONGS_PER_MAPPOINT)
51 // t ha t w i l l be added to the MapItemList)
52 itemCounter = 0 ;
53

54 i f (i t emLi s t !=null)
55 {
56 // go through the i tems from the ac t ua l un i t and
57 // i f they are not a l r eady in the p l a y l i s t add
58 // them to i t .
59 i f (bRandomize)
60 {
61 // ge t randomized Map Items , i f you ge t bored
62 // l i s t e n i n g always to the same p i ck one random
63 // item from i t emLi s t and add i t to the
64 // p l a y l i s t . Repeat u n t i l i t em l i s t i s empty or
65 // more than "maxNumberOfMapItems" where p icked .
66 int n ;
67 i f (i t emLi s t . s i z e ()>0)
68 {
69 n = Math . abs (random . next Int ())
70 % itemLi s t . s i z e () ;
71

72 MapItem = (MapItem) i t emLi s t . elementAt (n) ;
73

74 i f (! this . c onta in s (MapItem))

A.1 Build a Map Item List 87

75 {
76 this . addElement (MapItem) ;
77 }
78 itemCounter++;
79 }
80 }
81 else
82 {
83 for (Enumeration i=i t emLi s t . e lements () ;
84 i . hasMoreElements () ;)
85 {
86 MapItem = (MapItem) i . nextElement () ;
87

88 i f (! this . c onta in s (MapItem) &&
89 itemCounter < maxNumberOfMapItems)
90 {
91 this . addElement (MapItem) ;
92 itemCounter++;
93 }
94 }
95 }
96 }
97 }
98 }

88 A Appendix

A.2 Device Specifications

Nokia 7710
OS Symbian OS v7.0s, Series 90 UI

Processor ARM based processor 150 MHz

Interactivity TFT touch-screen
65K colours
640 x 320 pixels

Memory Card slot MMC, 128 MB card included
90 MB shared internal memory

Connectivity Data GPRS Class 10, 32 - 48 kbps
HSCSD, 43.2 kbps
EDGE Class 10, 236.8 kbps
No WLAN
Bluetooth, v1.2
No Infrared port
USB

Customization Java MIDP 2.0, CLDC-1.1
JSR 135 (MP3 decoding implemented)

Figure A.1: Nokia 7710 Specifications

A.2 Device Specifications 89

Sony-Ericsson M600
OS Symbian OS v9.1, UIQ 3.0

Interactivity TFT touchscreen
256K colors
240 x 320 pixels
QWERTY keyboard

Memory 64 MB card included
80 MB shared memory

Connectivity GPRS Class 10, 32 - 48 kbps
HSCSD 43.2 kbps
No EDGE
3G Yes, 384 kbps
No WLAN
Bluetooth v2.0
Infrared port
USB v2.0

Customization Java MIDP 2.0, CLDC-1.1
JSR 135 (MP3 decoding implemented)

Figure A.2: Sony Ericsson M600 Specifications

Qtek 9100
OS Microsoft Windows Mobile 5.0 PocketPC

Processor TI OMAP 850, 200 Mhz processor

Interactivity TFT touch-screen
65K colours
240 x 320 pixels
QWERTY keyboard

Memory 64 MB DDR SDRAM
128 MB ROM

Connectivity GPRS Class 10, 32 - 48 kbps
EDGE Class 10, 236.8 kbps
WLAN Wi-Fi 802.11b/g
Bluetooth v2.0
Infrared port
USB

Customization Java MIDP 2.0, CLDC-1.1
JSR 135 (MP3 decoding implemented)

Figure A.3: Qtek 9100 Specifications

90 A Appendix

BenQ P50
OS Microsoft

Windows Pocket PC 2003 Phone edition

Processor Intel PXA 272, 416 MHz

Interactivity TFT touch-screen
65K colours
240 x 320 pixels

Memory 64 MB SDRAM
64 MB Flash ROM

Connectivity GPRS Class 10 (4+1/3+2 slots), 32 - 48
kbps
WLAN Wi-Fi 802.11b
Bluetooth, v1.1
Infrared port
USB

Customization Java MIDP 2.0, CLDC-1.0
JSR 135 (MP3 decoding implemented)

Figure A.4: Benq P50 Specifications

A.3 Music 91

A.3 Music

Songs Album Artist
12 3 Doors Down Seventeen Days
10 Alanis Morissette So Called Chaos
12 Anastacia Anastacia
14 Avril Lavigne Let Go
3 Baby Bash Suga Suga

