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Abstract

Automatic analysis of digital audio data has a long tradition. Many tasks that humans solve easily,
like distinguishing the constituting instrument in polyphonic audio or the recognition of rhythm or
harmonies are still not solved for computers. Especially the development of an automatic
transcription system that computes the score out of a music recording is still a distant prospect
despite decades-long research efforts. This thesis deals with a subproblem of automatic transcription
— automatic chord detection. Chord detection is particularly interesting as chords are comparatively
simple and stable structures, and at the same time completely describe the harmonic properties of a
piece of music. Thus musicians are able to accompany a melody solely by provided chord symbols.
Another application of this thesis is automatic annotation of music. An annotated music database
can then be searched for specific chord sequences and harmonic or emotional characteristics.
Previous approaches to chord detection often severely restricted the types of analysable music by
considering for example only performances without percussion or vocals. In addition a large part of
existing approaches does not integrate music theoretical knowledge in their analysis, thus
renouncing helpful additional information for chord detection. The goal of this thesis was to design
an algorithm that operates on musical pieces of arbitrary instrumentation and considers music
theoretical knowledge. Thus the developed algorithm incorporates rhythm, tonality and knowledge
about the common frequencies of chord-changes. An average accuracy rate of 65% has been
achieved on a test set of 19 popular songs of the last decades and confirms the strength of this
approach.

The thesis starts with an overview followed by an introductory chapter about acoustical and music
theoretical fundamental principles. Design and implementation of the chord detection algorithm
constitute the two central chapters of this thesis. Subsequently, setup and results of the performed
evaluation are described in detail. The thesis ends with a summary of the achieved insights and an

outlook on possible future work.



Kurzfassung

Die automatische Analyse digitalisierter Musikaufnahmen hat eine lange Tradition. Viele Aufgaben
die fiir einen Menschen leicht l16sbar sind, wie das Unterscheiden verschiedener Instrumente, das
Erkennen des Rhythmus oder der Harmonien sind fiir den Computer jedoch noch nicht gelost.
Speziell von einem automatischen Transkriptionssystem, das aus einer digitalen Musikaufnahme
eine Partitur erstellt, ist man trotz jahrzehntelanger Forschung noch weit entfernt. Diese Arbeit
beschiftigt sich mit einem Teilproblem der automatischen Transkripition - der Akkorderkennung.
Diese ist besonders interessant, weil Akkorde vergleichsweise simple und robuste, also iiber
langere Zeitspannen gleich bleibende Strukturen sind, gleichzeitig aber die harmonischen
Eigenschaften eines Musikstiicks vollstindig beschreiben. So konnen Musiker eine Melodie allein
anhand vorgegebener Akkordsymbole begleiten. Ein weiteres Anwendungsgebiet dieser Arbeit
stellt die automatisierte Annotation von Musikdaten dar. In einem Musikarchiv kann so nach
bestimmten Akkordfolgen, harmonischen und emotionalen Eigenschaften gesucht werden.
Bisherige Ansitze zur Akkorderkennung machen teilweise groBe Einschrinkungen auf die zu
analysierenden Musikdaten, indem sie sich zum Beispiel auf die Analyse von Musikstiicken ohne
Schlagzeug oder Gesang beschrinken. Weiters bezieht ein GroBteil der bestehenden Arbeiten
musiktheoretische Regeln nicht in die Analyse mit ein und ldsst dadurch hilfreiche
Zusatzinformation zur Akkorderkennung unberiicksichtigt. Das Ziel dieser Arbeit ist es, einen
Algorithmus zu entwickeln, der auf Musikstiicken mit beliebiger Instrumentierung arbeitet und
dabei musiktheoretisches Wissen zu beriicksichtigen. So flieBen in den hier entworfenen
Algorithmus Rhythmus, Tonart und das Wissen um Héaufigkeiten von Akkordwechseln in die
Akkorderkennung ein. Eine durchschnittliche Erkennungsrate von 65% auf 19 Teststiicken aus dem
Gebiet der Unterhaltungmusik der letzten Jahrzehnte wurde erreicht und untermauert die Stirke
dieses Ansatzes.

Die Arbeit beginnt mit einer Ubersicht und einem einleitenden Kapitel zu akustischen und
musiktheoretischen ~ Grundlagen. Kapitel 3 gibt einen Uberblick iiber bestehende
Akkorderkennungssysteme und deren Eigenschaften. Der Entwurf eines eigenen Algorithmus zur
Akkorderkennung und dessen Implementierung bilden die zwei zentralen Kapitel dieser Arbeit. Im
Anschluss wird der Aufbau und die Ergebnisse der durchgefiihrten Evaluierung beschrieben. Die
Arbeit schlieBt mit einer Zusammenfassung der gewonnenen Erkenntnisse und einem Ausblick auf

mogliche zukiinftige Arbeiten.
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Chapter 1 : Introduction

1 Introduction

50 #HO /70 'I:I',P" 9,0 10,0 11,0 12,0 13,0 140 150 160 140 180 190 20,0 21,0 220

G 1.Em? 1&? ﬂDm janﬂt:? 1—F 1”Dm hE jl.Em G

Figure 1.1: Chord Sequence: The Beatles - Yesterday

Automatic chord detection is part of the large research field of computer audition (CA) which deals
with all kinds of information extraction from audio signals. Chord detection extracts the harmonies
that occur over the time of a piece of music. Figure 1.1 depicts an exemplary result of chord

detection visualized with Audacity.
Motivation and Applications

The main goal of computer audition has long been transcription of speech or music. In spite of
decades-long research effort, automatic music transcription is still a distant prospect. Chord
detection is a special form of lossy music transcriptions, that captures only harmonic properties of
the audio signal. It is particularly interesting as chords are comparatively simple and stable
structures, and at the same time completely describe a piece of music in terms of occurring
harmonies. The great interest of musicians in chord sequence is perhaps best demonstrated by
pointing out the large number of websites, newsgroup and forum messages on this topic.
Newsgroups like rec.music.makers.guitar.tablature, or alt.guitar.tab offer a platform to request and
publish chord sequences and tablatures together with the lyrics of songs. Many websites that offered

large chord-databases, like olga.net (currently offline), chordie.com or azchords.com have evolved

in the last decade but many of them are currently offline due to legal reasons. These platforms
provide chord information usually not as time-chord pairs but give the timing information indirect
by stating the lyrics that are sung during the duration of each chord. An example for such a chord
sequence file is shown in Figure 1.2. It shows lyrics and chords for the first measures of the Beatles'

song "Yesterday", the same measures that have been used for Figure 1.1.
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Chapter 1 : Introduction

F Em7 A7 Dm
Yesterday all my troubles seemed so far away
Bb C7 F

now I need a place to hide away, oh

Dm G7 Bb F
I believe in yesterday

Figure 1.2: Chords and Lyrics

Besides transcription as an end in itself, a new application field has evolved in the last years: Music
Information Retrieval (MIR). The upcoming of compression formats, especially mp3, and the
decrease of cost of memories capacities, lead to the rise of large private and public digital music
archives. In order to search these archives for music with special properties, each music file has to
be annotated with this information. Such properties are commonly artist, title and genre but could as
well be mood, melody, harmonies, lyrics and so on. Manual information extraction and annotation
is rather time consuming, thus implying the need to design algorithms that compute these features
automatically. The chord-sequence of a song does not only describe its harmonic properties but can
also be used to draw conclusions on its genre and emotions that are evoked at the listener. Thus,
having a music database annotated with chord information, users could search for specific chord-
sequences, music with complex or simple chord structures, slow or fast chord progressions, rather

sad (minor) or lively (major) music and so on.
Goals of this thesis

Previous approaches to chord detection often severely restricted the types of analysable music by
considering for example only performances without percussion or vocals. In addition a large part of
existing approaches does not integrat theoretical music knowledge in their analysis, thus renouncing

helpful additional information for chord detection.

The goal of this thesis is to design, implement and evaluate an algorithm that detects the chord
sequence from arbitrarily instrumented music. We want to evaluate the possibilities of integrating
music theoretical knowledge into the algorithm and whether or to what extend detection quality can
be increased in this way. We further aim to support precise evaluation the same as immediate

feedback by means of resynthesizing the detected chord sequence.

Veronika Zenz 2 01.02.2007



Chapter 1 : Introduction

Input restrictions

As input data we accept sampled audio signals. Other music formats like the musical instrument
digital interface (MIDI), that contain precise pitch and instrument information, are not covered by
this thesis. The music has to contain chords in the first place, that means it must not be monophonic
or atonal, as it is impossible to accurately detect chords where there are no chords. We further
assume that the key of the input data does modulate. Only short, transient modulations are allowed.
This assumption excludes many pieces of music, for example most music from the romantic period,
where modulations are very frequent. This restriction has been necessary to hold complexity down —
key detection itself and modulation detection in particular form a separate research field. The
restriction is not as severe as it may seem in the first place as it can be circumvented using a
modulation detection tool that splits the song into parts of constant keys which can then be passed

to our chord detector.
Overview

The structure of this thesis follows the chronology of the performed research. First basic concepts
and definitions that go beyond computer-science are summarized. Afterwards existing approaches
to chord detection are discussed. Based on this knowledge and the requirements stated above, an
algorithm has been developed that integrates beat structure and the key of the song in addition to the
common frequency-feature and uses these features to raise its detection accuracy. This design is
described in Chapter 4. Guided by the conceptual design the chord detection program genchords
has then been implemented in C++ together with a set of evaluation and transformation tools,
described in Chapter 5. A test set of 19 songs has then been assembled, labelled and was used to
evaluate our approach. Details on the test set and evaluation results can be found in Chapter 6. The

thesis closes with a summary of the achieved insights and an outlook on possible future work.

Veronika Zenz 3 01.02.2007



Chapter 2 : Acoustic and Music Theoretical Background

2 Acoustic and Music Theoretical Background

Automatic chord detection, as computer audition in general, overlaps several disciplines: Acoustics,
or the study of sound, music theory and computer engineering. A basic knowledge of acoustics is
necessary to understand the principles of what sound in general and music in particular are
physically, and which properties they have. The study of music theory is necessary to define the
problem of chord detection itself. For this thesis it is even essential, as the rules of harmonization,
defined by music theory, shall be integrated in our algorithm and help us to interpret the audio
signal.

Though it is impossible to treat these two disciplines, acoustics and music theory, in detail, this
chapter tries to give an introduction to their basic terms and concepts so that a computer-scientist
without expertise in those fields can understand the chord detection algorithms described in the
subsequent chapters. The interested reader can find further information on acoustics in [1],

respectively may consult the text books [2] and [3] for detailed information on music theory.
2.1 Acoustics

Acoustics is a part of physics and is concerned with the study of sound and its production, control,
transmission, reception, and effects. Section 2.1.1 defines the basic concepts of sound. Section 2.1.2
then introduces harmonic series which are fundamental to understand the complexity of

fundamental frequency and pitch detection.

2.1.1 Audio Signal
Feriod
— Amplituce Freuency = 1 [ Period
g {Wolurne) (Pitch)
- ,
&

time

Figure 2.1: Sinus tone

Sound is the vibration of a substance, commonly the air. It is initiated by a vibrating source, e.g.

vocal cords or a plucked guitar string and transmitted over the air or another medium. Sound

Veronika Zenz 4 01.02.2007



Chapter 2 : Acoustic and Music Theoretical Background

propagates as a wave of alternating pressure, that causes regions of compression and regions of
rarefaction. It is characterized by the properties of this wave, which are frequency (measured in
Hertz, short Hz) and amplitude (measured in db(SPL) relative to the threshold of human hearing,
which is 20uPa). Sound waves are commonly depicted in the form pressure over time (see
Figure 2.1. The amplitude of the sound wave determines the intensity of the sound and the

frequency determines the perceived pitch or pitches.

2.1.2 Harmonic Series

Real-world tones do not consist of only one sinus wave. When a body is started to vibrate it does
not only vibrate as a whole, but at the same time vibrates in all its parts. E. g. an air column vibrates
as a whole and in its halves, thirds, quarters and so on. Every tone generated by human voice or
acoustic instruments thus consists of the sinus wave at the fundamental frequency, that usually
corresponds to the perceived pitch, and various differently strong waves at integer multiples of this
frequency. The multiple frequencies are called overtones. The fundamental frequency and its
overtones are called partials or harmonics. Their strength and number characterizes the timbre of the
tone and different instruments have differently strong overtones. Figure 2.2 depicts a sinus wave
representing a fundamental frequency and its first 5 overtones in separate graphs. Figure 2.3 shows
those functions in one graph. The fundamental frequency is illustrated as continuous bold line, the
first 5 overtones are depicted with smaller line width and with smaller amplitudes than the
fundamental frequency. The dashed red line represents the resulting curve. Both figures illustrate
the theoretic concept of harmonic series and do not state the harmonic series of one specific
instrument. The concrete ampliudes of the various harmonics depend on the instrument and the

played pitch.
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Overtone 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Frequency f 2f 3f 4f 5f o6f 7f 8 Of 10f 11f 12f 13f 14f 15f 16f
Interval I I v I m VvV vi- I 1 I Iv+ V VI VII- VII 1
Pitch C C g €4 e g bb, cs ds es f#s g5 as bbs bs ¢

Table 2.1: Overtones (assumed fundamental frequency C)

Table 2.1 lists the first 15 overtones. Note that the first 5 overtones and 9 of the first 15 overtones
(highlighted in the table) are part of the major chord built on the fundamental frequency. For each
overtone its frequency and interval class relative to the fundamental frequency are listed. As an
example the fundamental frequency ¢, is used and the pitch names of its overtones are shown in the
last row of the table. Overtones are theoretically unlimited and the first 43 have been verified [2].
After the 15" overtone the distances between the overtones become smaller than semitone steps and
the overtones are no more educible in our staves. Nevertheless they are relevant to the timbre.

The physical phenomenon of the overtones has often been used to explain music theoretical
buildings, for example by Riemann in [4] or Helmholtz [5]. The fact that the first five overtones
form a major chord prove for some the "natural" foundation of major tonality. However, this
approach has many critics, whose main point is the lack of a simple deduction of the minor tonality

from the overtones.

