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Abstract

The increasing number of music libraries offering an ever growing number of tracks on

public and private domains stimulated the demand for innovative approaches to let users

access their music. Fast and efficient access to requested audio data in huge music collec-

tions requires intuitive organization structures. Various different structuring methods have

been applied to this problem, many based on the specification of a similarity measurement

between the music tracks. This kind of organization process represents the human, intu-

itive procedure of structuring. Technical systems implementing this structuring approach,

namely music similarity systems, characterize elements of big music repositories based

on configurations of features extracted from each song of the collection. Such a feature

vector describes the underlying audio content by capturing important aspects of music,

e.g. pitch, timbre, tempo, beat. Using these vectors, several innovative techniques, e.g.

the Self-Organizing Map, perform an organization of the whole music collection. In order

to offer a graphical representation to the user, topology-preserving mapping techniques

perform a projection of those multidimensional descriptors to a 2-dimensional lattice. This

enables the user to explore the music by moving across a plane.

The evaluation of the quality of similarity measures between pieces of music is a non-

trivial, sophisticated task because human cognition of music and perception of similarity

inherently is biased by subjective interpretation and reasoning which usually is based on

knowledge and conventions of the real world. Even songs belonging to the same genre,

having a similar structure might be recognized as completely dissimilar by human cogni-

tion. Therefore, the evaluation of similarity between music tracks typically requires human

judgment.

This work focuses on the acoustic evaluation of music similarity. It presents a novel tool

called cLynx which offers several different features for an efficient acoustic evaluation

of music similarity and additionally enables exploring and analyzing structured audio

repositories much faster and more efficiently. An evaluation based on a listening test

studies the applicability of cLynx in various listening situations by highlighting trends in

the subjects’ perceptions and analyses connections between subjective interpretation and

individual preferences and the subjects’ perception of music similarity and susceptibility

to outlier detection.
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Kurzzusammenfassung

Die starke Zunahme von öffentlichen und privaten Musikarchiven, zusammen mit dem

stetigen Wachstum an angebotenen Musikstücken, forderte die Entwicklung innovativer

Zugangsmöglichkeiten zur Musik. Ein schnelles und effizientes Auffinden gewünschter Mu-

siktitel in riesigen Musiksammlungen erfordert eine leicht verständliche, intuitive Organi-

sation der zugrunde liegenden Daten. Viele solcher Strukturierungsansätze basieren auf der

Definition eines Ähnlichkeitsmaßes zwischen den einzelnen Musikstücken, was im Grun-

de der alltäglichen menschlichen Strukturierungsgewohnheit entspricht. Die Grundlage

der technischen Umsetzung bildet die Beschreibung einzelner Werke anhand von mehre-

ren Merkmalen, die aus den Stücken extrahiert werden. Die Gesamtheit der gewonnenen

Merkmale bildet einen so genannten Feature Vector, welcher die Struktur des Musikstückes

beschreibt. Unter Verwendung dieser Vektoren vollbringen innovative Techniken aus dem

Gebiet des maschinellen Lernens (z.B. Self Organizing Map) die Strukturierung eines ge-

samten Musikarchivs.

Die subjektive Auffassung und Bewertung von Ähnlichkeiten zwischen musikalischen Wer-

ken sind von Mensch zu Mensch verschieden, da die musikalische Wahrnehmung und das

Ähnlichkeitsempfinden in natürlicher Weise vom Prozess der subjektiven Interpretation

und der logischen Schlussfolgerung abhängig sind. Somit ist es möglich, dass eine Musik-

sammlung Stücke derselben Struktur beinhaltet aber von der menschlichen Wahrnehmung

als absolut unähnlich aufgefasst wird. Aus diesem Grund ist die Evaluierung von Ähnlich-

keitsmaßen zwischen Musikstücken eine hoch komplizierte Aufgabe, die hauptsächlich mit

Hilfe von Hörstudien durchgeführt wird.

Diese Diplomarbeit richtet ihr Hauptaugenmerk auf die akustische Evaluierung von Ähn-

lichkeitsmaßen. Dazu wird das Tool cLynx präsentiert, welches mehrere unterschiedliche

Funktionen zur Unterstützung akustischer Evaluierung bereitstellt und des Weiteren ein

effizienteres Erkunden von strukturierten Musikarchiven ermöglicht. Das Tool cLynx wur-

de in einer Hörstudie verwendet, um seine Eignung in unterschiedlichen Hörsituationen

zu analysieren und um Beziehungen zwischen der subjektiven Interpretation und der indi-

viduellen Vorliebe von Testobjekten und deren musikalischen Ähnlichkeitsempfinden und

Empfindlichkeitsmaß zur Erkennung unpassender Passagen zu erkunden.
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Chapter 1

Introduction

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Motivation

The World Wide Web represents a medium offering a huge amount of digital data, e.g.

text, audio, video, pictures. Especially audio massively gained in importance over the

last few years. Beginning with Napster, Morpheus and Co digital music got a still active

boost of popularity and received a mass appeal quasi over night. More and more steadily

growing online audio archives arise in order to accomplish the growing demand of digital

audio. In parallel to the increasing library sizes, the problem of giving the recipient a

general review of the range of products in a fast and simple way raised. Therefore, there

has been tireless effort in science to develop innovative organization techniques which aim

at presenting a clear, intuitive arrangement to the users. A simple but time-expensive

structuring approach, which was applied to this problem, used manual assignment of

every single song to some kind of meta-information. E.g., formats like MPEG-1 Audio

Layer 3 (more commonly referred to as MP3) store meta-information specifying the work’s

basic data. But this meta-data whether assures correctness, completeness and availability.

Therefore, science was challenged in developing structuring approaches which do not rely

on such kind of pre-processing task. So science directed its focus on the development of

novel organization techniques which are based on the musical content of audio data.

Music Information Retrieval (MIR) research deals with content based analysis of music.

Within this research field several approaches for automatic detection of semantic features

were developed which cover musical information like loudness, tempo, beat, rhythm, tim-

bre, pitch, harmonics, melody etc. The retrieval of features tackles the issue from two

1



2 CHAPTER 1. INTRODUCTION

different angles. While one approach deals with directly extracting a set of features from

an audio signal, another technique generates features based on transformations or combina-

tions of the extracted features. The specification of an adequate configuration of retrieved

features (called feature vector) which describes a music signal best is a very sophisticated

process and inter-alia depends on issues of the defined task and psycho-acoustic matters.

The feature vector of a piece of music builds the basis for:

� retrieving/searching songs based on sample music

� automatic music classification

� music organization by similarity

� music identification

The songs’ feature vectors allow the definition of acoustic distance and musical similarity

measures between the tracks to all others. Several similarity based structuring approaches

have been applied in MIR research, e.g. to music organization by similarity. Many of

these methods are based on clustering techniques (e.g. Self-Organizing Map) because of

their ability of representing the fuzziness and overlapping of different genres. Furthermore,

topology-preserving mapping techniques were applied to project the song’s multidimen-

sional feature vector to a 2-dimensional lattice in a way that adjoining tracks are more

similar according to the defined similarity measure than songs which are a long way away

from each other. Several graphical description approaches have been developed which

visualize a 2-dimensional representation of music collections. A very intuitive visualiza-

tion technique, the so called Music Map, resembles a geographic map in order to generate

virtual landscapes formed by a music archive. In the course of this thesis a tool called

PlaySOM will be reviewed which consists of a big repertoire of different visualization

methods and enables an interactive exploration of music collections.

The human cognition of music and perception of similarity inherently is biased by subjec-

tive interpretation and reasoning which usually is based on knowledge and conventions of

the real world. Even songs belonging to the same genre, having a similar structure might

be recognized as completely dissimilar by human cognition. Therefore, the evaluation of

the performance of music similarity measures between pieces of music is a non-trivial,

sophisticated task and is challenged by the differing human cognition of music and the

subjective interpretation of whether a track is similar or dissimilar to a query song. As

a consequence, the evaluation of the similarity between music tracks typically requires

human judgment. In recent years various evaluation contests have been arranged within

several International Conferences on Music Information Retrieval (ISMIR1) since ISMIR
1ISMIR is derived from International Symposium on Music Information Retrieval which was redefined

to International Conference on Music Information Retrieval between ISMIR 2001 and ISMIR 2002
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2004. During the 6th ISMIR Conference in 2005 the 1st separated evaluation project, called

Music Information Retrieval Evaluation eXchange (MIREX), was conducted. Large scale

music similarity evaluation, which primarily relays on human judgment, requires systems

which assist the subjects during the evaluation process. For this purpose, Stephen J.