16 Best of MTV Unplugged Vol.2
12 Bjork Medulla
9 Daft Punk Human After All

14 Deep Dish George Is On
12 Destinys Child Destiny Fulfilled
20 Gentleman Confidence
14 Hoobastank The Reason
14 Kelis Tasty
33 Kylie Minogue Ultimate Kylie
13 Lenny Kravitz 5

208

Table A.1: Test set “Album Snippets”: 16 albums from various artists with
208 songs total

92 A Appendix

Figure A.5: Map Image showing album covers from table A.1 in a 4x4 Map
Grid

Songs Genres
100 Disco
100 Hiphop
100 Blues
100 Pop
100 Reggae
100 Metal
100 Jazz
100 Country
100 Rock
100 Classical

1000

Table A.2: Test set “Gtzan”: 1000 songs divided into 10 genre à 100 pieces

Figure A.6: Map Image showing a SOM (20x14 Units) computed with the
test set from table A.2

Bibliography
[AP03] Jean-Julien Aucouturier and François Pachet. Representing mu-

sical genre: A state of the art. Journal of New Music Research,
32(1):83 – 93, March 2003.

[App] Apple. iTunes Store. http://www.apple.com/de/itunes/store/,
accessed on 22nd of Nov.2006.

[Arn99] Michael Arnold. Mp3 robust audio watermarking. In Proceed-
ings of the DFG VIIIDII Watermarking Workshop, Fraunhofer
Institute for Computer Graphics IGD, Oct. 5-6 1999.

[Bau06] Doris Baum. Emomusic - Classifying music according to emotion.
In Proceedings of the 7th Workshop on Data Analysis (WDA),
Kosice, Slovakia, July 1-3 2006.

[BR05] Thorsten Buering and Harald Reiterer. Zuiscat - Querying and
visualizing information spaces on personal digital assistants. In
Proceedings of the 7th international conference on Human com-
puter interaction with mobile devices & services (MobileHCI),
pages 129–136, New York, NY, USA, Sep 2005. ACM Press.

[BR06] Doris Baum and Andreas Rauber. Emotional descriptors for map-
based access to music libraries. In Proceedings of the 9th Inter-
national Conference on Asian Digital Libraries (ICADL), Kyoto,
Japan, November 27-30 2006.

[Bra03] Karlheinz Brandenburg. Mp3 and Aac explained, 2003.

[dBS00] Oscar de Bruijn and Robert Spence. Rapid serial visual presen-
tation: A space-time trade-off in information presentation. In
Proceedings of Advanced Visual Interfaces (AVI), Palermo, Italy,
May 2000.

[DNR05] Michael Dittenbach, Robert Neumayer, and Andreas Rauber.
Playsom: An alternative approach to track selection and playlist
generation in large music collections. In Proceedings of the First
International Workshop of the EU Network of Excellence DELOS
on Audio-Visual Content and Information Visualization in Dig-
ital Libraries (AVIVDiLib), pages 226–235, Cortona, Italy, May
4-6 2005.

93

94 BIBLIOGRAPHY

[Eri] Sony Ericsson. Mobile music.
http://developer.sonyericsson.com/site/global/newsandevents
/campaigns/mobile_music/p_mobilemusic.jsp, accessed on 9th
of Jan.2007.

[HFG+98] Beverly L. Harrison, Kenneth P. Fishkin, Anuj Gujar, Carlos
Mochon, and Roy Want. Squeeze me, hold me, tilt me! An
exploration of manipulative user interfaces. In Proceedings of the
conference on Human Factors in Computing Systems (SIGCHI),
pages 17–24. ACM Press/Addison-Wesley Publishing Co., 1998.

[IFP07] IFPI. Digital music report. Technical report, IFPI, Jan-
uary, 17th 2007. http://www.ifpi.org/content/library/
digital-music-report-2007.pdf.

[JM06] Matt Jones and Gary Marsden. Mobile Interaction Design. John
Wiley & Sons, February 2006.

[Kob05] Evan Koblentz. The evolution of the PDA, May 2005.
http://www.snarc.net/pda/pda-treatise.htm, accessed on 3rd of
Dec.2006.

[Koh95] Teuvo Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin,
1995.

[LO03] Tao Li and Mitsunori Ogihara. Detecting emotion in music. In
Proceedings of the Fourth International Conference on Music In-
formation Retrieval (ISMIR), 2003.