2.2 Music Theory

Music theory is the entirety of theories that build the foundation of understanding and composing
music. This section gives an overview over those concepts of music theory that are necessary to
understand the task of chord detection and the solution proposed in this thesis. We will concentrate
on the one branch of music theory, called harmonic theory, that deals with harmonies, chords and
tonality and is of special relevance for this thesis. Following the assumptions made on the input data
in chapter 1, we will restrict our overview on classic major/minor tonality theory and leave out other
contemporary approaches like twelve-tone or atonal music.

This section is divided into three subsections. First the basic terms used in music theory like pitch
class, enharmonics or scale are defined. Then the fundaments of major/minor tonality are introduced
focusing on the concepts of keys, chords and function theory. The section closes with an

explanation of tuning and temperament.
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2.2.1 Basic Terms and Definitions

Human pitch perception is periodic as that pitches with the double frequencies (octaves) are
perceived as being very similar. In western music the octave is divided into 12 semitones, named
with the first seven letters of the Latin alphabet and an optional accidental. A sharp accidental (#)
raises the pitch by one semitone, a flat accidental (b) lowers it by one semitone. The 12 semitones in
ascending order beginning with c are [c, c#, d, d#, e, f, f#, g, g#, a, a#, b].

The naming convention is not injective, so that the same pitch can be named with several note
names, called emharmonics. The chromatic scale above could thus also be noted with the
enharmonic equivalent [c, db, d, eb, f, gb, ab, a, bb, b].

All pitches that stand in octave relationship are grouped into a set, called a pitch class. More
precisely a pitch class is an equivalence class of all pitches that are octaves apart. The pitch class 'a’
is a set containing the elements {..., a;, a,, as, a4, as, ... }.

In order to differentiate two notes that have the same pitch class but fall into different octaves a
number specifying the octave is added to the pitch name. According to standard tuning a, is set to

440 Hz, thus as is one octave higher than a,and a; is one octave lower than as.

english name german name nr of semitones example
perfect unison Prim 0 c-C
minor second kleine Sekund 1 c-c#
major second grof3e Sekund 2 c-d
minor third kleine Terz 3 c-d#
major third grof3e Terz 4 c-e
perfect fourth Quart 5 c-f
augmented fourth tiberméBige Quart
6 c-T#
diminished fifth verminderte Quint, Tritonus
perfect fifth Quint 7 c-g
minor sixth kleine Sext 8 c-g#
major sixth grofe Sext 9 c-a
minor seventh kleine Septim 10 c-a#
major seventh grofle Septim 11 c-b
perfect octave Oktave 12 C1-Cy
Table 2.2: Intervals
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The relationship between two notes is called interval. Intervals may occur vertical (harmonic) if the
two notes sound simultaneously or linear (melodic) if they sound successively. Table 2.2 outlines
the English and German names of the intervals the distance between the semitones and two
exemplary pitches that form this interval.

Notes are arranged into scales. A scale is an ordered series of notes that provides the material for
part or all of a musical work. Common scales are the major and the minor scale, latter having three
forms, natural minor, harmonic minor and melodic minor. The scales are characterized by the
intervals either between two subsequent pitches (whole-step, semi-step) or between the first and the
n" degree. The major third is characteristic for the major scale, the minor third for all minor scales.
The minor scales differ in the interval between the fifth, sixth and seventh degree. Table 2.3 shows
intervals, inter-pitch steps and example pitches of the major scale. The natural minor scale is listed
in Table 2.4.

The natural minor scale equals the major scale shifted by a major sixth. Such scales, that have the
same key-signature are called relative; C-Major for example is relative to A-Minor, C-Minor is

relative to Eb-Major and so on.

degree 1 2 3 4 5 6 7 8
step whole whole semi whole whole whole semi
interval  perfect major major perfect perfect major major  perfect
unison  second third fourth fifth sixth  seventh octave
C-Major c d e f g a b c
Eb-Major eb f g ab bb c d eb

Table 2.3: Major Scale

degree 1 2 3 4 5 6 7 8
step whole semi whole whole semi whole = whole
interval  perfect major major perfect perfect major major  perfect
unison  second third fourth fifth sixth seventh  octave
C-Minor c d eb f g ab bb c
A-Minor a b c d e f g a

Table 2.4: Natural Minor Scale
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2.2.2 Tonality and Chords
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Triad F-Major F-Minor
Figure 2.4: Triads

We have defined intervals as combinations of two notes. A collection of three or more notes that
appear simultaneously or near-simultaneously is called chord. Chords are characterized by the
intervals they contain and the number of distinct pitch classes. The most fundamental chords in
major-minor tonality are triads, consisting of three notes, the first, which is called the root note, a
third and a fifth, respectively two third layered above each other. A triad containing, root note,
major third and minor third is called a major chord. Minor chords consist of the root note, a minor
third and a major third (see Figure 2.4).
By alteration, suspension and addition of certain pitches new chord with a different structure can be
generated from the basic triads. The most important of these chords are the seventh chord which
originates by addition of a third third (c-e-g-bb) and the "sixte-ajoutée" which consists, as the name
suggests, of a triad with an additional sixth over the root note (f-a-c-d). Entirely differently
structured chords exist too, which are no more based on thirds but on layered fourths, fifths or
clusters, that contain many or all notes in a marked region.
Chord symbols start with the root note (e.g. C, Db) followed by the letter 'm' for minor chords and
optional additions (e.g. additional intervals) that are usually noted as superscripts. Other notations
for minor Chords add a minus sign (e.g. C-) or use lower-case pitch names for minor chords. The
chord symbol for C-Major (c-e-g) is C, for C-Minor (c-eb-g) Cm, for the major seventh chord on C
(c-e-g-bb) C’. and for a diminished C chord (c-eb-gb) C° or C*™,
A piece of music usually has one major or minor chord, that represents the harmonic center. This
special chord is called the key of the piece of music. Tonality is the system of composing music
around such a tonal center. The word tonality is frequently used as a synonym for key. In classical
music the key is often named in the title (e.g. Beethovens 5" Symphony in C-Minor).
The major or minor scale that starts on the root note of this chord defines the main set of pitches.
Given this scale, it is possible to build a triad on every chord of that scale with notes that are proper

to the scale. Figure 2.5 shows the resulting chords for C-Major.
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Figure 2.5: Scale & Chords

The resulting chords stand in certain relationships to each other and assume certain roles or
Junctions in regard to the key. Table 2.5 lists the function names and common abbreviations. In this
thesis we will use the Funktionstheorie by Riemann, which is commonly used in Germany. For
completeness and comparison the Stufentheorie that is also frequently referred to is also listed in
Table 2.5. For more details on Stufentheorie and Funktionstheorie see [3]. The most important
functions are the tonic which generates a feeling of repose and balance, the dominant, which
generates instability and tension and the subdominant which acts as a dominant preparation.
According to Riemann the other chords are only substitutes for the one of those three main chords
with which they share the most notes. E. g. the chord on the sixth degree, the tonic parallel (A-
Minor (a-c-e) for C-Major) acts as a substitute to the tonic (C-Major (c-e-g)) or to the subdominant

(F-Major (f-a-c)) with both of which it shares two of its three notes.

Funktionstheorie Stufentheorie Example
Function Abbreviation Function Roman Numeral (C-Major)
Tonic T Tonic I C
Subdominant Parallel Sp Supertonic II Dm
Dominant Parallel Dp Mediant 111 Em
Subdominant S Subdominant v F
Dominant D Dominant \" G
Tonic Parallel / Tp/Sg Submediant VI Am

Subdominant Contrast
Dominant Seventh D’ Leading/Subtonic VII Be/G7omit!
Table 2.5: Chord Functions
The characteristics of the chords do not evolve from their absolute pitches but from their functions
and relationships to each other. Some standard chord sequences (also called chord progressions)
with characteristic properties have established themselves and reoccur in many pieces of music. The

most common chord progression in popular music is based on the three main degrees tonic,

subdominant and dominant and is I-IV-V-1.
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Figure 2.6: Scottish Traditional "Auld lang syne"”

Figure 2.6 shows the melody of the first measures of the Scottish traditional "auld lang syne" in D-
major. Above the notes possible accompanying chords are noted, separated by a vertical slash. Note
that there is very often more than one possible chord that could accompany the melody. One could
chose only one chord per measure (D-A-D-G-D-A-G-D), or change the chord every second quarter
note (D,Bm-G,A’-D,D’-G-D,Bm-G,A’-Bm,G,A-D) The rhythm in which the chord changes occur
defines the harmonic rhythm which is independent from the melodic rhythm. The harmonic rhythm
is essential for the character of a piece of music, whether it is perceived to be strongly structured or
large-scaled, short-winded or lengthy, to progress fast or to dwell. Generally there is a strong
interaction between tonal and rhythmic phenomenons. The position and length of a chord
determines to a great extent its function and intensity.

The act of finding chords to an existing melody (Figure 2.6) is called harmonization. Though there
are several rules-sets for harmonizing melodies, there is rarely one "true" chord-progression and

harmonizing remains an artistic act.
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Figure 2.7: J.S. Bach, "Nun lafst uns Gott, dem Herren"

The process of identifying the chords and functions of a polyphonic piece of music is called
harmonic analysis. Figure 2.7 shows the final measures of a Bach Choral and the results of its

harmonic analysis in the form of absolute chords (above the staves) and functions (below).
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Figure 2.8: Cycle of Fifths

Closely related keys are those, of which the scales share many common tones. A common way to
depict the closeness of keys is the circle of fifth shown in Figure 2.8. This figure shows the names
of the major keys in the outer circle and their relative minor keys on the inner circle. Adjacent Keys
have a fifth (to the right) of fourth (to the left) relationship and share 6 of 7 scale notes. The number
of sharps accidentals is also depicted and changes by one for each segment of the circle.

A piece of music need not remain in one key over the whole time. The process of changing the tonal
center of a piece of music is called modulation. The most common modulations are those to closely
related keys as they share many common tones. Thus modulation to the dominant or subdominant is
very frequent, the same as modulation to the relative major or minor. An example for a modulation
to the subdominant is the chord-sequence: [C-F-G-C-C’-F-Bb-C-F-d-Bb-C-F]. The first 4 chord
establish the first tonal center C, the next 5 chord modulate to the new tonal center F to which the
chord sequence then sticks to.

Short changes of the tonal center are called transient modulations or "Ausweichungen".The
shortest change of tonic center is produced by preceding a chord that is not the tonic with its
dominant. This dominant is called secondary dominant. The chord the dominant leads to, is for this
short time the tonic. An example for a secondary subdominant is the second chord in the chord
progression [C-E-a-F-G-C]. This progression has the tonic center C that changes for the second
chord to the tonic center a. The functional symbols for this progression are [T-(D)-Tp-S-D-T],
where the braces around the dominant mark it as a secondary dominant relative to the function that
follows the closing brace. In the same manner as secondary dominants, secondary subdominants

are subdominants of chords other than the tonic.
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2.2.3 Tuning and Temperament

As described in Section 2.1 a tonal signal can be decomposed into several sine with certain
frequencies and amplitudes, where the amplitude determines the volume and the frequency
determines the pitch. The mapping of frequencies to musical pitches is determined by two factors:
the standard pitch (also called concert pitch) and the tuning system.

The standard pitch is a universal frequency that all instruments are set to. The need for a standard
pitch arises when several musicians want to play together on different instruments. Today's standard
pitch is a, set to 440 Hz.

Different tuning systems exist, these are among others just intonation, meantone temperament, well
temperament and equal temperament. In this work we assume that the audio data is in equal
temperament which holds for most of contemporary music. In equal temperament the octave is
divided into twelve parts with equal frequency rates. As the octave has a ratio of two, the ratio of
frequencies between two adjacent semitones is the twelfth root of two.

To find the frequency of a certain pitch or calculate the pitch that matches a given frequency, each
pitch is represented with an integer value, and consecutive semitones have consecutive integer
numbers. We use a pitch number of 57 to represent the reference pitch a,. To find the frequency of a

certain pitch the following formula is applied:

n—a

Pn:Pa.z . (21)

where n is the number assigned to desired pitch and a the number of the reference pitch. P, is the
frequency of the desired pitch and P, the frequency of the reference pitch.

Example: The frequency of ¢4 (57 — 9 semitones = 48) is thus

48—57 -9

P,=440-2 " —440-22=261.626 Hz 2.2)

Given a certain frequency P,, the associated pitch number n is computed using

n

n=a+,log 3 12 (2.3)

a

Example: The pitch number of 261.626 Hz is thus n=57+,log 12=48=c,

261.626)

Veronika Zenz 14 01.02.2007



Chapter 2 : Acoustic and Music Theoretical Background

2.3 Conclusion

This chapter has introduced the reader to the basic acoustic concepts necessary to understand music
analysis. We have given an overview of the properties of sound waves and the relationship between
pitch, frequency, amplitude and loudness. Special focus was given to harmonic series, describing
the properties of acoustic instruments, that never produce one isolated sinus wave — but waves at the
integer multiples of the fundamental frequency.

Following the introduction to acoustics, the basic concepts of music theory have been introduced in
the second part of this chapter. First we defined the terms pitch, enharmonics, interval and scale. We
then have focused on the definition of chords, explaining their notation and structure and giving
examples of the most important chord types — major and minor. We have recognized the importance
of the key or tonal center, and have investigated on function theory, that describes the relationships
between chords and their tonal center. Transient and permanent modulation have been explained,
the same as relationships between keys. Finally tuning systems have been defined as mappings
between pitch names and frequencies and today's most common tuning system, equal temperament
has been described in detail.

We have now gathered the necessary background knowledge to understand existing approaches and

design our own chord detection algorithm.
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3 Related Works

Automatic chord transcription has been a field of research since the 90s. This chapter gives an
overview over existing approaches. It starts with a general section on chord detection algorithm and
categorization criteria. Considering these criteria three algorithms have been chosen, that provide a
good overview over current approaches to chord description. Each of these algorithms is explained
in detail in the subsequent sections. A comparison of the different approaches and their results

completes the chapter.
3.1 Chord Detection Algorithms

® Accepted input
® Input format:
® Musical Instrument Digital Interface (MIDI)
® Pulse Code Modulated Data (PCM)
® Instrumentation:
® single instruments
® polyphonic without percussion
® polyphonic with percussion
® Algorithm
® Context awareness:
® short-span methods
® boundary detection
® Methods
® Machine Learning Methods
® Cognitive Methods
® Used features

Figure 3.1Chord Detection Algorithm Classifications

Figure 3.1 lists the most important aspects by which chord detection algorithms can be categorized.