Downie’s IMIRSEL lab contributed the so called Evalutron 2000 (E2K) to the subjective

evaluation of the MIREX 2006 which supported human judges in evaluating algorithms

submitted to the ’Audio Music Similarity and Retrieval’ and ’Symbolic Melodic Similarity’

tasks. While this evaluation system forced to listen to the songs consecutively, the cLynx

evaluation tool presented in this thesis also enables simultaneous playback, or sequential

playback with different emphasis.

1.2 Outline

This thesis is structured into three main chapters:

Chapter 2 introduces into state-of-the-art approaches of areas relevant for this thesis.

Methods of unsupervised learning such as Clustering and Dimensionality Reduction are

discussed and an Artificial Neural Network, called Self-Organizing Map (SOM) is pre-

sented. Thereafter, a SOM-based application, namely PlaySOM is introduced and the

’Sky-Metaphor Visualization’ –a novel visualization method– is explained. Next, the ba-

sics of signal processing relevant for this work are presented. In the last part of this

chapter the related work of human evaluations of audio-based similarity measures are

briefly reviewed.

Chapter 3 presents the cLynx application which was implemented in the course of this

thesis. All components are discussed in detail including a guide for further extensions

and an explanation of cLynx’s various execution modes. Additionally, developers of MIR-

systems are guided in how to integrate the tool into their system.

In Chapter 4 two evaluations are published. The first experiment introduces an approach

of tuning the cLynx’s analysis process by approximating the original analysis results on

the basis of only a few song parts. In the second part a listening test is presented which

is based on the PlaySOM application using the cLynx plug-in. The evaluation is focused

on the performance of the plug-in in supporting the user in analyzing and exploring music

data and in evaluating an underlying similarity measure. Furthermore, it highlights trends

of human cognition and similarity interpretation.

Chapter 5 provides several suggestions for possible improvements and useful extensions of

the cLynx tool and draws conclusions.
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1.3 Contributions

The contributions of this work can be divided into three categories:

� Chapter 3 deals with the development of a novel tool, namely cLynx, for acoustic

validation of similarity between pieces of music. It additionally offers features for

analyzing, browsing and exploring music data of structured audio collections.

� Chapter 4 presents a listening test which studies the human cognition of music and

subjective interpretation of music similarity using cLynx. It analyses the various

features offered by the cLynx application according to its performance, effectiveness

and expressiveness.

� The cLynx application is presented using input data passed by an underlying SOM

based Music Similarity System called PlaySOM by extending the application as

plug-in.
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This chapter briefly introduces into the unsupervised machine learning approaches Clus-

tering and Dimensionality Reduction followed by the presentation of an Artificial Neural

Network, called Self-Organizing Map. Thereafter, the PlaySOM is discussed which is

an alternative method to song selection and play-list generation in large music archives

based on a Self-Organizing Map approach followed by an introduction into signal process-

ing where an insight into Control Amplifiers (Compressor, Limiter, Expander and Noise

Gates) is given. The last section of this chapter reviews related work of human evaluations

of audio-based similarity measures.
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6 CHAPTER 2. RELATED WORK

2.1 Unsupervised Learning

The field of machine learning is concerned with the question of how to construct algorithms

that automatically improve with experience [Mitchel, 1997], which borrow and build up

ideas from several fields, e.g. statistics, computer science, cognitive science, mathematics,

etc. In the sub-field of machine learning, known as unsupervised learning the machine

receives some sequence of input data x1,x2,x3, ... where xt defines the input at time t.

Unlike supervised learning where the model additionally obtains a sequence of desired

outputs y1, y2, y3, ... , the system receives no information about the output. Despite the

absence of supervised target outputs or feedback from the environment the system’s goal

is to find a useful representation of the underlying data which can be thought of finding

patterns which can be used for:

� Outlier Detection

� Data Compression

Unsupervised learning algorithms explore the input data in order to discover an inner

structure, e.g. finding clusters within the data. A cluster covers data items which are

similar in some kind of features, but the clusters itself are disparate from each other.

The learning can be seen as learning an estimated model which represents the probability

distribution of a new input xt resulting from all previous inputs x1,x2, ...,xt−1 defined

as [Ghahramani, 2004]:

P (xt|x1, ..., xt−1) (2.1)

In the following paragraphs the two most common examples of unsupervised learning,

Clustering and Dimensionality Reduction, are discussed in more detail.

2.1.1 Clustering

Clustering algorithms are methods to divide a set of n observations into g groups so

that members of the same group are more alike than members of different groups [Ripley,

1996]. These groups are called clusters. The clustering algorithm can be seen as a mapping

that assigns each observation to a cluster. Some algorithms are closely linked with Vector

Quantization [Gersho and Gray, 1992] which is defined as the mapping Q of an observation,

a vector (input vector) in k-dimensional space Rk, into a finite set C:

Q : Rk → C (2.2)

C represents the so called codebook which contains distinct elements {y1, y2, . . . , yn}, yi ∈
Rk for 1 ≤ i ≤ n. Each element of the codebook is a vector representing a cluster center.
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So every input vector xi can be assigned with a cluster center yi. In order to assign

similar input data with the same cluster center a similarity and distance measure has to

be defined. Both measures build the basis for the quality of the clustering process. The

similarity of two objects oi and oj of the set O can be expressed by the function σ defined

as:

σ : O ×O → σ(oi, oj) ∈ [0, 1] (2.3)

which performs a mapping into the defined output space of [0,1] where 0 defines low

similarity and 1 equal. The resulting matrix, called the similarity matrix, is a symmetric

matrix with 1s down in its main diagonal because every element is equal to itself. The

distance between two elements oi and oj of the set O can be expressed by the function δ

defined as:

δ : O ×O → δ(oi, oj) ∈ R+ (2.4)

As a measure for the distance between the objects oi and oj several metrics have been

proposed. The probably most common is the L2-Norm, also referred to as Euclidean

distance:

δ(oi, oj) =

√√√√ n∑
k=0

(oi,k − oj,k)2 oi, oj ∈ Rn (2.5)

where oi,k represents the kth index of the object oi. Another commonly used distance

metrics is the L1-Norm which is also called City-block or Manhattan distance:

δ(oi, oj) =
n∑
k=0

|oi,l − oj,l| oi, oj ∈ Rn (2.6)

The smaller the distance the higher is the degree of similarity. The generated symmetric

matrix is called distance matrix and has 0s down in its main diagonal because the distance

from each element to itself is 0. Furthermore, there is a relation between the similarity and

distance which allows extraction from each other by transformations. [Bock, 1974] discusses

three common transformations of how to get the distance function δ of the similarity

function σ. The more complex transformation in the opposite direction is explained by

[Steinhausen and Langer, 1977].

There are several methods to clustering data. [Jain et al., 1999] organize the various ap-

proaches based on [Jain and Dubes, 1988] as depicted in figure 2.1. They distinguish be-

tween hierarchical and partitioned approaches in the top level which are discussed in detail
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Figure 2.1: Classification of clustering approaches [Jain et al., 1999]

in the next paragraphs. A broader classification of clustering algorithms in the top level is

done by [Berkhin, 2002]. Next to hierarchical and partitioned approaches, Berkhin addi-

tionally differs between grid-based methods, constraint-based clustering, methods based on

co-occurrence of categorical data, clustering algorithms used in machine learning, scalable

clustering algorithms and algorithms for high dimensional data.

Partitional Clustering

A partitional clustering algorithm divides the data into a pre-assigned number of groups

which is accompanied by the problem of the choice of the number of desired output clusters.