[Mas98] Toshiyuki Masui. An efficient text input method for pen-based
computers. In Proceedings of the conference on Human Factors
in Computing Systems (SIGCHI), pages 328–335, New York, NY,
USA, 1998. ACM Press/Addison-Wesley Publishing Co.

[MC02] Michael Moyle and Andy Cockburn. Analysing mouse and pen
flick gestures. In Proceedings of the Symposium On Computer-
Human Interaction (SIGCHI-NZ), pages 19–24, Hamilton, New
Zealand, July 11-12 2002.

[Med01] Microsoft Windows Media. Understanding Secure Audio Path.
Technical report, Microsoft, 2001.

[Mic07] Microsoft. Zune, 2007. http://www.zune.net/en-US/press, ac-
cessed on 7th of Jan.2007.

BIBLIOGRAPHY 95

[MUNS05] Fabian Mörchen, Alfred Ultsch, Mario Nöcker, and Chris-
tian Stamm. Visual mining in music collections. In Pro-
ceedings of the 29th Annual Conference of the German
Classification Society (GfKl), Magdeburg, Germany, 2005.
http://www.mathematik.uni-marburg.de/~databionics/de/
/downloads/papers/moerchen05visual.pdf.

[NDR05] Robert Neumayer, Michael Dittenbach, and Andreas Rauber.
PlaySOM and PocketSOMPlayer: Alternative Interfaces to Large
Music Collections. In Proceedings of the Sixth International Con-
ference on Music Information Retrieval (ISMIR), pages 618–623,
London, UK, September 11-15 2005.

[Nok] Nokia. Webpage. http://www.nokia.de/, accessed on 9th of
Jan.2007.

[Nok07] Nokia. Mobile Media API Support in Nokia Devices. Technical
report, April 2007.

[Pam01] Elias Pampalk. Islands of Music: Analysis, Organization, and Vi-
sualization of Music Archives. Master’s thesis, Vienna University
of Technology (TU Vienna), 2001.

[PRM02] Elias Pampalk, Andreas Rauber, and Dieter Merkl. Us-
ing smoothed data histograms for cluster visualization in self-
organizing maps. In Proceedings of the International Conference
on Artificial Neural Networks (ICANN), pages 871–876, Madrid,
Spain, August 27-30 2002.

[RF01] Andreas Rauber and Markus Frühwirth. Automatically analyzing
and organizing music archives. In Proceedings of the 5. European
Conference on Research and Advanced Technology for Digital Li-
braries (ECDL), Springer Lecture Notes in Computer Science,
Darmstadt, Germany, Sept. 4-8 2001. Springer.

[RMD02] Andreas Rauber, Dieter Merkl, and Michael Dittenbach. The
Growing Hierarchical Self-Organizing Map: Exploratory Anal-
ysis of High-Dimensional Data. IEEE Transactions on Neural
Networks, 13(6):1331–1341, November 2002.

[RPM02] Andreas Rauber, Elias Pampalk, and Dieter Merkl. Using
Psycho-Acoustic Models and Self-Organizing Maps to create a
Hierarchical Structuring of Music by Musical Styles. In Proceed-
ings of the 3rd International Symposium on Music Information

96 BIBLIOGRAPHY

Retrieval (MUSIC IR), pages 71–80, Paris, France, October 13-17
2002.

[RPM03] Andreas Rauber, Elias Pampalk, and Dieter Merkl. The SOM-
enhanced JukeBox: Organization and Visualization of Music Col-
lections based on Perceptual Models, volume 32, pages 193–210.
June 2003.

[Rub91] Dean Rubine. Specifying Gestures by Example. In Proceedings of
the 18th annual conference on Computer graphics and interactive
techniques (SIGGRAPH), pages 329–337, New York, NY, USA,
1991. ACM Press.

[Sch06] Markus Schedl. The CoMIRVA Toolkit for Visualizing Music-
Related Data. Technical report, Department of Computational
Perception, Johannes Kepler University Linz, June 2006.

[Tza02] G. Tzanetakis. Manipulation, Analysis and Retrieval Systems for
Audio Signals. PhD thesis, Princeton University, 2002.

[WIK05] WIKI. Mobile phones, 2005.
http://en.wikipedia.org/wiki/Mobile_phone, accessed on
6th of Jan.2007.