Restriction on MIDI format or single instruments audio data facilitates chord recognition but makes
the developed algorithms applicable only to a limited set of audio data. In this work we want to do
chord detection on "real world" signals, so this chapter only treats related works that operate on
PCM data of polyphonic music with no restriction on percussive sound. The detection of chord
boundaries has been identified in [6] as essential for effective chord detection. Analysis tools with
the focus on chords thus consider most often the temporal dimension and chord boundaries.
However short-span chord detection often build the foundation for the more complex chord

detection algorithm and will thus also be considered here.
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3.2 Hidden Markov Models

This section describes the approach of Chord Segmentation and Recognition using EM-Trained
Hidden Markov Models introduced by Alexander Sheh and Daniel P.W. Ellis in [7]. This approach
uses hidden Markov Models to represent the chord sequences. Given a certain output sequence of
pitch class profiles this module allows to estimate the corresponding sequence of chords, that have
generated this output. A hidden Markov model (HMM) is a statistical model of a finite state
machine in which the state transitions obey the Markovian property, that given the present state, the

future is independent of the past.
al3d

¥1 y3 y2 vy5 y4

Figure 3.2: Hidden Markov Model for Chord Sequences

Figure 3.2 outlines the hidden Markov model for chord sequences. Each state (x) generates an
output (y) with a certain probability (b). Transition probabilities (a) are assigned to each pair of
states. While the sequence of states (path) is not visible ("hidden"), the outputs can be observed and
used to draw conclusions on the current state.

Sheh and Ellis apply transitions every 100ms. The model has the following parameters:

Each chord that shall be distinguished by the system is one state. The output is defined as the Pitch
Class Profile (PCP) of the current 100ms interval. An output probability consists of a Gaussian
curve for every pitch class. Transition and output probabilities are unknown at the beginning. To
obtain these parameters an expectation maximization algorithm (EM) is applied using hand-labelled
chord sequences. Once all parameters of the model have been defined, the Viterbi algorithm is used
to find the most likely sequence of hidden states (that is the most likely sequence of chords) that
could have generated the given output sequence (PCP sequence).

The authors trained the algorithm with 18 Beatles songs and evaluated it using two other songs from

the Beatles with a result of 23% chord recognition accuracy.
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3.3 Self-organized Maps

This section describes the approach of Multi-timber Chord Classification Using Wavelet Transform
and Self-organized Map Neural Networks introduced by Borching Su and Shyh-Kang Jeng in [8].
This is one of the few approaches that do not use Pitch Class Profiles but evaluate the frequency
spectrum directly. The results of a wavelet transform are directly sent to a neural-network chord-
classification unit without note identification. The neural network consists of a self-organized map
(SOM) with one node (neuron) for every chord that shall be recognizable (Figure 3.3). The nodes
are arranged in such a way that adjacent nodes are with high similarity (vertically) or strong
relationships (horizontally). Before learning the initial synaptic weights of each neuron on the SOM
are set according to music theory. The SOM then learns from a set of training data without
supervised information.

The authors report an accuracy rate of 100%. As their test set consists only of 8 measures of a
Beethoven Symphony this result can not be regarded neither as representative, as the test set is too

homogeneous nor as highly meaningful as the test set simply is too small.

Major

WMinar

Diminishead

Figure 3.3: Self-organized map used by Su and Jeng in [8] for chord detection
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3.4 Hypothesis Search

This section describes an approach of Automatic Chord Transcription with Concurrent Recognition
of Chord Symbols and Boundaries introduced in [6] by Takuya Yoshioka, Tetsuro Kitahara,
Kazunori Komatani, Tetsuya Ogata, and Hiroshi G. Okuno. The emphasis of the work of Yoshioka
et al. is on the mutual dependency of chord-boundary detection and chord symbol identification.
They identify this problem as crucial to chord detection. For their solution they do not only use
frequency based features but also beat detection and a high-level database of common chord
sequences. The heart of this algorithm is a hypothesis-search algorithm that evaluates tuples of
chord symbols and chord boundaries. First, the beat tracking system detects beat times. In order to
hold execution time down, hypotheses span over no more than one measure-level beat interval, at
which time they are either adopted or pruned. The eighth-note level beat time is used as clock to
trigger feature extraction, hypothesis-expansion and hypothesis-evaluation. Evaluation considers
three criteria:
® Acoustic-feature-based certainty: Pitch Class Profiles (PCP) are generated from the input audio.
They are compared to trained mean PCPs. The product of the Mahalanobis distances and a span
extending penalty form the acoustic score.
® Chord-progression-pattern-based certainty: The hypothesis is compared to a database of 71
predefined chord-function-sequences, that have been derived from music theory (e.g. V-I =
Dominant-Tonic = G-C for key C).
® Bass-sound-based certainty: The authors argue that bass sounds are closely related to musical
chords, especially in popular music. Bass sound based certainty is high if the predominant low-
frequency pitch is part of the given chord. The higher its predominance the greater the score.

The hypothesis with the largest evaluation value is adopted.

The system was tested on excerpts of seven Pop-songs taken from the RWC Music Database' for

which an average accuracy of ~77% has been achieved.

1 http://staff.aist.go.jp/m.goto/RWC-MDB/
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3.5 Comparison and Summary

Table 3.1 summarizes the different approaches. Sheh and Su (Section 3.2) both use machine
learning approaches, while Yoshioka (Section 3.4) implements a hypothesis search algorithm and
focuses on additional music theoretical knowledge. Yoshioka operates on chord sequences, while
Su operates only on isolated chords. The Hidden Markov Model used by Sheh (Section 3.3)
contains transition probabilities but the Markov property restricts the context awareness to the last
state, thus chord sequences of maximal two chords are analysed. This combined with the short
interval of 100ms makes the algorithm liable to non-chord tones and arpeggio sounds. All
algorithms detect major, minor, diminished and augmented chords. Sheh and Ellis also consider
seventh chords. Unfortunately we have no information on whether and to what extent the test sets
also used these chord types.

Although accuracy rates are reported for all three of these algorithms they can not be compared

directly, as they have been observed on different test sets and using different chord types.

Paper [7]: Sheh, Ellis [8]: Su, Jeng [6]: Yoshioka et. al.
Technique HMM, EM Neural Networks Hypothesis, Music Theory
Learning yes yes no

Context awareness very limited no yes
Chordtypes maj, min, aug, dim, maj, min, dim, aug maj, min, dim, aug

maj7, min7, dom7

Test set 2 songs (Beatles) 8 measures (Beethoven) 7 songs (various Pop)
Test set genre Pop Classic Pop
Accuracy 20,00% 100,00% 77,00%
Representative? limited (Beatles) no yes

Table 3.1: Related Works Summary

The least helpful approach surely is the one by Su and Jeng, not because of the approach itself but
because of its inaccurate evaluation and the shortness and lack of detail of the paper. The approach
by Sheh and Ellis is interesting as it tunes itself and learns from its test set. As it does not use any

music theoretical principles it still is of only limited interest for our work. Yoshioka et al. have
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developed the most interesting algorithm for us as it widely uses music theory and has been
evaluated on a comparatively large test set with good results. They do not use key information
directly but operate on a database of common chord progression. A less complex algorithm that

filters the chords directly according to the computed key might bring just as good results.

3.6 Conclusion

In this chapter we have given an overview over existing types of chord detection algorithms. We
have picked out three algorithms and have presented them in detail. Finally the different algorithms
and their evaluation results have been compared, as far as this was possible considering the strong
differences between the test sets. We defined the approach of Yoshioka et al. as the most interesting
one for this thesis, as it incorporates music theoretical knowledge in its detection method.
Considering the smallness of the used test sets of all described approaches it becomes apparent that
creating test sets for chord detection is a quite unpopular task. The true chord sequences have to be
detected manually and each chord has to be assigned to a specific time within the piece of music,
which is very time consuming. Nevertheless a large test set is of course desirable as it raises the
significance of evaluation. As a consequence, one goal of this thesis is to assemble a large test set of
heterogeneous data and to make the hand labelled chord sequence files available to other

researchers.
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4 Conceptual Design

The previous chapter gave an overview over different existing approaches to chord detection and
described their strengths and weaknesses. This chapter now introduces a new chord detection
algorithm that has been designed for this thesis and that reuses the idea of chord boundary detection
introduced by Yoshioka et al. [6]. The first section gives an overview over the developed chord
detection algorithm. Subsequently each module of the algorithm is described in detail: Section 4.2
deals with frequency detection, Section 4.3 describes the Pitch Class Profile, its generation and
evaluation. The key detection algorithm is described in Section 4.4 and the approach to tempo and
beat detection is outlined in Section 4.5. Section 4.6 finally deals with chord sequence optimization

(smoothing).
4.1 Overview

Figure 4.1 depicts the flow chart diagram of our chord detection algorithm. The boxes in the first
and last row represent the input and output data of the algorithm. The modules in the second and
third row deal with feature extraction while the subjacent modules analyse these features.

The algorithm takes audio data as input and outputs a sequence of time-chord pairs. Before
computing the chords themselves, the audio data is used to extract two other relevant
characteristics: the beat structure (see Section 4.5) and the key of the song (Section 4.4). Former is
used to split the audio data into blocks of sizes that correspond to the computed beat structure. Each
of the obtained blocks is passed to an enhanced autocorrelation-algorithm (Section 4.2) which
calculates the frequency spectrum and returns a sequence of frequency-intensity pairs. These are
then used to compute the intensity of each pitch class (see definition in Section 2.2), the so called
Pitch Class Profile (PCP) (Section 4.3).

The calculated PCP's are compared to a set of reference chordtype-PCP's using only those reference
chords that fit to the key of the song. The possible chords are sorted according to the distance of
their reference PCP to the calculated PCP. The chords and their probabilities are accumulated and
stored in the chord sequence data structure. A smoothing algorithm (Section 4.6) is applied to the
chord sequence which rates each chord according to the number of chord changes around it. Finally
for each timespan the chord with the highest score is taken.

The algorithm has a modular design. The modules beat detection, key detection and smoothing can
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Figure 4.1: Flow Chart of the Chord Detection Algorithm

be turned on and off, thus allowing to measure their influence on the result. If the beat detection
module is turned off, the audio file is split into equally sized blocks of configurable length (e.g. 100
ms). If the key detection module is switched off, the reference pitch filter is turned off and all
possible chords are considered. Finally turning off the smoothing algorithms leads to the output of
those chords with the minimal distance between observed PCP and reference PCP, that is the first

row of the chord sequence matrix.
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4.2 Frequency Detection by Enhanced Autocorrelation
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Figure 4.2: Enhanced Auto Correlation: Input

As described in Section 4.1, the frequency detection lies at the basis of our chord detection
algorithm. A chord is an accord of specific notes that last for a certain time. The detection of the
pitches, that is at the first instance the detection of the frequencies, that occur over the time is
therefore fundamental for our chord detection algorithm. While there exist a variety of works on
primary frequency detection ([9], [10], [11], [12], [13]), the research on multipitch analysis is still
rather limited. From the existing approaches described in [14], [15] and [16] we have chosen the
approach of Tolonen [16], which offers a good trade-off between complexity and quality.

This algorithm calculates an enhanced autocorrelation (EAC) of the signal, taking the peaks of the
EAC as the pitches of the signal. In this algorithm, the signal is first split into two channels, one
below and one above 1000 Hz. The high-channel signal is half-wave rectified and also lowpass
filtered. Frequency detection is then performed on both channels using time-lag correlation, called
“generalized autocorrelation” (AC). More specifically the computation consists of a discrete Fourier

transformation (DFT), magnitude compression of the spectral representation, and an inverse

transformation (IDFT): AC=IDFT (IDFT (x)I") where k is 2/3. The autocorrelation results are then
summed up and passed to the autocorrelation enhancer which clips the curve to positive values and
prunes it of redundant and spurious peaks. For instance, the autocorrelation function generates
peaks at all integer multiplies of the fundamental period. By subtracting a time-scaled version from
the original autocorrelation function, peaks of a multiple frequency that are lower than the basic
peak are removed. Furthermore the extreme high frequency part of the curve is clipped to zero.

More details about this algorithm and its calculation steps can be found in [16].
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The integration of the EAC function into our system is illustrated in Figure 4.2. The EAC function
is applied to non-overlapping successive blocks of the input data. The size of each block is
calculated using the Beat Detection Algorithm described in Section 4.5. Each input block is split
into equally sized overlapping windows. In our tests a Hamming window of 46.4 ms (that is
1024 samples for a sampling rate of 22050 Hz) and a window-overlap of 50% which equals to a hop
size of 23.2 ms gave the best results. The autocorrelation function is calculated for each window,
but in contrast to Tolonen we only consider the lowpass filtered signal in order to reduce the
complexity of the algorithm. The sum of the autocorrelation results is then enhanced as described
above and passed to the Pitch Class Profile Generator described in Section 4.3.

An example output of the enhanced autocorrelation (EAC) is shown in Figure 4.3 At the top the
autocorrelation curve is depicted. The graph on the bottom shows the enhanced autocorrelation
function. You can see that the EAC is clipped to positive values and does not contain the peak
around the origin. The peak at 110Hz in the AC curve has been removed by the enhanced algorithm
as it a a result of the peak at 55 Hz. Figure 4.4 compares the EAC of the original unfiltered data to
the EAC of the data passed through a lowpass filter. You can see that the lowpass filtered signal
produces a calmer, smoothed autocorrelation result than the original signal and that all peaks with
frequencies greater or equal to 440 Hz have been removed by the lowpass filter.

The enhanced autocorrelation function has a logarithmic frequency scale. Thus it provides less
information for high pitches than for low ones. Assuming a sampling rate of 44100 Hz, the spacing
between two semitones varies from over 100 indexes for frequencies beneath 30 Hz to less than one
index for frequencies above 4000 Hz. The frequency range depends on the window size and the

sampling rate:

samplerate

frequency range = , samplerate 4.1)

windowlength/2

The mapping form the indices in the EAC vector to frequencies are calculated by the following

formula:

lerat,
frequency = samplerate

4.2)

index

The conversion from frequency to pitch name is done using the formula 2.3. For more details on

frequency to pitch mapping and tuning systems see Section 2.2.3.
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4.3 PCP and Reference PCPs

C C# D D E F F#¢ G G#¥ &2 2% B

Figure 4.5: Pitch Class Profile (PCP)

This section covers the conversion of the frequency spectrum into a Pitch Class Profile (PCP) and

its analysis. A PCP is a vector of twelve elements, each representing the energy of the signal at the

pitch class of one semitone. It concisely characterizes an audio signal in terms of occurring notes

and harmonies. The PCP is sometimes also called Folded Pitch Histogram ([17]) or Chroma Vector

(fel).