[Dubes, 1987] provides instructions on this key design decision. Besides the number of

desired clusters, an optimum criterion (e.g. variance criterion [Bock, 1974]) has to be

defined. Usually these algorithms create clusters by fulfilling the criterion either locally

or globally. The optimum’s search within the set of all possible clustering assignments is

clearly computationally prohibitive and therefore the algorithm is executed multiple times

with different starting states. The best resulting configuration over all runs is used as the

output cluster. E.g., if {o1, o2, . . . , on} are input data, the partitional clustering algorithm

C tries to assign each element to k clusters {g1, g2, . . . , gk} in a way so that one element

relates to one cluster and one cluster can cover several elements defined as:

C : = {o1, o2, ..., on} → {g1, g2, ..., gk} (2.7)

The most common and frequently used partitional clustering techniques use the squared

error criterion. The squared error for a partition A which contains k clusters is defined as:
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q(A) =
k∑
i=1

∑
xj∈Ai

|xj − x̂Ai |
2 (2.8)

where xj is the jth observation belonging to the ith cluster Ai and x̂Ai is the center of Ai.

The algorithms start with some initial division of the input vectors into a fixed number of

clusters or cluster centers. In the next step each input vector is reassigned to its closest

cluster and the new cluster centers are recomputed. This process is repeated until a

convergence criterion is met (e.g. the cluster membership is stable or the squared error

discontinues decreasing significantly).

The most common partitional clustering algorithm which employs a squared error criterion

is called k-Means. The algorithm starts by creating an initial partition of the input vectors

with k clusters having k randomly-chosen input vectors or defined points inside the hyper

volume as their center. Next, every input vector is assigned to its closest cluster and the

cluster center is moved into the group’s center. It continues reassigning the input vectors

to clusters based on the similarity between the input vectors and the cluster center and re-

computing the cluster center by using the current cluster membership until a convergence

criterion is met. The main problem of k-Mean is the selection of an initial partition. A

badly chosen start partition may converge to a local minimum.

Another sub-class of partitional clustering techniques represents algorithms which use

graph-theoretic methods for clustering which consider the whole input data as a graph.

The similarity between the data usually is expressed by the edges. The most frequently

used graph-theoretic approach is based on the idea of the minimum spanning tree (MST)

which is considered by [Zahn, 1971]. After the construction of the MST the longest edges

are deleted in order to generate clusters. The algorithm is discussed and illustrated by

pseudo code in [Brandes et al., 2003].

The mixture-resolving and mode-seeking clustering techniques assume that the input vec-

tors are drawn from one of several distributions. These algorithms try to identify the

parameters and the number of these distributions. Usually, it is assumed that the dis-

tribution types are known (e.g. Gaussian). Traditional approaches for estimating the

parameters are based on maximizing the likelihood of the parameters for the data which

are discussed in [Bishop, 1995]. A general-purpose maximum likelihood algorithm called

Expectation Maximization (EM) algorithm [Dempster et al., 1977] has been applied to

the problem of parameter estimation.

Hierarchical Clustering

Instead of partitional clustering approaches which obtain a single partition, the hierarchical

clustering algorithms produce a sequence of partitions. Each partition is nested in the
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next higher partition in a way so that the partition in the root covers the whole set of

all observations and the partitions of the lowest level only contain a single observation.

Such hierarchical methods yield a tree of nested groups of observations which can be

graphically represented by a dendrogram. The bigger part of the hierarchical algorithms

uses variants of the single-linkage or complete-linkage methods which both describe the

similarity between a pair of clusters. In the single-linkage method the distance D between

two clusters Ar, As is the minimal distance d between all assigned observations k ∈ Ar,
j ∈ As. The clusters Ar and As of the partition Aν−1 having the nearest neighboring

objects are merged in iteration ν defined as [Bock, 1974]:

DArAs := min
k∈Ar,j∈As

{dkj} = min
i 6=j
{DAi,Aj} =: Dv (2.9)

That means, although having only two sufficient equal objects two clusters are merged.

Relating to the graph-theoretic approaches all information required for the single-linkage

clustering of a set of points can be derived from the minimum spanning tree [J. Gower,

1969]. In the complete-linkage method the distance between two clusters is the maximum

of all distances between the observations in the two clusters. Therefore, the clusters Ar
and As of the partition Aν−1 having smallest maximum distance are merged in iteration

ν.

DArAs := max
k∈Ar,j∈As

{dkj} = min
i 6=j
{DAi,Aj} = Dν (2.10)

Another aspect to classify hierarchical clustering methods is the methodic of creating the

partition tree. The agglomerative clustering algorithms start by placing each observation

in its own cluster and iteratively merge subsets to larger clusters. In contrast to that, a

hierarchical divisive algorithm starts with a coarse cluster which contains all observations

and continues dividing the clusters until the partition contains clusters of only a single

observation.

2.1.2 Dimensionality Reduction

One of the biggest challenges throughout machine learning is the handling of high di-

mensional datasets (set of input vectors). Traditional methods reach their limits partly

because of a high number of observations but mostly because of a huge number of variables

representing them. The number of variables (features) associated with the observation is

called its dimension. The problem which often occurs with high dimensionality is that not

all measured features are as important for representing the observation as others [Fodor,

2002] or include redundancy (features correlate with each other) [Carreira-Perpinan, 1997].

Furthermore, in many cases the underlying data is wanted to be visualized but this is not
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reasonably possible for more than three dimensions 1. Additionally, Dimensionality Re-

duction is a strategy to avoid the ’curse of dimension’ problem [Bellman, 1961]. However,

there are several motives for reducing the dimension of the underlying data.

As discussed in the previous section 2.1.1 clustering algorithms represent input vectors by

assigning them to corresponding clusters. By contrast, dimension reduction techniques

decrease the number of features of the input by a mapping ρ to a fewer dimensional

representation defined as:

ρ : Rn → Rm (m < n) (2.11)

The goal of dimensionality reduction is to reduce the dimensionality of the data while

retaining as much as possible of the information of the data. This is possible by stripping

out the already mentioned redundant information and thus obtaining a more economic

representation of the input. Depending on the domain of the underlying data the dimen-

sionality reduction approaches achieve this reduction by either

� feature selection or

� feature extraction (e.g. transformation and /or combination of feature attributes)

which both are reviewed in [Jain et al., 2000].

The term feature selection refers to algorithms that use the (hopefully) most appropriate

subset of the original features in order to represent the data. If therefore X represents the

set of all original values and Y is the set all desired values feature selection is defined as

[x1, x2, ..., xn]→ [y1, y2, ..., ym] (2.12)

where xi, yi ∈ X and Y ⊂ X. [A. Jain, 1997] presents a taxonomy of feature subset

selection algorithms in broad categories and discusses several approaches in detail.

Methods which perform feature extraction are concerned with the creation of new features

based on transformations or combinations of the original feature set. The algorithms deter-

mine a proper subspace of dimensionality m in the original feature space of dimensionality

n with m < n. The transformation is accomplished either in a linear or nonlinear way.

Principal Component Analysis

The most common linear feature extraction approach is the Principal Component Analysis

(PCA) also referred to Karhunen-Loéve expansion which achieves the reduction by linear
1Some approaches for representing data up to five dimensions are reviewed in the first chapter of [Scott,

1992].
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transformation to a new set of variables called principal components which are orthogonal

linear combinations of the original variables with the largest variance [Scott, 2002]. The

new values are ordered in a way that the first few principal components explain most of the

variance in the data. So the first value is the linear combination with the largest variance,

the second value is orthogonal to the first and represents the second largest variance etc.

The number of calculated principal components is the same as the number of original

values but the first few retain most of the variance, so that the rest can be discarded by

having minimal loss of information.

Multidimensional Scaling

Another linear feature extraction approach is referred to as Multidimensional Scaling

(MDS) [I. Borg, 2005] [Cox and Cox, 2000]. A MDS algorithm pairwise analyses the simi-

larity or dissimilarity data between objects, e.g. inter-correlations, similarity ratings, etc.