The previous section explained how to convert an audio-signal into a frequency spectrum. The

frequency spectrum gives us very detailed information of the energy distribution over frequency at

the price of a high data volume. Before analysing its content we thus transform it into a smaller and

more compact representation, the PCP. The conversion from the frequency spectrum to a PCP

introduces two layers of abstraction:

® Abstraction from the exact frequency: We now consider frequency bands, where each band
represents one semitone.

® Abstraction from the octave: All pitches are mapped to a single octave, the pitch class.

The twelve pitch classes are numbered in ascending order from 0 (c) to 11 (b) according to the

MIDI note numbering scheme. A reference frequency of 440 Hz is used, which conforms to today's

concert pitch a,. We assume that the analysed music is in equal temperament, which is universally

adopted today in western music (for detailed information on temperament and tuning see Section

2.2.3). The conversion from frequency to pitch class is done using the following equation:

PitchClass ( freq)= Pitch( freq) modulo 12 (4.3)
: _ freq |
Pitch( freq)=|57+,log 240 12 (4.4)

where freq is the frequency in Hertz. The mapping of the pitches to one single octave is performed

by modulation of the pitch by 12. An example of a PCP is shown in Figure 4.5.
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4.3.1 PCP Generation

The EAC for a window of size windowlength outputs a vector of size windowlength/2. For the
computation of the PCP we do not consider the whole frequency range of the EAC but use a
minimal frequency f,., of 52 Hz (g#,) and a maximal frequency f,... of max((samplerate/25),3520)
Hertz, thus covering 4 octaves for a samplerate of 22050 Hz. For orientation, the average human can
hear from 16 to 20000 Hz and the standard range of a piano covers 7 octaves from 27.5 Hz (ao) to
~4186 Hz(c;). The restriction to 4 octaves is due to the inaccuracy of the EAC at extreme
frequencies. This inaccuracy can be explained by the logarithmic scale of the EAC, where the
distance between two semitones decreases continually. (e.g. for a sample rate of 22050, bs is at
index 11, but index 10 corresponds already to c#;, so ¢; would be skipped). Table 4.1 lists the values

of fi..x for common sampling rates.

samplerate  f,.. pitch

11025 441 a
22050 882 as
44100 1764 as

Table 4.1: fmax

For the computation of the PCP we propose two algorithms: an integration approach and an
algorithm that only considers the peaks in the spectrogram.

Algorithm1: Integration

In this algorithm, the PCP is computed by summing up the spectral energy at the frequencies that

correspond to the same pitch class. As discussed, only the spectral information at frequencies in

[fuins frax] 18 considered.

f max f min

PCPlil= >  EAC[j],i=0...11 4.5)
J€EPitchClassindices (i)
PitchClassIndices (i)= xE{mund samplerate | round samplerate IPitchClass(Frequency(x))Zi]» (4.6)

|

The PCP Generation in pseudo code:
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foriin {0 ... windowlength/2}: PCP[PitchClass(Frequency(i))] += EAC]i]

Algorithm 2a: Simple Peak Detection

Instead of summing up the whole spectrum, this algorithm only considers the spectral peaks. The
local maxima of the spectrum are computed and the energies at the local maxima are summed in the
corresponding PCP entries:

PCP(i)= Y, EAC[j],i=0...11
JjEPCPeaks(i) (4 7)

PCPeaks (i)= PitchClassIndices(i)Narg localmax ( EAC) (4.8)
Algorithm 2b: Neighbouring Peak Detection Algorithm

This strategy however is highly prone to tuning errors, as peaks at the borders of two pitches are
always fully assigned to only one pitch. To overcome this weakness an improved algorithm

considers N left and right neighbours of the peak using:

PCP|i|= > EAC[j],i=0...11
JjEPCPeakNeighbourhood (i) (49)
PCPeakNeighbourhood (i)= PitchClassIndices (i) A j near arg localmax (EAC) (4.10)
xnearS:(x—N,...,x,...,x+N|NS#LQ 4.11)

o Actual Peak == Minimum

' Discarded Peak e Discarded Minimum

Figure 4.6: Peak Picking

where N is set to 3 but could also be a function of the index x.
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The algorithm is further adopted to consider only peaks that stand alone or have a certain height
relative to the surrounding local minima (Figure 4.6). A dynamical threshold that is 10 percent of

the absolute maximum in the spectrum is used.
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Comparison of the different generation algorithms
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Figure 4.7: Comparison of different PCP Generation Algorithms

Each of the described algorithms has its advantages: the integration algorithm is more resistant to
mistuning, but is blind to the context of the values. It does not make any differences between high
values that are peaks and those that are only in the wider surrounding of a peak. Besides it favours
low frequencies, as they have a greater range in the spectrogram than high frequencies. The simple
peak algorithm, on the other hand, is context sensitive but ignores tuning errors. Finally the
neighbouring peak detection algorithm favours broad peaks, as their neighbourhood adds to a higher
sum than that of sharp peaks.

Figure 4.7 shows the EAC for a timespan of 2 seconds in the song “Abba — Dancing Queen” and the
corresponding PCPs that have been calculated with the described algorithms. You can see that the
integration algorithm produces a high value at 'f' whereas the other algorithms do not register any
energy at this pitch class. Comparing the PCP of the two peak algorithms, you can see that the
advanced peak algorithm assigns the peak at 56 Hz partly to a#, as it is at the border of the two

pitches whereas the simple algorithm doesn't record any activity at a#.

No matter which of the PCP generation algorithms is used, the resulting PCPs are always
normalized to values between zero and one. The normalized PCPs are then passed to the Analysis

module.
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4.3.2 PCP Analysis

The PCP are compared to a set of reference chord PCPs. This is done by calculating the linear
distance between the two normalized vectors. The smaller the distance, the higher the resemblance
of the two PCPs. The reciprocal of the distance is then stored as a reference value for the probability
that the chord at this timespan matches. Finally, n chords with the highest probability are stored in

the chordsequence-matrix.
4.3.3 Reference PCPs

A reference PCP is a typical PCP for one special chord. There are different methods to obtain
reference PCPs, the most prominent being derivation from music theory, derivation from probe tone
ratings and derivation from training data. In the first case the PCP is deduced from theoretical rules.
According to music theory a major chord contains major third and perfect fifth. Thus the reference
PCP would be (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0). In the second method, also called "cognitive
method", the PCP is built using the perceived stability of each semitone within the context of a
particular chord or key. This is obtained by confronting listeners with a key context followed by
probe tones, which have to be rated according to their perceived fittingness to the key context.
Results from experiments conducted by Carol Krumhansl, and further information on cognitive
methods can be found in [18]. For reference PCP derivation from training data, correct chord names
are manually assigned to a set of music, the training data. From the training data the PCPs are
generated in the same way as for chord detection itself. For each PCP its chordtype is looked up in
the hand-labelled chord files. All PCPs of the same chordtype are transposed to the same root (c)

and summed up in one chordtype PCP, which normalized is the new reference PCP.

In this work we used the training approach to obtain the reference PCPs, as it performed better than
derivation from music theory and cognitive PCPs. The trained reference PCPs have been adapted
manually to remove biases for special chordtypes using the following rules:

® The total sum of the different chord-type PCPs must not vary.

e [f only the root note is present in a PCP, the reference PCPs of all chordtypes shifted to this root

must have the same distance. Hence the value for the root pitch must not vary.
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This work distinguishes two chord types: Major and Minor. Reference PCPs of the major and minor

seventh chord are also used, though in evaluation stage the confusions between the standard and the

seventh version of the chords are not counted as an error. Figure 4.8 shows the reference PCPs for

C-Major and C-Minor and the corresponding values deduced from music theory. A clear

predominance of the root note can be observed, the same as a surprisingly high value at the minor

sixth (g#) in the minor chord.

For each chord type one single reference PCP is stored. The 12 chords of this chord type can then be

obtained by shifting the PCP by one step for each semitone.

PCP|(i+root)modulo12]|=cPCP]i],i=0..11
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4.4 Key Detection

The key detection works similar to the first stage of the chord detection, in that it reuses the
calculation of the enhanced autocorrelation and the generation of a Pitch Class Profile. As described
in Section 2.2.2 a song of a special key is characterized by the scale of this key. That is, if a song is
performed in Key c, the pitches of the scale ¢, namely 'c d e f g a b ¢' will be the dominant pitches.
Pitches that are not part of the scale like 'c# or g# ' are much more unlikely to occur as they produce
dissonance.

Assuming this the reference PCPs for major and minor keys are derived from the major and minor
scale of key c. In contrast to the reference chord PCPs the reference key PCPs have not been trained
but determined empirically. The values proposed by Krumhansl in [18] have been tested, but
brought a slightly worse result. Starting from the two reference PCPs, the 24 possible keys (12
major, 12 minor ones) are again derived by shifting the reference PCPs by the number of semitones
between c and the root note of the desired key.

As, according to the assumptions made in Chapter 1, the key of the input data does not modulate,
the whole song can be used for the calculation of the one key. Nevertheless, in order to speed up
calculation, we only use certain chunks of the audio file, namely the first and last 15 seconds.
Another possibility would have been to take x random parts of size y, where x*y results in the same
amount of analysed time. We preferred the first method, as empirically the beginning and end of a
song usually establish and enforce the harmony of the song, and thus stick more rigidly to the scale
than middle parts, where small modulations are encountered more often. This theory, though, has
not been tested and it would certainly be interesting to compare the accuracy of key detection of
these two approaches and of a computation that uses all of the available data.

Once the key of the song has been determined the set of possible chords is filtered according to
harmonics. The following chords pass this filter: chords that are proper to the scale, except the
diminished minor chord on VII, which is heard as V7. Furthermore all secondary dominants except
the dominant of III and all secondary subdominants. So from 24 possible chords (12 major and 12
minor chords) 10 chords are preselected to build the set of possible chords for this song. Table 4.2
shows the table of chords for Key C-Major. The chords are highlighted dark grey when they are first
selected. Chords that have already been selected are highlighted light grey. Chords that are not

selected remain black on white.
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pitch(function) c(T) d(Sp) e(Dp) f(S) g(D) a(Tp) b
chords proper to the scale C d e F G a G7(b-)
Secondary dominants G A B C D E
Secondary subdominants F G A Bb C D

Table 4.2: Chords for C-Major

By adding the secondary dominants and subdominants even modulations in the neighbouring of the

key do not disturb our algorithm.

Note, that confusions between a major and its corresponding minor key (e.g. C-Major and A-Minor)

do not affect the chord detection algorithm, as both keys are connected to the same set of chords.

Also note that confusions of a key with its neighbours in the circle of fifth are not as severe as

confusions with keys that are wider away, as in the first case the two keys have more chords in

common. Table 4.3 illustrates the similarities of nearby keys. The columns represent the chords in

quint-ordering (minor chords in lower-case, major chords upper-case), the rows are the keys, which

are also in quint ordering. Each association between a key and a chord is marked. You can see that

neighbouring keys as C and G have 8/10 chords in common whereas C and D share only six chords,

C and A four chords, C and E three chords, F and E only two and Bb and E finally only one chord,

that in addition has only a secondary function for both keys.

Eb eb Bb bb F f C ¢ G g D ' d A a E e B b F# f# C# c# G# g#
sl W & ECECT R
FE B B B fEEREE
C H B B HOECN
G H B B ECECT R
D H B B ECECT R
A H B B ETEH B
E H B B HTH R
legend . Tonic . proper to scale secondary chords

Table 4.3: Keys and associated chords
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4.5 Tempo and Beat Tracking
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Figure 4.9: BeatRoot: System Architecture Figure 4.10: BeatRoot: Inter-onset intervals and clustering to

groups CI1-C5
Instead of slicing the song into equally-sized blocks of data, a tempo and beat tracking algorithm is

used to obtain the beat of the song. The complex task of tempo detection or beat tracking is best
described as correspondent to the human activity of foot-tapping in time with music. The song is
then sliced into blocks spanning from one beat time to the next. As we know that chord changes
usually occur at beat time, this is an efficient method to lengthen the span of the audio-blocks
without risking windows that span over two or multiple chords.

Simple beat detection algorithms as described in [19] detect changes in the amplitude of music data.
More precisely, they detect sound energy variations by computing the average sound energy of the
signal and comparing it to the instant sound energy. More advanced algorithms detect energy
variations not in the time domain but in frequency subbands. However, these algorithms, further
called onset detection algorithms, do not bring these events into a common context, the tempo.

For this purpose the BeatRoot> program, is utilized, which rated best in the “MIREX 2006 Audio

Beat Tracking Evaluation®™

. The system architecture of this algorithm is shown in Figure 4.9. The
onset time of musical events (notes, percussive beats) is calculated by finding peaks in the spectral
flux. More specifically, the signal is passed through a short time Fourier transformation and the
spectral flux is calculated by summing up the changes in magnitude for each frequency bin where

the energy is increasing. The local maxima of the spectral flux then represent the onset and possible

beat times.

2 http://www.ofai.at/~simon.dixon/beatroot/index.html

3 http://www.music-ir.org/mirexwiki/index.php/MIREX_2006
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The onset times are passed to a tempo induction algorithm that calculates initial hypotheses for the
tempo. This is done by computing the inter-onset intervals (IOIs), that is the time interval between
any pair of, not necessarily successive, onsets. The IOIs are then clustered into groups with
approximately the same length (Figure 4.10), generating first indications for the tempo.

Finally control passes to the beat tracking subsystem. This consists of multiple beat tracking agents:
Each agent is initialized with a tempo from one IOI cluster and a first beat time (phase) from the
first few onset times. From the beginning of the music to the end the agent then predicts the next
beat. Onsets which correspond to an inner window of predicted beat times are taken as actual beats
and used to adapt the agent's tempo and phase.

An evaluation function is used to rate each agent according to its ability to predict beats correctly,
the salience of the matched events and on how evenly the beat times are spaced. The beat track of
the agent with the highest score is finally taken as the solution to the beat tracking problem.

More details about the algorithm and its evaluation can be found in [20], [21] and [22].
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4.6 Chord Sequence Optimization

The previous sections described how to obtain for a certain timespan a list of possible chords and
their probabilities. In this section we will introduce an algorithm which selects from these chords
not simply the most probable, but the best fitting. This is achieved by analysing the context of each
chord. We have obtained the chords at beat time interval, which we declared as the shortest
timespan in which a chord change happens. Although chord changes may happen at each beat time
they most often last for a longer period of time. Thus, the idea behind this algorithm is to select the
chord sequence with high probabilities for each single chord and few chord changes.

First we assemble the detected chords to a chord sequence matrix where each column represents the
possible chords for one specific timespan. Row n contains the nth best chords of all segements. C; s

for example is the 5™ best chord at timespan two.

Py Py wor Py
Chordsequencezcl? 12 Cl? 2o cp. m2 (4.12)
Py Py - €D

Then for each timespan 1 we calculate all possible permutations with repetition of chords around i.
The length of the permutation is always odd, as we take w neighbours to the left and to the right of
1. Thus the length W is w*2+1. Say k is the number of chords that we take into account for each
timespan, then the number of permutations with repetition ®P is
P =x" (4.13)
and the set of permutations is defined as
Y1 kD) ={(xy, e, xy) €1 k)] (4.14)

“P"(Chordsequence ,i)=((cp;_ 1y, Py »--r iy, )IVE P ({1, k})] (4.15)

example: *P*((1,2))={{1,1,1}{1,1,2}{1,2,1}{1,2,2}(2,1,1}{2,1,2}{2,2,1}(2,2,2}]

For length W=3 and k=2 for example one possible permutation is to chose the 2™ best chord at i-1,

the best chord at i and the 2" best chord at i+1. The greater W is, the greater the context sensitivity
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of the algorithm. In this work we found a W of 5 to give the best trade off between quality and
execution time. With increasing Ws execution time increases exponentially due to the number of
permutations that have to be computed (see Formula 4.13).

Now that we have constructed the possible permutations, we calculate a total acoustic probability
for each permutation. This is done by multiplying the probabilities of each chord with a chord-

change penalty.

p (Cpl o Cpn) — H Prob (cpi).CSumChordClmngeS(cpl,...,cp”) (416)
i=1

n—1
SumChordChanges(cp,, ..., cp,)= Y, ChordChange(Chord (cp,), Chord (cpi+1)) (4.17)

i=1

=c.: 1
ChordChange(c,,c,)=| 1"

rET e 0 (4.18)

Chord Change Penalty C
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Figure 4.11: Chord Change Penalty

Since we want to penalize chord changes, C must be between zero and one. Figure 4.11 depicts the
penalty curves for different values of C. For a W of 5 we found a C of 0.9 (turquoise line) to give
good results. Note that the number of chord changes is between zero and W-1, as between W chords
there can not be more than W-1 changes.

From the permutation with the highest total probability the element in the middle is chosen to be the

final chord at timespan i. This procedure is repeated to cover the whole song except the first and last
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w time spans.

opt (Chordsequence ,i)=argmax,,p(cp_,), .-+, CP;, s+
ve "PY({1,...k})i=w,...,(m—w)

Example

’ Cp(ier)vw) ’

(4.19)

We illustrate the optimization algorithm with a short example. For clarity we set k only to 2 and

W=5. Table 4.4 shows an an excerpt of eight spans of a Chordsequence. The cells contain the chord

names and the probabilities as percentage.

1 2
Dm=75 Dm=

88

F=72 F=280

3

Bb=79
Dm =74

4

F=289
Bb =80

5

C=88
F=285

6
F=89
C=75

Table 4.4: Exemplary Chordsequence

7
C=289
C=82

8
F=90
F=280

Table 4.5 lists some of the permutations around i=3, the respective number of chord changes, and

their probabilities. The chordsequence 'Dm-Dm-Dm-F-F', highlighted in Table 4.5, which has only

one chord change between Dm and F ranks best. For timespan i the final chord is thus Dm.

1 2 3 4 5 Chord Changes 1II Prob p
I,Dm 1,Dm 1,Bb 1,F 1,C 3 0.408 0.297
I,Dm 1,Dm 1,Bb 1,F 2,F 2 0.394 0.319
1,Dm 1,Dm 1,Bb 2,Bb 1,C 2 0.367 0.297
I,Dm 1,Dm 2,Dm 1,F 1,C 2 0.383 0310
1,Dm 1,Dm BB 1.F 2. F 1 0.369 0.332
1,Dm 2,F 1,Bb 1,F 1,C 4 0.371 0.244
2,F 2,F 1,Bb 2Bb 1,C 2 0.320  0.259
2,F 2,F 2,Dm I,F 2,F 2 0.322  0.261

Table 4.5: Example Optimization Algorithm

Veronika Zenz

40

01.02.2007



Chapter 4 : Conceptual Design

4.7 Conclusion

We have presented a new design for a chord detection algorithm. This algorithm operates on audio
signals from which it calculates frequency spectra using enhanced autocorrelation. We have shown
how the input can be split into blocks of data that correspond to the beat-level interval of the song.
We have introduced different algorithms for converting the frequency spectra to pitch class profiles
(PCP) and an algorithm that computes the key from those PCPs. Afterwards we have proposed a
filter based on music theoretical knowledge that filters possible chords according to the detected
key. Finally a chord sequence optimization algorithm was introduced that reduces chord changes

by rating each chord-possibility by its neighbouring chords.
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5 Implementation

Starting from the conceptual design described in Chapter 4, a chord detection program named
genchords and a set of helper tools have been implemented. This chapter describes the performed
implementation. It is divided into three sections: Section 5.1 provides an overview of the system,
the different implemented software tools and their interaction. Section 5.2 gives detailed
information on the chord detection program genchords itself. The subsequent section 5.3 describes

tools that have been designed to facilitate evaluation and exploitation of the detected chords.

5.1 System Overview

soundile

l

genchords

soundfile labelfile

— I .~

labelfile pepfile scorefile

\‘\ |earnchords

labelditt franspose chordmix reterence PCF's

confusion matrix l difference table

soundfile
statistical information

Figure 5.1: Implementation Overview

The chord detection algorithm designed in Chapter 4 has been implemented on a Linux platform
using C++, Python and Shell scripts. The implementation consists of the main chord detection
program, called genchords, and four helper programs called labeldiff, transpose, chordmix and
learnchords. The way these programs interact is depicted in Figure 5.1: Genchords takes a soundfile
and computes the corresponding chord sequence. The chord sequence is outputted in two different
formats: A Labelfile, that consists of lines containing starting time and chord name, and a scorefile
of the chords in the syntax used by the synthesis software csound’. The labelfile can then be
transposed to another key with the script tranpose. Chordmix and labeldiff serve evaluation purpose.
Labeldiff compares two labelfiles in terms of alikeness. Chordmix processes the scorefile generated
by genchords. It outputs a soundfile containing the synthesized scorefile on the left and the original
soundfile on the right channel. Finally learnchords can be used to obtain mean reference PCPs from

a given soundfile and its chord sequence.

4 http://www.lakewoodsound.com/csound/
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Implementation issues

Careful considerations have been given to the choice of the implementation approach. Essentially
three different options have been considered: Usage of a computer audio research framework like
Marsyas® or CLAM®, usage of a numerical computation environment like MATLAB’ or usage of a
general purpose language like C++ or Java. Each of these approaches has its own advantages and
disadvantages. The use of a numerical computation environment provides a large number of
libraries and functions, supports rapid development by providing a high abstraction level and a
syntax tailored for numerical computations. The main disadvantage of MATLAB is that it is
proprietary, cost-intensive software. Compared to hardware-near languages like C or C++ it is slow
and memory expensive. The use of a standard programming language like C++ overcomes the
performance problems and licensing issues of MATLAB. For C++ there also exist various libraries
for standard functions like reading and writing audio data or FFT computation. Nevertheless the
program has to be written mainly from scratch. Audio Frameworks on the other hand offer a large
base of algorithms that are commonly used for audio processing, like FFT or Histogram
computation, which are designed to interact smoothly. They also offer data structures and
visualisation mechanisms. The main advantage of frameworks is, that the code must not be written
from scratch. Instead existing modules, structures, and interfaces can be reused, and only the new
ideas must be implemented. The primary disadvantage of this approach is the steep learning curve
that these frameworks require. To complicate things further the documentation is often imprecise,
obsolete or simply not existent. There are no printed books or manuals for these frameworks as far
as the author knows and much of the information is hidden in forums, mailing lists and newsgroups.
MATLAB was excluded from the begin, since I wanted the final program to be usable for a broad
audience, and MATLAB is widely known and used only among scientists and professionals. The
first approach was thus to use a framework. Installation problems, the hardly foreseeable period of
vocational adjustment and the wish to do and thus understand things from scratch finally led to the

direct use of C++, supported by various libraries.

5 http://opihi.cs.uvic.ca/marsyas/
6 http://clam.iva.upf.edu/

7 http://www.mathworks.com
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5.2 The Chord Analyser - Genchords

Our chord-detection program is named genchords and is implemented on a Linux platform in C++.
It consists of approximately 3500 physical lines of code. The source code is structured into eleven
classes, the most important being Chordtype, Chord, Chordsequence, Key, Labelfile, PCP,
PCPTrack, Sounddata.

The open source Library libsndfile-dev® is used to read in the audio data. For the computation of the
FFT source-code from Audacity’ has been reused. The program lame' is used to convert mp3 to
wave files. BeatRoot'' is called for beat tracking and sox'? is used for downsampling and filtering.
Libsndfile, sox, lame and BeatRoot must be installed to get the full capabilities from genchords.
The following section describes the user interface and operation modes of genchords. It is followed
by three sections that describe the different output formats of genchords, namely labelfiles, PCPfiles
and scorefiles. Finally the performance of the algorithm is discussed and a summary of the finally

used values for all parameters that have occurred in the previous chapters is given.
5.2.1 User Interface

Genchords is a command-line program. It has three operation modes: interactive, batch and file
based mode. File and batch mode normally are the modes you want to use. They operate
automatically and can be integrated in shell scripts. Interactive mode has been developed mainly for

debugging reasons.

Batch and File Mode

The syntax for batch and file mode is

genchords [OPTIONS] sound [outdir]

Sound must either be a wav, aiff or mp3 file, or a directory. If it is a directory, all soundfiles in the
directory are processed (batch mode). An output directory outdir can be specified to which the

output (labelfiles, scorefiles, pcpfiles) is written. If outdir is omitted output is written to ./tmp.

8 Libsndfile - C library for reading and writing files containing sampled sound; http://www.mega-nerd.com/libsndfile/
9 Audacity — A free digital audio editor: http://audacity.sourceforge.net/

10 Lame — Lame ain't an MP3 encoder. Program to create compressed audio files; http://lame.sourceforge.net/

11 BeatRoot — An interactive Beat Tracking Program; http://www.ofai.at/~simon.dixon/beatroot/index.html

12 sox - universal sound sample translator; See http://sox.sourceforge.net/
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Genchord accepts the following options:

-a PCPAlgoNr

-b Beatfile |

Chose the algorithm that is used to convert the spectrum to a PCP. 1: one peak per
mountain; 2: all peaks; 3: integrate. For a description of these algorithms see

Section 4.3.1.

If the argument is an integer it is used as the span between two chords, else take

MillisecondsPer the timespan of the chords from the specified beatfile. For each beat, the beatfile

Beat

P

-n Numchords

-W

Windowlegnth

-h

-v level

must contain one line with the start time of the beat in seconds. If this option is

omitted a default span of 100 ms is used.
Optimize the chord sequence to have less chord changes (see Section 4.6).
Add the probability of each chord as comment in the labelfile

The x best chords will be printed for each time period to the labelfile. Default=1

(only the best). Cannot be used with together with option -o.

Specifies the windowlength of the autocorrelation as number of frames. Must be a
power of 2. The smaller the window size, the less low frequencies will be detected.
If this options is omitted a defaults of the equivalent of 46.4 ms is used (see

Section 4.2).

Compute the key of the song, and only use chords that correspond to this key (see

Section 4.4).
print help

Verbosity level: 1=labelfile, 2=scorefile, 4=pcpfile; default=1

To output more than one file make level the sum of the files you want to output.
E.g. in order to output labelfile and scorefile set level to 3 ( = 1+2).

All output files have the same base name as the corresponding soundfile, except
for the extension, which is .txt for the labelfile, .sco for the scorefile and .pcp for

the pcpfile.
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The best results are usually achieved using the option " -a3 -bl -k -0".

Examples of other useful option settings:

® -a3-b100

Perform short span analysis: all enhancement modules are switched off. Uses input spans of

100ms length. These options have been used to compute the short-span accuracies in Section 6.2.

® -p-n3

Output the three best chords and their probabilities for each timespan.

® -b beatfile.txt -v7

use the timestamps of beatfile.txt to split the input. Output score-, label-, and pcpfiles.

Interactive Mode

The interactive mode is entered by calling genchords without any options or arguments.

It provides the following interactive options:

dsksttolkoslokskekskekok \[eq kkockckckockskskskokockolkokkeksk

(I)oad load a new song.

(i)nfo print song information (length, channels, ...)

(k)ey print key of the song

getsample print a sample value from the audio data

pcp print the Pitch Class Profile of a sequence of blocks

chord print the chord of a sequence of blocks

p&ec print PCP and chord of a sequence of blocks

label(f)ile write chords in a label file that can be imported to Audacity
(s)corefile write chords to a scorefile that can be processed by csound
(m)enu print the menu

(q)uit quit the program

st s sk sfe sk sk s e st st sl sk sk sk sk sk sk st st sfe sk sk sk sk sk sk sk sk sk skoskook

In interactive mode computations are delayed until their results are really needed. That is, the PCPs
are not computed until the command key, pcp, chord, p&c, labelfile or scorefile is entered. The
chord sequence is not computed until the command chord, p&c, labelfile or scorefile is entered and
so on. This speeds up debugging of the different stages of the algorithm. An exemplary interactive

session is shown in Figure 5.2.
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zenz@snoopy:~$ genchords
filename:./REM_-_Everybody_ Hurts.wav
File loaded successfully

Kok ok ko kA kKA Oy KA K KA A kA A kA Ak KA
(1)oad load a new song.