It performs a point to point mapping of the observations of the original multidimensional

space Rn to a low dimensional space Rm (usually Euclidean) with m < n in such a way

that the distances between the points of Rm match, as well as possible, the original dis-

similarity. MDS is motivated by the creation of a graphical representation (2d or 3d) of

the underlying data’s structure which is easier to understand than an array of numbers by

only depicting essential information and smoothing out noise in order to uncover hidden

structures. [Kruskal and Wish, 1978] illustrates MDS by an example of use which involves

data from an election study. In a survey [H. Weisberg, 1970] each respondent was asked to

evaluate his perceptions and preferences of several candidates for the U.S. highest office.

In such a case MDS can help locating similarities between the varying evaluations. It sup-

ports discerning identifiable features in the public perceptions by mapping the candidates

(represented by points in a multidimensional space) to a 2-dimensional representation

which provides the hidden structure of the evaluation data (e.g. partnership, ideology).

Suppose the set of points {x1, x2, . . . , xk}, xi ∈ Rn with the symmetric distance matrix

∆ = {δi,j |1 ≤ i, j ≤ k}. MDS attempts to find a set of points {y1, y2, . . . , yk}, yi ∈ Rm

with the symmetric distance matrix D = {di,j |1 ≤ i, j ≤ k} in a way that the distances be-

tween δi,j and di,j are as close as possible according to a corresponding proximity function

f :

dij ≈ f(δij) (2.13)

If f is a continuous parametric monotonic function the MDS approaches are called metric

[Cox and Cox, 2000]. If only the rank-order of the proximities is considered the MDS

methods are called non-metric.

One of the most common metric scaling approaches is referred to as classical scaling. The
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method assumes that the dissimilarities are differences and preserves them by coordinates.

The approach starts by computing the matrix of distances between all points in e.g.

Euclidean space. The eigenvalues λi and associated eigenvectors vi have to be found, where

the eigenvectors are normalized so that vTi vi = λi. The eigenvectors build the orthogonal

low-dimensional basis vectors for a subspace which represents the highest variance.

2.1.3 Artificial Neural Networks and Self-Organizing Maps

Section 2.1.1 already introduces in several clustering approaches. In this section another

extensively used method of clustering is discussed: Artificial neural networks (ANNs).

ANNs are inspired by biological ideas and try to imitate the biological neural networks

[Zurada, 1992] [Ripley, 1996]. A special subtype of ANNs also referred to as Competitive

neural networks [Jain et al., 1996] is often used for clustering data. In contrast to Hebbian

learning [Gurney, 1997] where several output units can be activated simultaneously, in

competitive learning only one output unit is fired in a way that similar input patterns

are grouped and mapped to the same output unit automatically by the network. The

calculation of the similarity between the input patterns is based on the correlation in the

data.

A well-known and widely used example of ANNs represents the Self-Organizing Map which

was introduced by Teuvo Kohonen and therefore also referred to as Kohonen Map [Ko-

honen, 2001]. SOMs perform a mapping from a high dimensional input space to a lower

dimensional output space (usually a 2d lattice) by applying a vector projection in order

to reduce the dimensionality and vector quantization (see equation 2.2) in order to find an

appropriate representation. The dimensionality reduction is done in a topology preserv-

ing way, comparable with Multidimensional Scaling which was discussed in the previous

section. Therefore, the SOM usually is utilized to generate a visual representation of a

data set in order to ease exploring the structure of the underlying high dimensional data.

Similar input data (observations) are represented by a node (also referred to as unit, cell

and codebook vector) which all build up the grid the SOM consists of. The units’ arrange-

ment on the grid reflects the topology of the data so that neighboring units contain more

similar data than the units in the opposing corners.

If a SOM consists of k units and the input vectors are part of the set {v1, v2, . . . , vk}, vi ∈
Rn, each unit is represented by a so called model vector of the set {m1,m2, . . . ,mk}, mi ∈
Rn. The training process of a SOM stepwise adjusts the map in a way that it more

and more optimally describes the domain of observations. The algorithm starts with an

initialization of all model vectors mi (e.g. randomly or with PCA, etc.). During each step

of the training phase a randomly selected input vector vi is assigned to a model vector

mi which is carried by a cell of the lattice. So an input vector is mapped to a unit (best-

matching unit) by assigning the input vector to the model vector which is most similar
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defined as:

mwin = min(|vi −mi|) (2.14)

After each training step all model vectors mi are adapted by the following step [Ritter

and Schulten, 1988] [Kohonen, 1990]:

mnew
i = mold

i + α ∗ hci ∗ (vi −mold
i ) (2.15)

where hci defines the neighborhood function and α specifies the learning rate which should

be a time-decreasing function. The training algorithm of a SOM often ends with a fine-

tuning step, where only all best-matching units are adjusted by employing a low learning

rate after one more presentation of all input vectors.

Several visualization approaches for Self-Organizing Maps have been developed which are

reviewed in [Vesanto, 1999]. The most prominent and widely used method for visualizing

the cluster structure of the SOM depicts the distances between the model vectors of

neighboring units and is called U-Matrix [Ultsch and Siemon, 1990]. Self-Organizing maps

have been applied to a variety of tasks which are listed partly in the SOM Bibliography

[Kaski et al., 1998] [Oja et al., 2003] [Pöllä et al., 2006]. Furthermore, the PlaySOM which

is presented in the next section browses music collections based on a Self-Organizing Map.

2.2 PlaySOM

The increasing number of music libraries offering an ever growing number of tracks on

the World Wide Web stimulated the demand of innovative approaches to let users access

their music, e.g. interactive exploration or similarity based search of audio data. The

PlaySOM [Neumayer et al., 2005] [Dittenbach et al., 2005] is an interface that enables an

interactive exploration of a music collection based on the Self-Organizing Map clustering

approach. The underlying map is organized according to the similarity of the audio signals

based on the Rhythm Patterns or other feature extraction models [Rauber et al., 2003].

The PlaySOM provides facilities for track selection, play list export and audio playback of

selected songs and additionally offers several different visualizations, various approaches

of selecting tracks and export to external players. Furthermore, the PlaySOM extends the

underlying Self-Organizing Map’s operation mode for intuitive exploration, and semantic

zooming. That means, it enables the user to zoom into areas of interest and presents the

user tracks covered in the selected region which can be selected and played back. My own

contribution, the cLynx tool, extends the PlaySOM by features for an acoustic evaluation

of the SOM’s music clustering abilities which additionally enables quick data exploring.
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Figure 2.2: Graphical Interface of the PlaySOM application.

2.2.1 Interface and Interaction

(a) More detailed labeling with high zoom
level.

(b) The path selection model adds tracks of
adjoining units to the play list.

Figure 2.3: Detailed views of the PlaySOM.

The PlaySOM’s GUI, as shown in figure 2.2 can be divided into two main parts. The left

side covers several dialogs presenting an interactive overview of the map, a color palette

displaying the color range of the currently active visualization, the visualization control

for modifying parameters of the currently used visualization and an interactive play list.

The play list interacts with the map and displays all tracks of the map’s selected region.

On its top, several buttons are located to edit, filter or export the list and to play-back

or evaluate the listed tracks. The right side of the application provides the interactive

map which can be displayed using various visualizations [Lidy, 2006] and allows exploring
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the data by moving across the map, zooming into regions of interest and selecting tracks

for play-back. The map is partitioned into squares, each representing a SOM-unit and

offering a different amount of information depending on the zooming level. Figure 2.2

depicts the map at the outmost zooming factor where the cells are labeled which the

number of tracks assigned to the unit. With increasing zooming factor the cells display

more detailed information about the songs, as illustrated in figure 2.3(a).

As already mentioned the play list directly interacts with the map enabling the user to

generate play lists by applying a selection model supported by the PlaySOM. Depending

on the desired genre mixture of tracks in the play list the PlaySOM offers two selection

approaches to the user. The rectangular selection method (see figure 2.2) enables user to

span a rectangular selection area over several units which results in passing all underlying

tracks to the play list. This model enables to generate play lists containing songs from

a special (sub-) genre by the selection of the corresponding cluster region. Figure 2.3(b)

illustrates the second approach, namely the path selection model, used to build up play

lists containing tracks belonging to units which are adjoining a drawn path. By this,

the user can generate a play list which contains tracks expressing the change-over from a

(sub-) genre to another.