[...]

(q)uit quit the program

b b b b i e b b b b b b b b b i b b b b i b b b b i i

i

/home/zenz/src/Genchords/testset/22050/1ow

pass/REM_—_In Time_—-_Everybody_ Hurts.wav

H Ok kA Kk koA ko Flle Information B i i b i i

length: 318.8s
frames: 7030104
samplerate: 22050

channels: 2
format: 10002
sections: 1

seekable 1

R i i b e b b b b b g b e b g b b b b b b b b b b b i b g

getsample

...1init sounddata...
start block: 10000
nr of blocks: 1
Sample[10000] = —-0.140854
getsample

start block: 20000

nr of blocks: 3

Sample [20000] = 0.13327
Sample [20001] = 0.132309
Sample [20002] = 0.130508

pPcp

..1nit pcptrack...

start bl
nr of bl

PCP[24 =

296.584

F#

10.18
0.00 42.
98.36

chord

..1init
start bl
nr of bl
Chord[24
k

ock: 24
ocks: 1
12000ms ] =

/ X

/ X

/ X

/ X X x
/ X X X X X
e

|C C#D D#E F F#G G#A A#B

C# D D# E

G G# A Bb
0.00 0.00 0.00

64 296.58 101.76 0.39

chordsequence. ..

ock: 24

ocks: 1

] = GMaj

88.91

5.19

kA Ak ok ok kA K Key of the song kk kA ok kA ok kA

Ddur

Kk Ak kA kA

a
good bye

AAAA A AL A A A AL A A A A A A AL F A A A A

zenz@snoopy:~$

Figure 5.2 Interactive Genchords Session
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5.2.2 Output formats

Genchords supports three different file formats to output the detected chord sequence: Labelfiles,
Scorefiles and PCPFiles. The following subsections describe the syntax of each of these output

formats and their applications.

Labelfile

One of the possible output formats for the detected chord sequence is a labelfile. Labelfiles have the

following syntax:

labelfile = (labelline<LINEBREAK>) *
labelline = timestamp<BLANKS>label
timestamp = (0-9)+(.(0-9)*)"?

label = <CHORDNAME> (/CHORDNAME) * ($Probability (/Probability) *)?

The timestamps are given in milliseconds and must be in ascending order. A label is said to be valid
for a timespan x, where the duration of x is given indirectly by subtracting the current timestamp
from the next timestamp. The label in line n is thus valid for (timestamp,.;-timestamp,)
milliseconds. In order to assign a length to the last label a final labelline containing a dummy or
blank label completes each labelfile.

In our case the label is the observed chord, but generally it can be an arbitrary string. A labelline
produced by genchords could be:

20,432 AMaj

If genchords is started using the option -n numchords, every label consists of numchords chords
separated by slashes. For example (n=3):

35,801 AMaj/AMin/F#Min

if the option -p is set, genchords additionally appends the probability of each chord to the label
35,801 AMaj/AMin/F#Min %% 91,544/90,563/87,664
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Scorefile

The scorefiles comply to the syntax of csound scorefiles” and are used to resynthesize the extracted
chord sequence. This allows the user to evaluate the correctness of the detected chords by listening
to them instead of having to manually detect the chords himself and compare them to the automated
result. An exemplary scorefile is shown in Figure 5.3. The first line is just a comment describing the
contents of the columns. The second to fourth line generate a B Minor chord (b, d, f#). The second
line generates the root pitch at the frequency 7.11 (b) with a length of 0.5 seconds using instrument
one an orchestra file. The third line generates the third (8.02 = d) and the fourth line the quint (8.06
= f#) all with the same start and length. Line four to six generate a F# Minor chord (7.06 = {#, 7.09
= a, 8.01 = c#). In order to synthesize one chord, each of its pitches is triggered at a specified time
(start) for a specified time (len). The root pitch is always set as the lowest pitch. the other pitches

are ordered according to their number in the MIDI Notation.

;ins start len amp freq

1 0.0 0.50 3600 7.11 ;BMin
il 0.0 0.50 3600 8.02 ;BMin
il 0.0 0.50 3600 8.06 ;BMin
il 0.50 0.50 3600 7.06 ;F#Min7
il 0.50 0.50 3600 7.09 ;F#Min7
il 0.50 0.50 3600 8.01 ;F#Min7

Figure 5.3: Example scorefile

The scorefile can be synthesized and added to the original soundfile with chordmix (Section 5.3.4).
To directly synthesize the scorefile without mixing it to the original soundfile you can call csound
with the following command:

csound -W -o $chordsoundfile -d -m 0 $ORC_FILE $scorefile

13 http://kevindumpscore.com/docs/csound-manual/index.html
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PCPFile

12.47 sec

136.067

¥ oX X X X X X X X X
¥ X X X X X

¥ oX X X
¥ oX X X X X X

¥ oX X X

t]
L

|IC C#D D#E F F#G GH#A A#B

C C# D D# E F F# G Gi# A Bb B
29.02 56.42 24.01 29.28 136.07 89.95 54.49 0.00 3.82 99.73 1.11 0.00
12.83 sec

Figure 5.4: PCPFile Entry

The PCPFile contains all the computed pitch class profiles in a textual and graphical representation.
Each entry starts with a line containing the beginning time of the PCP. A bar diagram of the not-yet
normalized PCP is followed by the PCP vector. An exemplary PCPFile entry is shown in
Figure 5.4. It shows the pitch class profile computed at the timespan beginning at 12.47s and ending
at 12.83s. The profile has local maxima at the pitches C#, A and E, which would indicate an A-
Major chord(a-c#-e). However, the final detection output might also be for example C#-Minor (c#-

e-g#) or F-Major (f-a-c) depending on the key of the song and the surrounding PCPs.
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5.2.3 Performance

On a 1.5 GHz pentium computer chord detection with the ideal parameters (-o -k -a3 -bl) takes
under 30% of the length of the music. A three minute song thus takes less than one minute to
process. From those 30% about 30% are needed by BeatRoot for beat detection.

Table 5.1 shows execution times in seconds of genchords on a 1.5 GHz pentium for a one minute
song measured with the linux command time. You can see that the -o option which triggers the
smoothing optimization algorithm dramatically increases execution time. The smoothing algorithm

is not optimized and effective time enhancements are probably possible at this module.

-b100 -b200 -bl -b filename
-oka3 real 31.628 17.943 15.720 11.415
user 24.456 15.048 13.993 9.656
-ka3 real 5.490 5.493 10.523 5.691
user 5.078 5.278 9.819 5.500
-a3 real 2.817 2.797 7.623 2918
user 2.587 2.622 7.167 2.767

Table 5.1: Genchords Performance (in seconds for a 1 minute song)

The algorithm is fast enough to operate in real time, which means that it can process the data while
the music 1s playing. Thus the algorithm could be integrated in a music player and compute and
visualize the chords that fit the music that is currently played. However the current implementation
doesn't support real-time analysis, because currently each module processes the whole song, and
passes the entire results to the next module. Nevertheless, the implementation could be easily
modified to operate in real-time. Also BeatRoot could be redesigned to work in real-time (see [20]).
Only key detection really has to be performed in advance as it works on the start and end of the
song and its result is needed for all further computation. With the current settings and if the song
length is greater than 30 seconds, the execution time of key detection is independent of the song
length, as it always uses a 30 seconds excerpt to compute the key. On a 1.5 GHz pentium key
detection takes about 2.5 seconds. BeatRoot takes less than 10 % (4.3 seconds for a 1 minute song).
Thus if genchords would be redesigned to work in real time it would need a start up time of less

than 2.5 + 0.1*length(song) seconds (8.5 seconds for a 1 minute song).
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5.2.4 Parameter Summary

This section summarizes the parameters that have been introduced in Chapter 4 and the values that

we have assigned used for evaluation.

For enhanced autocorrelation described in Section 4.2 the following parameters are used:
windowSize = 46.4 ms (1024 samples for samplerate 22050, 2048 samples for samplerate 44100)
blockSize (if the Beat Detection Module is turned off): 100 ms

hop size = windowSize/2

For the Generation of the PCP (Section 4.3.1) the following parameters are used:

number of neighbours for the advanced peak algorithm: 3

The applied reference PCPs (Section 4.3.3) for the chord types major, minor and seventh chords are:
pcp_maj = {1.0, 0.00, 0.05, 0.05, 0.24, 0.15, 0.01, 0.39, 0.02, 0.16, 0.00, 0.02};
pcp_min = {1.0, 0.00, 0.05, 0.30, 0.03, 0.14, 0.04, 0.26, 0.25, 0.00, 0.00, 0.02};
pep_maj7 = {1.0, 0.00, 0.05, 0.05, 0.24, 0.15, 0.01, 0.39, 0.02, 0.16, 0.46, 0.02};
pcp_min7 = {1.0, 0.00, 0.05, 0.30, 0.03, 0.14, 0.04, 0.26, 0.25, 0.00, 0.46, 0.02};

Our reference PCPs (Section 4.4) for the major and minor key are:
pcp_major_key = {1.0, 0.0, 0.6, 0.0, 0.7, 0.6, 0.0, 0.9, 0.0, 0.6, 0.0, 0.6};
pcp_minor_key = {1.0, 0.0, 0.6, 0.8, 0.0, 0.5, 0.0, 0.9, 0.6, 0.0, 0.7, 0.3};

For the optimization algorithm (Section 4.6) we use the following parameters:
number of chords per timespan: 5

neighbours: 2

ChordChangePenalty: 0.9

Ideal invocation options for genchords:

-a3 -bl -k -o
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5.3 Tools

In addition to the main program described in Section 5.2, a variety of support-tools have been
implemented. These tools are not necessary to perform chord analysis but help the implementer to
find good parameters for genchords and the end-user to interpret and evaluate the outputs of
genchords.

Learnchords takes sound files and labelfiles as input and computes the average PCPs of all
occurring Chordtypes. It has been used to find the reference PCPs for this work. The obtained
reference PCPs are listed in Section 5.2.4. Labeldiff compares two labelfiles and prints out a
detailed comparison table as well as confusion matrix and statistical data. By providing it with
generated and hand labelled files it has been used to evaluate the accuracy of our chord detection
algorithms. Transpose provides methods for transposing and converting labelfiles to different
formats, including enharmonic equivalent representations. Chordmix finally is used to process the
scorefiles generated by genchords. With the help of different open source products it generates a
sound file that contains both the synthesized generated chords and the original audio data. It's nice

tool to get a quick first estimation of the correctness of genchords output.
5.3.1 Learnchords

Learnchords is a tool to compute the reference PCPs for different Chordtypes from audio data of
which we know the Chordsequence. It reuses the classes implemented for genchords and has a very
similar syntax:

learnchords —-a algonr -b beat (file|dir) Label(file|dir) Sound(file|dir)
The options a and b follow the behaviour of genchords and are described in Section 5.2.1. The
labelfile must contain the chords for the soundfile. If directories are given, the files in the directories
are processed one after the other. Each soundfile in sounddir must have a corresponding labelfile in
labeldir, which has the same name as the soundfile but the extension ".txt".

The soundfile is split into chunks of data according to the beat option. For each chunk the PCP is
generated and the chordtype is looked up in the labelfile. The PCP is then shifted to pitch C. All
PCPs of the same chordtype are accumulated in a reference PCP. After processing all the inputfiles

the reference PCPs are normalized and printed to stdout.
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5.3.2 Labeldiff

labeldiff [-m (0-2)] labelfilel labelfile2

In the easiest case "Labeldiff" compares the content of two labelfiles. If labelfilel is a directory

labelfile2 must also be a directory. In this case labeldiff compares corresponding files in the two

directories. Two labelfiles are not compared line-by-line but according to their timestamps. Two

Labels are said to be equal for a certain period of time if the two intervals overlap and one of the

following statements is applies:

® The labels match character by character

® at least one of the labels is an asterisk ('*'). Asterisks match any label and are for example used in
the truth labelfiles to label periods of silence.

® at least one of the labels has the form <sublabel>("/"<sublabel>)* and at least one of the
sublabels matches the label or one of the sublabels of the other file.

Labeldiff can compare any labelfiles that comply to the syntax described in Section 5.2.2, but it

offers some special features for chord labelfiles:

® Enharmonic equivalent Chords match: e.g.: G#Maj and AbMaj

® Chord Style Comparison can be switched on or off. When switched off, only the pitch and the
primary type (major and minor) are compared. e.g. GMaj7 and GMaj match, but GMaj and
GMin do not. By default chord style comparison is off.

Labeldiff outputs a detailed comparison table, a confusion matrix and statistical information which

we will now explain in detail.

Comparison Table

The comparison table gives detailed information on the Labels of both files at any time. Figure 5.5
shows two input labelfiles and the resulting comparison table. The first two columns pos/ and pos2
contain the current line number of the two labelfiles. The third column time specifies the start time
and is followed by the labels of the two labelfiles at this time. The next column /en specifies the
length of time in seconds for which these labels are valid. The diff column finally is O if the two
labels match and 1 otherwise. The last two columns contain debugging information about the start
time of the last time the labels fell apart and the duration of difference since the beginning not

including the current state. Lines with differing labels are highlighted.
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Confusion matrix

The confusion matrix displays information about the kind of confusions. The Labels of the first
inputfile are listed horizontally, the labels of the second inputfile vertically. The cell at row x and
column y specifies how often or how long labelfilel contained label x while labelfile two contained
label y. The cells in the diagonal axis hold the information about label matches. The option -m of
the command labeldiff specifies how the confusion matrix shall be printed: It is set to zero to
suppress output of the confusion matrix. If set to one, duration of the confusion in seconds are
printed. When set to two, the number of confusion is outputted, which is the default setting.

Figure 5.6 displays the confusion matrix for the input files of Figure 5.5 The left matrix shows the
numbers of confusions and has been generated using the option -m 2, while the right matrix lists the

durations.
Statistical Information

The statistical information contains absolute hits in seconds and relative hits as percentage value.