2.2.2 Sky-Metaphor Visualization

The PlaySOM offers various visualization methods for a graphically illustration of the SOM

which can be selected and browsed by the user [Lidy, 2006]. A novel visualization technique

added to the PlaySOM represents the so called Sky-Metaphor Visualization [Latif and

Mayer, 2007] which aims to improve the understanding of the underlying data by placing

each observation within its best-matching unit in respect to the distances of adjoining

units. This results in a distributed spatial appearance of the tracks within a unit instead

of locating all songs in the center of the corresponding unit and therefore increases the

user’s understanding of the structure within an unit.

Each song is represented by a lighting star on a black background which should resemble

the starry sky. Regions containing many similar objects may form clusters of stars. By

contrast, empty units only appear black, resembling a starless area in the night sky. Figure

2.4(c) depicts the Sky-Metaphor Visualization of a trained map.

The calculation of a track’s exact spatial coordinates within a unit is based on the distance

information to the closest units. Metaphorically speaking, the attractive forces of the

closest units pull the song in a way that the pull forces of units decrease with increasing

distance. This causes a displacement from the center which is insignificant to farther units,

as illustrated by figure 2.4(a). U1, U2, U3 represent the best, second and third matching

units which usually suffice for the calculation of the spatial coordinates defined as
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(a) Two neighboring forces on an ele-
ment.

(b) Three neighboring forces on an ele-
ment.

(c) Sky Visualization of 20 newsgroup
maps.

Figure 2.4: Sky Visualization and several displacement scenarios. [Latif and Mayer, 2007]

P < x, y >=

〈
λ ∗

k∑
i=2

Fi ∗
1

Ui<x> − U1<x>
, λ ∗

k∑
i=2

Fi ∗
1

Ui<y> − U1<y>

〉
(2.16)

where Fi,Ui<x>,Ui<y> represent the pull force, the x- and y-coordinate of the ith matching

unit and k indicates the number of units which are considered. Usually using U2 and U3

comply with the calculation but in some cases (see figure 2.4(b)) U4 has to be considered.

My own contribution to the PlaySOM, an acoustic evaluation tool called cLynx, collects

the resulting spatial coordinates, which form the basis for the creation of the spatial mix-

down of the Distance Mixer which is discussed in section 3.2.3.

2.3 Control Amplifiers

When listening to several different audio tracks it often seems that the songs strongly vary

in their volume level. Especially tracks of the genres Pop, Rock and Heavy Metal seem to

be very loud in contrast to classical pieces. A reason for this can be found in the difference
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(a) The Compressor decreases high lev-
els.

(b) The Limiter limits the signal to a
defined threshold without influencing
the signal below.

(c) The Expander increases high levels. (d) A Noise Gate suppresses all signals
falling under a defined threshold.

Figure 2.5: Static characteristic of the basic Control Amplifier types [Raffaseder, 2002].

between the most quiet and loudest volume level of an audio signal called the dynamic

range. In order to approximate all volume levels, the dynamic range of each song has to

be adapted.

Control Amplifiers are used in digital audio signal processing in order to amplify an input

signal against the amount of its level. In contrast to other amplifiers they are not based on

definitely but level- and time-dependent varying amplification. According to their varying

functionality [Henle, 2001] distinguishes between:

� Compressor

� Limiter
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� Expander

� Noise-Gate

The relation between the input and output signal for the different amplifiers can be il-

lustrated by the so called static characteristic. Figure 2.5 illustrates the main Control

Amplifier types along with their corresponding characteristic. The dashed lines describe

an amplifier without amplification. Control Amplifiers are used in the following situations:

� Original dynamic is greater than the possible dynamic range of an audio device

� Over-modulation prevention

� Noise suppression

� Making a mix-down2 more powerful and compact

� Sound-design

� Volume increase

2.3.1 Dynamic

Control Amplifiers modify the dynamic of an audio signal. The term dynamic is defined

as the difference between the highest and lowest sound pressure level (SPL) of a signal

also referred to as sound level. The sound level Lp is defined as:

Lp = 20 lg
p

p0
(2.17)

The SPL corresponds to the 20th logarithmic relation of a sound pressure p to a covenant

reference sound pressure p0. The reference pressure p0 nearly defines the human auditory

threshold for a 1000 Hz frequency:

p0 = 2 ∗ 10−5Pa (= 2 ∗ 10−4µbar) (2.18)

Figure 2.6 displays the auditory and pain threshold in dependency of the frequency. Re-

sulting from the difference between the auditory threshold and the pain threshold in the

area of 1 kHz and 2 kHz the human ear is able to sense a maximal dynamic range of about

120 dB to 130 dB.

Regarding the point of dynamic measurement [Dickreiter, 1997] and [Warstat and Goerne,

1994] differ between:

� Original dynamic

� Program dynamic
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Figure 2.6: The human’s audibility limit in decibel in dependency of the frequency [Dick-
reiter, 1997].

Sound Source Dynamic Range

Human voice (no whispering and screaming) 15 dB – 20 dB

Vocal solo (classical music) 40 dB – 50 dB

Bowed instruments 30 dB – 35 dB

woodwinds 30 dB – 35 dB

clarinet 40 dB – 50 dB

brass instrument 40 dB – 50 dB

piano 40 dB – 50 dB

symphonic orchestra

small instrumentation 30 dB – 40 dB

medium instrumentation 40 dB – 50 dB

big instrumentation 50 dB – 70 dB

Table 2.1: Estimated guide values of the dynamic range of the human voice, several classes
of instruments and orchestras.

Original and Program Dynamic

The original dynamic describes the dynamic of the source signal and therefore is provided

by an instrument or the human voice. Table 2.1 illustrates averaging, estimated original

2combination of multiple audio components into a final track
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dynamic values of different sound sources. Although music could cover an enormous

dynamic compared to the human ear in praxis a dynamic of such dimension is confined

to natural bounds and therefore unwanted. [Warstat and Goerne, 1994] describes those

borders based on the following example:

As illustrated in table 2.1 a symphonic orchestra represents a very dynamic sound source

with a dynamic range of about 60 dB between the pianissimo3 and fortissimo4 passages.

This kind of music normally is performed in very quiet environments (concert hall, opera

etc.) which have an averaging background noise in the region of about 20 dB. Under

normal circumstances the sound pressure level in the most quiet parts could be 40 dB and

of the loudest parts 100 dB. So the pianissimo passages are 20 dB above the background

noise and therefore clearly hearable for the visitors of the concert hall.

When recording this dynamic on a portable device and playing it back on the home hi-fi

system you are faced with the following situation: The averaging background noise of an

apartment is in the region of about 40 dB. In order to hear very quiet parts in a comfortable

way those passages should lie 20 dB above the background noise at about 60 dB. Then,

the loudest passages would have a level of 120 dB if the hi-fi system and loud speakers

support that.

The example shows that a great dynamic range could not be utilized by the listener in a

normal every day life situation because pianissimo parts are not hearable and fortissimo

parts are too loud. Therefore, the original dynamic range has to be reduced conveniently so

that it is suitable in the privacy of one’s home. This reduced original dynamic is called the

program dynamic. According to the example above the program dynamic is the dynamic

which is presented to the listener by the hi-fi system. As an extreme case of program

dynamic usually the car stereo is mentioned. The car’s background noise depending on

the velocity and car type is in the region of about 60 dB to 100 dB. In such a case a

program dynamic of 10 dB to 20 dB seems to make sense. In contrast to the situation in

a car a dynamic of up to 90 dB is possible in cinemas.

Table 2.2 presents the technically achievable dynamic on several data storage devices.

This device-related dynamic is called the maximal system dynamic. Both maximal system

dynamic and the above explained natural bounds make a convenient compression of the

original dynamic necessary. This compression could be performed manually by an audio

engineer or automatically by using Control Amplifiers such as Compressors or Limiters.

2.3.2 Compressor

A Compressor is a Control Amplifier, which reduces the original dynamic to a predefined

program dynamic. As described in section 2.3.1 the compression of the dynamic of the
3Pianissimo or pp- means very quiet parts of a piece of music.
4Fortissimo or ff- means very loud parts of a piece of music.
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Audio Device Dynamic range

Professional analog Mixer > 90

Analog tape 60 dB

UKW radio 66 dB

Gramophone record 61 dB

Video Home System (VHS) 55 dB

Audio CD and DVD 90 dB

Table 2.2: Dynamic range of several studio devices.

original signal is necessary because of several reasons. To achieve a dynamic reduction

the level carefully has to be re-adjusted by a sound engineer or electronic device when the

volume changes. According to this a Compressor can be seen as an automatic control,

which starts its action when a signal exceeds a defined threshold. When an input signal

exceeds the threshold it is attenuated by the Compressor. The dimension of attenuation is

controlled by a parameter called compression ratio. [Henle, 2001] describes this parameter

using the following example:

When a signal exceeds a defined threshold the Compressor reduces the signal using a

fixed compression ratio. A compression ratio of 4:1 means that a 4 dB increase of the

input signal only causes a 1 dB increase for the output. For signals which do not reach the

threshold the Compressor uses a compression rate of 1:1 which does not cause a reduction.

Figure 2.7 graphically illustrates the operating mode of the compression ratio using a

threshold of -20 dB. If the compression ratio is increased to about 20:1 the Compressor is

called a Limiter. An output signal nearly never exceeds the threshold of a Limiter. For

strict mathematical purpose a Limiter must have a compression ratio of ∞:1 to do that

but in praxis the use of a ratio of about 20:1 creates satisfying results. Therefore, when

increasing the compression ratio ρ you can differ between several kinds of Compressors:

Compressor: ρ =]1, 9] : 1

Limiter: ρ = [10, 90] : 1

Clipper: ρ = [91, 100) : 1

Two other important parameters of a Compressor are represented by the attack- and

release time. They define the time a Compressor needs to take effect after a signal exceeded

or fell under the threshold. The attack time defines the time the Compressor has for a

stepwise increase of the compression till the full compression ratio is reached. In contrast

to the attack time the release time defines the time a Compressor has for a stepwise

reduction of the compression till the compression has no further effect. A too short attack

time causes disturbing clicking noise because nearly every time the signal exceeds the
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1,5:1

2:1

3:1

1:1

Figure 2.7: Several compression ratios and their effect to the output signal.

threshold the maximal compression takes effect. Therefore, the attack time should be

defined in the dimension of covering several periods of the basic oscillation. Also the

release time should not be defined too short. If so every fall under the threshold would

immediately lead back to the original signal. [Henle, 2001] suggests an attack time of 50 ms

to 100 ms for a low tonic keynote and 10 ms to 50 ms for a high tonic keynote. The release

time in general should be defined at minimum 200 ms.

The compression of the sum of signals (recorded music) as performed by the cLynx tool

happens in the same way as the compression of a single instrument. A smooth constant

compression is advised by [Henle, 2001] using a compression ratio of 2:1, an attack time of

50 ms to 70 ms and a release time of 200 ms. In order to work against one sided compres-

sion of stereo signals, two identical Compressors are needed, which additionally interact

together. Otherwise, the use of a Compressor could result in balance displacement.

In many cases the input signal is filtered in order to compress only specified parts of the

signal. This is called frequency dependent compression as the compression is not equal for

every frequency. Such frequency dependent Compressors and Limiters are better known

as DeEsser or Multiband-Compressor.
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2.3.3 Limiter

A Limiter works in the same way as a Compressor. It has the same parameters but a

compression ratio of at least 10:1. So the Limiter sets all values exceeding the threshold to

the threshold level. Therefore, a Limiter is used in situations where a level is not allowed

to exceed a defined threshold. E.g., such a situation is the digital recording which becomes

damaged when exceeding the maximal possible oscillation. Additionally, it seems to be

clear that the attack- and release time should be chosen very small.

2.3.4 Expander

The Expander represents the direct opposite of the Compressor. While the Compressor

makes low levels subjectively louder by reducing high levels, the Expander sinks low levels.

As soon as the level of a signal falls under a defined threshold it is reduced using a fixed

ratio. Because signals with low levels are reduced stronger the dynamic of the output

expands. The ratio normally is in the region of 1:2 to 1:8. Like the Compressor the

Expander can define the time parameters attack and release time.

2.3.5 Gates

A Gate is a special kind of Expander with a high ratio of 1:10, 1:20 and more. That

high ratio causes that a signal which falls under the threshold is completely suppressed.

Gates are used to hide noise and disturbing signals. Therefore, Gates are often called

Noise Gates as well. In analogy to the Expander the Noise Gate defines all important

parameters such as ratio, attack and release time.

2.4 Evaluation of Acoustic Similarity

The increasing availability of music libraries requires new ways to interactively let users

explore music repositories. The concept of detecting similar tracks raised its importance as

an aid for easy navigation and instant retrieval. Systems which are based on this concept,

namely Music Similarity Systems , assist the user in finding new music that is musically

most similar to a defined query song according to a defined similarity measure. Several

approaches of similarity measures have been published, e.g. [Foote, 1997], [Pampalk et al.,

2002], [Tzanetakis et al., 2001], all containing performance results of disparate evaluation

processes. However, the evaluation of such methods is difficult because [Pampalk, 2006]:

� most implementations are not freely available

� copyright restrictions do not allow sharing the audio data used for the evaluation

� the use of different music data sets produces incomparable results
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which increased the demand of a standardized evaluation within the Music Information

Retrieval (MIR) community.

This section is focused on human evaluation processes of Music Similarity Systems which

are an especially difficult task, because acoustic music evaluation inherently is biased by

subjective cognition, interpretation and reasoning which usually is based on knowledge and

conventions of the real world. Furthermore, psycho-acoustic research has found out that

parameters like tempo and genre information have major impact to similarity judgments

[Cupchik et al., 1982].

2.4.1 MIREX

In recent years there has been a strong effort to standardize evaluations within the MIR

community. Therefore, various evaluation contests have been arranged within several

International Conferences on Music Information Retrieval (ISMIR5) since ISMIR 2004.

During the 6th ISMIR Conference in 2005 (London) the 1st dedicated evaluation project,

called Music Information Retrieval Evaluation eXchange (MIREX), was conducted which

aims at comparing state-of-the-art algorithms and systems relevant for Music Information

Retrieval. All evaluation tasks and results of all MIREX contests are published on the

MIREX website6. In 2007, MIREX attempted a large scale music similarity evaluation

as part of two of its tasks for the first time which primarily relied on human judgment to

rank the various systems. Furthermore, a correlation between objective measures based

on genre and artist classification and the human evaluations has been detected.

The contribution of Stephen J. Downie’s IMIRSEL lab to the subjective evaluation of the

MIREX 2006 called Evalutron 6000 (E6K) is discussed in [Gruzd et al., 2007]. E6K is

a web-based system which supported human judges in evaluating algorithms submitted

to the ’Audio Music Similarity and Retrieval’ and ’Symbolic Melodic Similarity’ tasks by

logging their measuring of similarity sensation according to query-candidate pairs through

interaction dialogs. Each query and candidate song was divided into three parts covering

the first, middle and last 30 seconds of every track. Clicking one of the buttons displayed in

figure 2.8(a) started playback of the selected song part. After being aware of the song pair

the participants were asked to rate similarity by a coarse score (Not Similar, Somewhat

Similar and Very Similar) using the dialog depicted in figure 2.8(c). Additionally, a fine

score - a number between 0.0 (Least similar) and 10.0 (Most similar) - had to be specified

using the dialog of figure 2.8(b). For MIREX 2006 E6K collected all user-interactions with

the system which consisted of 69.745 judgments. While E2K forced the subjects to listen

to the results song per song, the cLynx evaluation tool presented in this thesis also enables

5ISMIR is derived from International Symposium on Music Information Retrieval which was redefined

to International Conference on Music Information Retrieval between ISMIR 2001 and ISMIR 2002.
6MIREX web page is available at http://www.music-ir.org/mirexwiki/index.php
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(a) Several play buttons for the query
song.