__absolutehits( f)
~ length(f) (5.1

relativehits( f)

If labelfilel is a directory, statistic information for each file is printed as well as a summary hit

percentage which is calculated using:

> relativehits(f)
[€ files (5.2)

| files|

and a summary hit percentage that rates the hits according to the durations of the labefiles:

z absolutehits ( f)

fEfiles
Y. length(f) .

fE files
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2 [cma ‘1 DMin ﬂ e 1 Ahdal Yama 1 CMal GMaj 1 AMa] 1
Inputfile 1: Cutput of Labeldiff:
0 CMaj
0.5 DMin posl pos2 time val | val2 len diff startdif sum
1.7 GMhaj 0 0 0 Chla; Chajp 0.4 0 0 0.0
3.2 AMaj 0 1 4 Cha; DMin 0.1 | .4 .0
3.5 | | 0.5 DMin DMin 0.3 0 0.4 0.1
| 2 0.8 DMin GMaj 0.3 | 0.8 0.1
m— 1 3 [.1 DMin AMa; 0.4 1 0.8 0.1
jmputfle : I 4 1.5 DMin GMaj 02 | 0.8 0.1
B £Maj e 4 1.7 GMaj GMaj 0.6 0 0.8 1.0
0.4  DMin 2 5 22  GMaj CMaj 0.3 | i 1.0
0.8 GMai o 6 25  GMaj GMaj 0.6 0 23 13
LT - 1 2 7 Al GMaj AMaj 0.1 ! 3.l 1.3
b S c 7 32 AMaj AMaj 03 0D 3.1 1.4
2.2 Chaj
2.5 Eﬁjﬁi difference absolute: |.4sec
':E AMaj difference relative: A0 %
(3.3
Figure 5.5: Labeldiff
AMaj Cmaj DMin GMaj AMaj CMaj DMin GMaj
AMa; 1 0 0 0 AMa; 030 0.00 0.00 0.00
CMaj O 1 1 0 CMaj 0.00 040 0.10 0.00
DMin 1 0 1 2 DMin 040 0.00 030 0.50
GMaj 1 1 0 2 GMaj 0.10 030 0.00 1.10
Figure 5.6: Labeldiff: Confusion Matrix
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5.3.3 Transpose

“Transpose” is a tool for transposing and reformatting chord-labelfiles generated by genchords.
transpose.py [-b [-1 | -s ] ] steps filename

Filename must be the name or path of a labelfile, steps indicates by how many semitones the
supplied labelfile shall be transposed. Negative steps are not allowed. To transpose the chords two
semitones downwards, set steps to 12-2 = 10. A step of zero doesn't change the chords and can be

‘¢ 2

used if you just want to apply a format change using the format options “-I” or “-s” or apply

enharmonic change using -b and leave the pitch as it is.

options:

-b use b instead of sharps (sharps are default)

-1 use long names: longname = (pitchname)(MajlMin).*

-s use short names = pitchname.*, where pitchname is uppercase if the chord is a Major chord, and
lowercase for Minor chords.

The output is written to stdout and thus can be redirected to a file using the “>” operator. Lines that
cannot be converted because they don't comply with the labelfile format are copied as is and a
summary containing the line numbers that couldn't be converted is written to stderr. Figure 5.7

shows exemplary input and output data of transpose envoced with the options "-b -s 3".

0,000000 DMaj 0,000000 F
4,382766 GMaj 4,382766 Bb
8,245986 DMaj 8,245986 F
12,004717  GMaj transpose -b -s 3 12,004717  Bb
15,818594  DMaj p 15818594 F
19,641179 silence 19,641179 silence
23,472472  EMin 23472472 g
27,263129  AMaj 27,263129 C
31,022274  EMin 31,022274 ¢
34,769713  AMaj 34,769713  C
38,861497 38,861497

Figure 5.7: Transpose
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5.3.4 Chordmix

v

csound — chords.wav

T

orchestrafile

scorefile

SOXMIX » mixed wav

v

soundtile

chordmix

Figure 5.8: Chordmix
"Chordmix" is a shell script that synthesizes the chords generated by genchords. Furthermore it
creates a stereo sound file, which contains the original song on the right channel and the synthesized
chords on the left channel. The volume of the two audio streams can thus be controlled separately.
Chordmicx is executed using the following syntax:
chordmix scorefile soundfile.
The scorefile is passed to csound together with an orchestra file. The sound file generated by
csound” is our chordsoundfile. The chordsoundfile and the soundfile are both converted to mono
using sox”. The length of both files is calculated using shnrool®. If necessary the longer file is
trimmed so that both files have exactly the same length. Finally the two mono files are mixed to one
stereo file using sox. The resulting wavfiles are saved in </path/to/soundfile>/chords/
and are named <soundfile> chords.wavand <soundfile> mixed.wav.
Listening to the synthesized chord sequence offers the user the possibility to assess its quality in an
informal, direct way. This is of course not a formal method of evaluation, as it is subjective,
imprecise and impractical for large amounts of data. Nevertheless when dealing with the subjective
medium of music, the listening test may be the most convincing way to demonstrate the capabilities
of the system. Another advantage is, that no additional labelfile that represents the truth is needed,

and the evaluation can be performed without tedious preparations.

14 csound - music and sound synthesis software; See http://www.lakewoodsound.com/csound/
15 sox - universal sound sample translator; See http://sox.sourceforge.net/

16 shntool - multi-purpose WAVE data processing and reporting utility; See http://www.etree.org/shnutils/shntool/
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5.4 Conclusion

In this chapter we have discussed the developed automatic chord detector genchords and its tools in

detail. Finally, we want to give you a short tour of the whole tool chain.

Tour of the implementation

Suppose you have a sound file called Trackl.wav that you have ripped from an audio CD. Before
analysing it you should downsample and lowpass-filter it, to enhance and speed up analysis:

sox Trackl.wav -r 22050 Trackla.wav resample —-gs filter 0-1000

This generates sound file "Trackla.wav" that we can now pass to our chord detector:

genchords -a3 -bl -k -o -v7 Trackla.wav ./chords

The files Trackla.txt, Trackla.pcp and Trackla.sco are generated in the directory ./chords.

First, lets mix the detected chords to the original song and listen to the result:

chordmix.sh ./chords/Trackla.sco Trackl.wav

play ./chords/Trackl__mixed.wav &

Sounds good? Well, lets have a detailed look at the detected chords. You can either just read the
labelfile using any text reader, or better, visualise it using Audacity:

audacity Trackl.wav &

In Audacity: Menu Project —-> import textlabel -> ./chords/Trackla.txt

The chord labels are aligned with the audio signal, and you can select a section and look at the
current chord labels, that scroll with by while the song is played.

In order to precisely evaluate the quality of the labels, you can detect the chords manually or look
them up in a scorefile of the song, if you have one available. You need to assign the chords to
precise timespans in the song and create a labelfile (say Trackl_truth.txt). If you don't like typing
the full names and want to speed up the hand-labelling process, name the chords with their short
names (e.g. 'g' instead of 'GMin’) and transpose the whole labelfile to long chord names when you
have finished using transpose:

transpose -1 0 Trackl_truth_short.txt > Trackl_truth.txt

Now you can compare your labelfile with the automatically generated one using labeldiff:
labeldiff Trackl_truth.txt ./chords/Trackla.txt

98% accuracy? - Perfect!

Veronika Zenz 59 01.02.2007



Chapter 6 : Evaluation

6 Evaluation

The previous two chapters described the design and implementation of an automatic chord detector.
This chapter summarizes the tests that have been performed in order to evaluate this design and its
implementation. It starts with an overview over the test set (Section 6.1). Section 6.2 gives detailed
information on the achieved accuracies. As stated in Chapter 4, our chord detector has a modular
design, where each module can be switched on and off independently. In order to prove the
effectiveness of each module the tests have been performed separately for each module. Afterwards
the limits of frequency-based chord detection are highlighted and our results are compared to those
achieved by the algorithms described in Chapter 3. Finally Section 6.3 gives an insight on the

properties of the chord-confusions that have occurred.

6.1 Test Set

In order to evaluate chord detection algorithms a representative test set is most essential. The
compilation of a test set and especially the generation of truth files is a time-consuming task, thus it
would be desirable that a standard test set for chord detection would be defined. Evaluation results
of different chord detectors could then be compared directly leading to more transparency.

As such a standardized test set doesn't exist yet, and the test set used by other researches were either
not available at that time or not general enough (see Sections 3.5 and 3.6), we have defined our own
test set. The songs have been carefully selected to represent a variety of different styles. Attention
has been paid to chose widely known artists so that others who wish to compare their results with
those stated here have easier access to the test data. All songs have been manually labelled using
Audacity. Table 6.1 lists the artist and title of the songs that have been chosen for evaluation, their
key and the set of chords that occur in the first 60 seconds. All tests have been performed on the
first minute of each song. Though the songs themselves are under copyright restrictions and thus
cannot be published, the publishing of the truth files is planned in order to facilitate the work for

future research.
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6.2 Accuracy

This section gives detailed information on the detection accuracy of our algorithm. All results are
compared to those of what we further call a "simple short-span algorithm". This is an algorithm,
that splits the input into 100ms spans and does no key detection or chord optimization.

For evaluating the output we compared the generated labelfile to a hand-labelled truth file using

labeldiff (Section 5.3.2). We have defined accuracy as

hits(ms)
total length (ms)

accuracy =

6.1)

First we will describe the accuracy of key detection. Afterwards the influence and effectiveness of
each module is evaluated: Section 6.2.2 states the influence of key detection on the accuracy rate,
Section 6.2.3 describes the influence of beat tracking and Section 6.2.4 the influence of chord
sequence optimization. Section 6.2.6 then lists the results we achieved with all modules turned on.
A description of the limits of frequency-based chord detection follows. Section 6.2.7 finally

compares our results to those achieved by other chord detection algorithms.
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Nr. Artist Title Key Chords (first 60s)
1 |ABBA Dancing Queen A major A,D,E, c#, f# B
2 Bob Dylan Blowin In The Wind D major D,G, A
3 | Cat Stevens Wild World C major a,D,GC,F E
Sorry Seems To Be The Hardest
4 Elton John Gminor g,c,D,F, A# B
Word

5 Elvis Presley Devil In Disguise Fmajor Bb,C,F,d
6 Eva Cassidy Fields Of Gold f# minor (f#, D, E, A, b,
7  Green Day Basket Case Eb major Eb, Bb, ¢, g, Ab, Db,
8 Jack Johnson Sitting Waiting Wishing Aminor a,G,F C,E
9 |Mando Diao God Knows D major? B,D,E,G,f# Db
10 Muse Thoughts Of Dying Atheist Gminor g Eb,D,g,c,F,Bb
11 Norah Jones Come Away With Me C major C,a,F, e
12 | Radiohead Karma Police A minor a,e,G,F,D,b,C
13 Reinhard Fendrich I Am From Austria G major G,C,D,e,b,a

D major
14 REM Everybody Hurts D, g, e A,

(+B Minor)
Red Hot Chili A minor
15 Californication a,F C, G,d
Peppers (+ F# minor)

16 The Beatles Help A major b,G,E, A, c#, f#, D,
17 The Beatles Yesterday F major F,e, A, d, Bb, C, G,

B major
18 Tina Turner What's Love Got To Do With It g#, d#, E, F#, B,

(+ C# major)
19 Travis Sing F# minor f#,b, A, E,
Table 6.1: Test Set
Veronika Zenz 62 01.02.2007



Chapter 6 : Evaluation

6.2.1 Key Detection Accuracy

Table 6.2 lists the true and the detected keys for all test songs. Matches are marked with a v/,

confusion between relative keys with an 'R’ and other confusions with X. 13 of 19 keys have been

detected correctly. From the six confusions five have been between major and relative minor key.

As explained in Section 2.2 major and relative minor key contain the same pitches and our

algorithm preselects the same chords for them. Thus these confusions do not affect our chord

detection algorithm. The only serious mistake has been made on song 2 (Bob Dylan — Blowin in the

wind) where the key was mistakenly identified as A Major instead of D Major. Again, this mistake

is one between closely related keys (see 2.2), that share 6 of 7 pitches and 8 of 10 associated chords

(see Section 4.4).

Nr. Artist Title Key Key detected Accuracy
1 ABBA Dancing Queen A major A major v
2 BobDylan  Blowin In The Wind D major A major X
3 Cat Stevens Wild World C major C major 4
4 Elton John  Sorry Seems To Be ... G minor G minor v
5 Elvis Presley Devil In Disguise F major F major v
6 EvaCassidy Fields Of Gold f# minor A major R
7 Green Day  Basket Case Eb major Eb major v
8 Jack Johnson Sitting Waiting Wishing A minor A minor v
9 Mando Diao God Knows D major ? B minor R
10 Muse Thoughts Of Dying Atheist G minor Bb major R
11 Norah Jones Come Away With Me C major C major v
12 Radiohead  Karma Police A minor A minor v
13 R.Fendrich I Am From Austria G major G major v
14 REM Everybody Hurts D major (+B Minor) D major v
15 RHCP Californication A minor (+ F# minor)  C major R
16 The Beatles Help A major A major v
17 The Beatles Yesterday F major F major v
18 Tina Turner What's Love Got To Do ... B major (+ C# major) G# minor R
19 Travis Sing F# minor F# minor v

Table 6.2: Key Detection Results
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6.2.2 Influence of Key Detection
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Figure 6.1: Test Results for Key Detection

Figure 6.1 compares the results of the short-span algorithm to those of our algorithm where only
key detection is turned on. Key detection enhanced the detection quality for all songs of the test set.
The wrong key detection for song 2 had no consequences, as only primary chords are used in this
song. The mistakenly identified key A-major has a quint-relationship to the real key D-major, and
all primary chords of D-major are primary or secondary chords of A-major and thus not filtered out.
This indicates a high robustness of our algorithm against related-key confusions.