(b) Coarse category selection buttons.

(c) Fine score selection scale.

Figure 2.8: Evalutron 6000 GUI components (source: MIREX web page).

the playback of all result songs simultaneously or sequentially with different emphasis.

2.4.2 Subjective Evaluations

Several user studies have been carried out by individual research groups in order to evaluate

similarity measures. Besides evaluating the system’s usability, which is based on the

efficiency a user performed a given task and partly on questionnaires, humans were invited

to evaluate the similarity measure of several systems. All evaluations which are discussed

in the following paragraphs were accomplished by listening tests.

A simple evaluation involving only two human evaluators is documented in [Logan and

Salomon, 2001]. Logan and Salomon presented several play lists of 20 tracks generated

from their system by using one query song to two independent respondents, each being

asked to rate every track in the play lists as ’similar’ or ’not similar’ to the query song.

The test revealed a high agreement between the users by only rating 12% of the songs

differently. The results of [Pampalk, 2006] confirm this consistency between listeners.

Through comparing the average number of similar songs for the first 5, 10 and 20 songs

to random results showed that their measurement works significantly better.

Another similar subjective evaluation is published in [Aucouturier and Pachet, 2002].

While Logan and Salomon only involved 2 users for their evaluation, Aucouturier and

Pachet conducted the study with 10 users from their lab. Each user was presented a seed

song S and two test songs A and B. The test songs were chosen in a way that the distance

SA calculated by their similarity measure was greater than the distance SB. The users

had to rate the similarity of both test songs to the seed song and agreed in 80% with the

ordering of the similarity measure.



2.5. SUMMARY 27

In the listening test of [Allamanche et al., 2003] a similarity measure was compared to

random. 20 target songs were selected randomly and their five most similar tracks and

their worst similar track were computed. Additionally to these six songs a randomly

chosen track was presented to 10 participants which had to rate the similarity of each

song to its corresponding seed. The test pointed out that their similarity measure works

better than random.

Vignoli and Pauws published an application based evaluation [Vignoli and Pauws, 2005] in

which they tried to reason the usability of their system and the performance of their sim-

ilarity measure in comparison to two control systems. A task was given to 22 participants

who had to perform a task on each system. The participants’ job consisted of creating an

appropriate play list according to a defined everyday life situation by using the systems.

They detected that more explorative users were able to create better play lists in less time

and less effort when using their system.

2.5 Summary

This chapter introduced unsupervised learning techniques relevant for music segmentation.

Besides different approaches for dividing a set of observations into a specified or unspec-

ified number of groups based on various similarity measures, some dimension reduction

methods are explained, which decrease the dimensionality of data while retaining as much

as possible of the data’s information. Both techniques are applied to an Artificial Neural

Network approach, called Self-Organizing Map, which is used by the application PlaySOM

in order to structure the underlying music collection. Because the major difficulty of eval-

uating systems, which perform music organization on the basis of similarities measures,

results from the individuality of human cognition, it makes sense to evaluate the quality

of such applications based on listening tests. It is important to present a meaningful and

clear mix-down to the subjects, which is obtained by applying Control Amplifiers, which

combine the reduction of the dynamic range and the smoothing of the dynamic of audio

signals. Based on the components of this chapter the cLynx tool assists users in judging

music similarity and is presented in the next chapter.
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In this chapter the cLynx application is discussed which was implemented in the course of

this thesis. cLynx aims at supporting users in acoustic evaluations of audio-based music

similarity measures. The application offers the evaluators several different approaches

for accessing the underlying data of similarity systems in order to help them discovering,

analyzing and evaluating cluster structures of audio data much faster and more efficiently.

Several different types of mixers assist the evaluators in exploring the data in order to

get a meaningful overview of the underlying data’s structure which allows them to detect

whether a region consists of homogeneous or heterogeneous data and also whether it

contains outliers.

29
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3.1 Overview

The cLynx tool is provided as the package clynx.jar implemented in Java version 6.0 but

also available for Java version 5.0. It provides techniques for acoustically evaluating cluster

structures. To ease listening to the sound for the evaluator the package additionally offers

three different methods for analyzing and three different methods for normalizing the audio

content besides the currently five different methods of mixing the audio signals to a single

output stream. These three steps define the three encapsulated main parts the itinerary

of cLynx is divided in:

� Analysis

� Normalization

� Mixing

These parts are documented in more detail in section 3.2.

Section 3.3 presents different modes the application can be executed in, which for instance

are defined by the execution command passed to the console. For an easier execution

example start files for Linux and Windows systems are stored in the application directory

which start cLynx in one of the two possible Stand-Alone Modes (see section 3.3.1). For

developers of Music Information Retrieval (MIR) systems an interface is specified which

allows them to integrate the plug-in version of the application into their system, described

in section 3.3.4.

First of all the itinerary including the three main parts of the application is discussed in

detail, followed by an explanation of the different modes in which cLynx can be started.

3.2 Components

Depending on the run-time mode cLynx is executed in, cLynx’s application flow comprises

of three to four main steps which are depicted in figure 3.1. Apart from the Stand-Alone

Console Mode which is explained in section 3.3.2 the applications flow consists of the steps:

Analysis, Normalization, Mixing.

If cLynx extends an external application as plug-in all required parameters are passed

from the underlying system. In the Stand-Alone GUI Mode all parameters are defined by

user interaction through several dialogs. Therefore, these run-time modes do not require

a validation of the input parameters, but directly start in step two, the analysis. If

cLynx is executed in the Stand-Alone Console Mode the required parameters must be

passed through a properties file which is processed in the first step Input Validation. The

parameters of the properties file are listed in table A.1. As depicted in figure 3.1 cLynx

in this mode can only reach step two when passing the validation step.
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Figure 3.1: cLynx’s itinerary: Depending on cLynx’s run-time mode the application flow
consists of three or four steps.

The Analysis step entirely processes all passed sound files and calculates depending on the

signals’ sample values a global upper and lower boundary value for all. The calculation of

these boundaries differs between the various kinds of analysis components and is discussed

in section 3.2.1. Therefore, an analysis component has to be defined from the user before

the execution of the application. As shown in figure 3.1 the global boundary values are

passed to the succeeding step Normalization which is explained in detail in section 3.2.2

The passed set of audio files usually contains tracks of several genres in varying record

quality which results in strongly differing volume levels between the tracks. Therefore, all

signals are normalized. The normalization process tries to reduce the dynamic range of all

signals in order to get nearly equal volume levels for all pieces of music. In contrast to the

analysis step the normalization component is not a secluded process, but directly interacts

with the mixer process. All samples are normalized in run-time directly before they are



32 CHAPTER 3. CLYNX

sent through the mixer to the output device. This permits changing several normalization

parameters in run-time.

The Mixer step represents the core of the application. As displayed in figure 3.1 the mixer

process multiplexes all normalized sample values to one single output stream. Because

cLynx is designed for empirical evaluation and the human sense individually differs several

mixers are implemented which take this issue from three different angles, as explained in

section 3.2.3.

According to the application flow in this section the analysis component is explained first,

followed by the normalization process. In the last subsection the mixer component is

discussed.