When the detected key of the song was taken into account, accuracy increased by an average of
13%. The greatest enhancement has been achieved for song 7 (Green Day — Basket Case) of which
the accuracy rate doubled from 27% to 55%. With the short-span method many confusions are made
between major and minor chords on the same root note (specially on the tonic (eb-g-bb versus eb-
gb-bb) and the dominant (ab-c-eb versus ab-cb-eb). This is, because the third, that differentiates
minor from major chords is often missing. Having identified the key being major, a minor tonic or

dominant is excluded from the possible chords resulting in the described accuracy enhancement.
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6.2.3 Influence of Beat Tracking
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Figure 6.2: Test Results for Beat Detection
Figure 6.2 compares the results of the short-span algorithm to those of our algorithm where only
beat detection is turned on. Beat detection enhanced the detection quality for all songs of the test
set. On an average accuracy increased by 6% when the detected beats of the song were taken into
account. The greatest enhancement was achieved for song 2 (Abba — Dancing Queen) (14%), the
smallest enhancement for song 17 (The Beatles — Yesterday) (0.3%). Beat spans had an average
length between 300ms for song 18 (Tina Turner — What's Love Got To Do) and 760 ms (Norah
Jones — Come Away With Me). Compared to the spans of 100ms, that the short-span algorithm
uses, these larger spans are more robust against short non-chord tones. Figure 6.3 shows an excerpt
of song 5, the manually recognized chords and those recognized by the short-span algorithm
respectively those recognized by our algorithm using beat tracking. The flags in the last two lines
demarcate the analysed time spans of the short-span respectively the beat tracking enhanced

algorithm. Chord names are shortened for better readability.
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Figure 6.3: Labelfile Comparison: short span versus beat tracking - (Elvis Presley, Devil in Disguise)
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6.2.4 Influence of Chord Sequence Optimization
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Figure 6.4: Test Results for Optimization

Figure 6.4 compares the results of the short-span algorithm to those of our algorithm where only
chordsequence optimization (smoothing) is turned on. Chordsequence optimization enhanced the
detection quality for all songs of the test set. On an average accuracy increased by 7% when the
chord sequence was passed to our optimization algorithm. The greatest enhancement has been
achieved for song 19 (Travis — Sing) for which accuracy rate was increased by 21% from 49% to
70%. The smallest enhancement was 3% and was encountered for song 2 (Bob Dylan — Blowin in
the wind).

These tests were made with a neighbourhood n of 2 considering the best 5 chords per timespan.
Further increase of the neighbourhood or the number of chords resulted in an accuracy enhancement
of only some tenths of a percent while boosting execution time exponentially.

On the average, smoothing changed nearly 30% of the chords. For every third to fourth span, the
algorithm did not chose the chord that scored best. Of course, the most frequent change was the one
to the second best chord (58% of all changes) but also the 5™ best chord has been taken at an
average of 24 times per song (13% of all changes). Half of the changes were changes from the
major to the minor chord with the same root, or from the minor to the major chord with the same

root.
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6.2.5 Accuracy of the entire Algorithm
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Figure 6.5: Test Results for all modules combined
The simple short-span algorithm, that detects chords every 100ms, and performs no key detection,
beat tracking or chord sequence optimization, had an average accuracy rate of 37%. Our system
achieved an average accuracy rate of 65% which is an improvement of 28% compared to the short-
span algorithm. Figure 6.5 shows the results for each song of the test set. A significant increase of
accuracy can be noted for all songs except song 9 (Mando Diao — God Knows), which uses the
chord sequence that sticks least to its key. The song for which our algorithm performed best were
song 14 (REM — Everybody Hurts) with 95% accuracy. It has a very dominant accompaniment in
the form of arpeggio sounds. Percussion doesn't seem to have a great influence, as both the best and
the worst recognition results (song 6 Eva-Cassidy — Fields of Gold 42%) have occurred for songs

without (song 6) or with very decent percussion (song 14).

The main factors that lead to wrong chord identification are:

® non-chord tones: neighbour tones, anticipation, passing tones, suspension and escape tones are
just some examples for notes that can occur mainly in the melody, that are not members of the
chord and produce intended dissonances. The stronger these tones are, the more they confuse the
algorithm. Thus songs where the melody is much more dominant than the accompaniment are
more difficult to analyse.

® misleading frequency spectrum due to the harmonic series, mistuning (especially with human

voice) or percussive sounds.
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® use of other chord types: Our system currently differentiates only major, minor and seventh

chords. Other chord types, like augmented and diminished chords, suspended or extended chords

are not recognized.

Table 6.3 summarizes the accuracy results for the whole test set and all modules.

Song Accuracy

Nr. Artist Title Shortsp.  Key Beat  Optim. Algo
1 ABBA Dancing Queen 41 56 55 53 82
2 BobDylan Blowin In The Wind 37 54 39 40 63
3 Cat Stevens Wild World 44 55 52 53 77
4 Elton John  Sorry Seems To Be ... 38 42 47 44 60
5 Elvis Presley Devil In Disguise 28 41 38 35 60
6 EvaCassidy Fields Of Gold 22 37 27 25 42
7 Green Day  Basket Case 27 55 32 30 73
8 Jack Johnson Sitting Waiting Wishing 26 32 32 30 44
9 Mando Diao God Knows 47 57 54 50 52
10 Muse Thoughts Of Dying Atheist 43 57 52 52 71
11 Norah Jones Come Away With Me 49 61 54 55 83
12 Radiohead  Karma Police 43 49 45 50 65
13 R.Fendrich I Am From Austria 31 46 36 36 63
14 REM Everybody Hurts 65 84 72 73 92
15 RHCP Californication 32 38 37 39 55
16 The Beatles Help 26 42 33 31 61
17 The Beatles Yesterday 38 51 38 45 64
18 Tina Turner What's Love Got To Do ... 20 33 25 24 46
19 Travis Sing 49 54 59 70 82

Total 37 50 43 44 65
Table 6.3: Accuracy Overview
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6.2.6 Accuracy Limits

Accuracy results for different numbers of outpat chords per time span

Ararney

4
Murnchoreds

Figure 6.6: Accuracy results for different number of output chords per time span

As described in Section 5.2 genchords can be configured to output not only the best but the n-best
chords. For each timespan the detection is then defined to be correct if one of these n-chords
matches the real chord. Figure 6.6 shows the achieved accuracy results for number of output chords
(numchords) ranging from 1 (standard) to 7. All enhancements modules have been switched off for
this computation. The average result is shown as a broad bar over witch the individual results for
each chord are drawn. You can see that the best song (song 12) still did only reach 98% even when
7 chords were considered. Part of the remaining error rate results from inaccuracies in the hand-
labelled truth file, where chord changes are always a bit out of time (on average about 50ms early or
late). What is very interesting to observe, is that even when the 7 best chords are considered, the
average accuracy rate doesn't rise over 80%. This means that, assuming that the calculation of the
PCP has not simply been erroneous, the PCP and the detected frequencies are misleading in about
20% of the time. As a conclusion, a chord detector that wants to cross this 80% mark needs to make
hypothesis on the quality of the PCPs and needs to deduce the chords of low-quality-PCP chord
spans from the surrounding higher quality spans. In a nutshell: sometimes it is necessary to ignore

the frequency-based feature.
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6.2.7 Comparison with other Algorithms

A direct comparison of our results with that of others is difficult, as the reported results have been
achieved on different test sets. In order to have a significant comparison, effort has been taken to
obtain the testing data including songs and truth files from other researches. While the search for
truth files was not successful, we were able to obtain the sound files used by Yoshioka et al. in [6].
The songs have been taken from the popular section of the RWC Music Database'” (RWC-MDB-P-
2001). Table 6.4 compares the results of Yoshioka with our results.

The algorithm designed by Yoshioka et. al. outperforms our algorithm in total and also on each of
the songs. This is probably due to their use of a chord-sequence database and a better frequency
spectrum. Compared to an acoustic version of the algorithm of Yoshioka that does not use chord
sequences and bass tone information, our algorithm is still 6 percent inferior on average. It is
interesting that the results for the individual songs do not correlate. Song number 44, for which
Yoshioka measured the biggest inaccuracy of this test set, lies in the midfield of our evaluation
results. The song that posed the most problems to our algorithm (Nr. 40) was the best rated song for
Yoshioka.

Differences in the accuracies might also be due to different truth chord files and different extracts of
the songs: Yoshioka reportedly use one-minute extracts. As we did not know which extract they

chose, we computed our results simply on the first minute.

Yoshioka Genchords
Piece Nr.
Beat Span Acoustic Algorithm Beat Span Algorithm
14 42% 74% 84% 40% 63%
17 57% 64% 76% 49% 68%
40 38% 76% 80% 37% 48%
44 34% 46% 67% 43% 63%
45 53% 68% 74% 52% 72%
46 57% 69% 80% 45% 66%
74 45% 71% 80% 38% 56%
Total 46% 69% 77% 44% 63%

Table 6.4: Result Comparison

17 http://staff.aist.go.jp/m.goto/RWC-MDB/
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6.3 Confusion Matrix

Guessed
Bbmaj[Cmaj|Cmin|Ebmaj|Dmaj|Fmaj| Gmin |
Bbmaj| 3.6 0.1
T |[Cmaj 0.0
r [Cmin 23 7.8 09 0.1 1.3 4.0
u [Ebmaj 0.0
t |Dmaj 1.8 3.7 0.3
h [Fmaj 2.0 5.4

Table 6.5: Confusion Matrix: Elton John - Sorry Seems To Be ...

Confusion matrices give us an insight on the types of mistakes the chord detector makes. Table 6.5
shows the confusion matrix for Elton Johns "Sorry seems to be the hardest word" (song 4). The
matrix that has been computed using labeldiff (Section 5.3.2) and show the confusion lengths in
seconds. The true labels are listed horizontally and the recognized chords vertically. The diagonal
(bold and black) shows the chords that have been recognized correctly. Mistakes are depicted in red.
Two chords (C-Major and Eb-Major) have been recognized that do not appear at all in the song.
The more pitches two chords share the more easily the tend to be confused: The chord G-Minor (g-
bb-d, last row) for example has been confused most often with Bb-Major (bb-d-f) and Eb Major
(eb-g-bb) with both of which it shares two pitches. C-Minor and G-Minor, the chords that have been
confused for the longest time, share one pitch. But also chords that seem to use totally different
pitches sometimes are confused: for example D Major (d-f#-a) and C-Major (c-e-g). This normally
has one of the following reasons:
® The detector is influenced by the previously played chord (C-D-G for example is a very common
chord sequence (in functions IV-V-I), from which the confusion above could have resulted).
® The played chord is not a simple triad but uses additional pitches or alterations. Thus the two
chords in reality do share some pitches. In our example the D-Major might be a seventh-chord.
(d-f#-a-c). As the seventh is usually played very strong, this might very well be the reason for the
confusion with C-Major.
0 pitch 1 pitch 2 pitches
2.4 seconds = 12.2 % 9.2 seconds =46.9 % 8.0 seconds =40.8 %

Table 6.6: Shared pitches of confused chords.
Table 6.6 summarizes the lengths of these confusion types calculated for song 4 and their

contribution as percentage to the total inaccuracy.
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7 Conclusion

7.1 Summary

In this thesis we have presented a sophisticated chord detection analysis model that incorporates
music theoretical knowledge. It detects the key of the input and uses it to filter out those chords that
fit the key. It further uses beat tracking to define the boundaries of possible chords and a smoothing

algorithm to further enhance chord boundaries and chord change properties.

Tests

In order to get representative results a test set of 19 songs of various styles and genres has been
assembled and hand-labelled. The effectiveness of each enhancement module has been evaluated
against this test set independently of the other modules. Each of the modules has raised the average
quality by several percent. In the final integration test accuracy ranged from 42% to 92%, with an
average accuracy rate of 65%. Overall, the enhancements have improved the chord detection
accuracy by 28% compared to a simple short-span detection algorithm, confirming our approach of

integrating music theory in the chord detection process.
Tools

In addition to the chord detector itself a set of tools has been created to facilitate evaluation and use
of the chord detector. These tools include programs to transpose and compare chord labelfiles.
Special focus has been given to make the detection output directly evaluable, without the tedious
work of hand-labelling truth files. This was achieved by resynthesizing the detected chord
sequences. The user can thus get a direct notion of the detection quality by listening to a generated

sound file that consists of the original file mixed with the detected and resynthesized chords.

7.2 Future Work

Throughout implementation and evaluation phase, possible enhancements came to our mind, that
would have been too time-consuming to be integrated in this version of the chord detector. In this
final section we want to state possible detection optimizations of our algorithm followed by

interesting user interface enhancements.
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Detection enhancements

One important enhancement of our chord detector would be to lift the restriction on key-
modulation. Our system assumes that the key of the song does not change for the whole length of
the input. In order to lift this restriction a modulation recognition module would have to be
integrated into the chord detector. The chord filter could then be applied to whatever key currently
dominates.

The system might be further improved by detecting not only the beat but also the meter of the song.
Chord changes are most probable on the strong times of the meter (for example at beat one and
three of a 4/4 meter). Knowing the meter, the chord boundary detection could be enhanced and
analysis spans could further be stretched which would make the algorithm more robust against non-
chord tones.

Another enhancement could be achieved by integration of a chord-sequence database that stores
common chord sequences in the form of functions (e.g. [-IV-V-I). A set of possible chord sequences
could then be evaluated against this database; an approach that is already successfully used by
Yoshioka et. al. ([6]).

As we have seen in Section 6.2.6, the frequency based feature is misleading at about 20% of the
time. As a consequence other additional features need to be integrated. The chord-optimization
algorithm (smoothing) might be enhanced in this direction by allowing it to chose a chord
independent of its acoustic score, if the surrounding chords suggest so.

Our algorithm uses enhanced autocorrelation for frequency detection. A variety of other pitch
detection algorithms exist and it would be interesting to evaluate their integration in the PCP
generation module. In the same way other PCP generation algorithms and PCP distance methods

might further enhance the chord detection algorithm.

Implementation enhancements

In addition to the possible enhancements of the detection algorithm, several implementational
enhancements are possible, including a platform independent implementation (e.g. using Java), a
more efficient implementation of the smoothing algorithm and sequential processing of the input

that supports real time analysis.
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Improving the user interface and usability

The user interface too could be enhanced in various ways: A plugin for popular audio players could
be implemented that displays the detected chords of the currently player music. Usability could be
further improved by the implementation of a graphical front-end to the chord detector and its tools:
A GUI could support visualisation of the PCP, the frequency spectrum, the detected chords and
their computed probabilities. An editor could be integrated that supports manual adoption of the
generated chord labelfile. Comparison and evaluation of the confusion matrices could be facilitated
if their columns and rows were sorted by the circle of fifths and function names were displayed

instead of absolute chord names.
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