3.2.1 Analysis Component

The analysis component represents the most important precondition for presenting a

proper and clear output signal to the listener for his acoustic evaluation. Only a well

mastered composition of the multiple input signals which additionally takes into account

the structure of all other audio tracks can ensure an effective and fast evaluation. While

the mastering process is performed by the normalization component the analysis process

is responsible for the calculation of the required values for the normalization, an upper

and lower sample value indicator called the global upper and lower boundary. The global

boundaries define the range of the program dynamic the original dynamic of the signals

is mapped to by the normalization process, as discussed in section 2.3.1. The basic values

for the global boundary calculation represent the so called description values. One set of

description values characterizes the sample structure of a single audio signal and contains

the following values:

� Minimal Sample Value

� Maximal Sample Value

� Arithmetic Mean Value

� Root Mean Square Value

� Standard Deviation Value

In order to compute a set of description values an audio file has to be processed entirely

which is a quite time-expensive task. E.g., a 16 Bit, stereo PCM signal of 1 MB contains

about 106 Byte data. One sample value needs 2 Bytes to be stored which furthermore

means that the given signal is represented by 500.000 samples which have to be processed

by the analysis component. If then Si is the set of all samples of a file i and Θi is its set of

description values the minimal sample value Θi,min and the maximal sample value Θi,max

are defined as:
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Θi,min = min(Si) (3.1)

Θi,max = max(Si) (3.2)

If Si contains n elements s the arithmetic mean value Θi,µ and the root mean square value

Θi,rms are defined as:

Θi,µ =
1
n

n∑
k=1

sk s1, ...sn ∈ Si (3.3)

Θi,rms =

√√√√ 1
n

n∑
k=1

s2
k s1, ...sn ∈ Si (3.4)

In order to have a measure of the distribution of the samples within the given signal the

standard deviation Θi,σ is calculated by using the arithmetic mean, defined as:

Θi,σ =

√√√√ 1
n

n∑
k=1

(sk −Θi,µ)2 s1, ...sn ∈ Si (3.5)

Especially the calculation of the standard deviation is very time-expensive because σ can

only be calculated in processing the signal twice because the mean value is needed for its

calculation which is computed in the first run together with the min/max values. The

description value set Θ of every file is stored in the application until its next execution in

order to save time when one audio signal occurs several times during the evaluation.

To accelerate the analysis process parallel analysis of the signals is supported but only

available in the Stand-Alone Console Mode because tests pointed out that analyzing more

than three audio files in parallel often leads to a Java Heap Exception. Another approach

to raise the computational performance of the analysis component deals with calculating

the set of description values from only a predefined number of sections of an audio file,

which is discussed in section 4.2.

The audio signals’ sets of description values build the basis for the calculation of a global

upper and lower boundary. Depending on the kind of analysis component the calculation

of the global boundaries is different as discussed in detail in the next paragraphs. The

resulting boundary values are passed to the next step, the normalization component.

MinMax Analyzer

As the name already indicates the minimal sample values Θmin and maximal sample values

Θmax of all audio signals represent the basis for the calculation of the global upper and



34 CHAPTER 3. CLYNX

lower boundary for the MinMax Analyzer. Because it is unwanted to expand the dynamic

range of not even one signal, as explained in section 3.2.2, the global upper boundary is

represented by the minimal Θmax and the global lower boundary by the maximal Θmin of

all audio signals. If then Btop is the global upper boundary and Bbot is the lower boundary

they are defined as:

Btop ← min(Θmax) (3.6)

Bbot ← max(Θmin) (3.7)

Statistical Analyzer

The Statistical Analyzer uses the statistical values of the description sets to calculate

a global upper and lower boundary. It calculates the boundaries either by using the

arithmetic mean or the root mean square. Therefore, for every sound file i a temporary

upper boundary value is defined, e.g. for the arithmetic mean case as maxi = Θi,µ + Θi,σ

and a temporary lower boundary value as mini = Θi,µ−Θi,σ. If then Mtop is the set of all

temporary upper boundary values maxi and Mbot the set of all temporary lower boundary

values mini the global upper boundary Btop and global lower boundary Bbot are defined

as:

Btop ← min(Mtop) (3.8)

Bbot ← max(Mbot) (3.9)

3.2.2 Normalization Component

When listening to several different audio tracks it often seems that the signals strongly

differ in their volume. Especially tracks of the genres Pop, Rock and Heavy Metal seem to

be very loud in contrast to classical tracks. A reason for this can be found in the difference

between the most quiet and loudest volume level of an audio signal called the dynamic

range which measures the original dynamic of an audio signal as discussed in section 2.3.1.

Therefore, the dynamic range ∆orig of the signal i is defined as:

∆i,orig = [Θi,min,Θi,max] (3.10)

For example, tracks of the genre Heavy Metal normally have a very small dynamic range

because most of the Heavy Metal tracks start with high volume and continue with that

volume level until the end. In contrast to that a classical piece of music has a very high

dynamic range because it often contains very quiet parts followed by acutely loud parts.

That is why a classical track often is called high dynamical as well in contrast to a Heavy
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Metal piece of music which is often defined as low dynamical. Imagine playing a metal track

followed by a classical track. When the main volume control was reduced because of the

loud metal track the quiet parts of the succeeding classical track will become inaudible. To

take a step forward, imagine the same scenario using parallel audio playback. In that case

the Heavy Metal signal usually will be so dominant that nearly the whole classical piece of

sound will not be hearable. To avoid that problem all signals are normalized before they

are mixed to one single output signal in the mixer component. The normalization process

tries to combine the reduction of the dynamic range and the smoothing of the dynamic

which is explained in section 2.3.1. Only when the dynamic range and the dynamic of all

audio signals are nearly equal the volume will not strongly differ. Therefore, during the

normalization process N the volume level of every single audio signal is modified in a way,

so that all resulting signals nearly have the same volume level. That means, the signals’

original dynamic is transformed to a program dynamic (see section 2.3.1). The range of

the program dynamic ∆prog is equal for all signals and is defined as:

∆prog = [Bbot, Btop] (3.11)

Bbot and Btop define the global upper and lower boundaries and were calculated by the

analysis component which is explained in section 3.2.1 in order to do that transformation

every sample value s from the original dynamic space is mapped to a value snorm of the

program dynamic space, defined as:

N(s) = snorm (3.12)

According to the type of the selected normalization component N the sample value s is

mapped in a linear or dynamic way. Currently, a Linear Amplitude Normalizer and a

Compressor are implemented and described in the following paragraphs. The extension

to new additional normalizations is easily enabled. After the successful normalization all

snorm values are passed to the mixer step.

Linear Amplitude Normalization

The Linear Amplitude Normalization modifies an audio signal by scaling the current sam-

ple value s proportional to the ratio of the range of the program dynamic to the range of

its original dynamic. If then Si specifies the set of all sample values of an audio signal i

and Btop and Bbot define the upper and lower bounds of the program dynamic snorm is

defined as:

snorm ←
Btop −Bbot

Θi,max −Θi,min
∗ s s ∈ Si (3.13)
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Figure 3.2: Linear mapping of a Linear Amplitude Normalization which maps the sample
values of a signal with a dynamic range of [2.8e4,−2.8e4] into the range [1.4e4,−1.4e4].

As the name already describes Linear Amplitude Normalization performs a linear mapping

of the sample values which means that very loud values are normalized in the same way

as quiet values. It maps the whole signal into the defined range [Bbot, Btop] resulting in

the equal dynamic range for every normalized audio signal. Therefore, the linear mapping

causes a modification of the range of the signal’s dynamic but does not modify the dynamic

itself. If {s1, s2, . . . , sn}, sj ∈ S is the set of all sample values of an audio signal the ratio

of every sample sj to its proximate sample sj+1 does not change:

sj
sj+1

=
snorm,j
snorm,j+1

(3.14)

Figure 3.2 describes the scenario of the Linear Amplitude Normalization graphically for a

signal with a original dynamic range ∆orig = [2.8e4,−2.8e4] which is mapped to a program

dynamic with a range ∆prog = [1.4e4,−1.4e4].
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Compressor

The Compressor performs a nonlinear mapping of a signal from its original dynamic space

to a defined program dynamic space. In contrast to the Linear Amplitude Normalization

a Compressor additionally not only takes the dynamic range but also the dynamic of an

audio signal in account. As discussed in the previous paragraph the Linear Amplitude

Normalization reduces the dynamic range while not changing the dynamic (see section

2.3.1) of the signal. In order to improve the listening comfort for the evaluator, the

dynamic of every single audio signal must be adjusted. As described in section 2.3.2 a

Compressor only maps samples of a signal to the program dynamic space which match a

defined precondition. When a sample value is outside the range of the program dynamic

∆prog the sample value, which exceeds the threshold, is modified by using a so called

compression ratio ρ. Therefore, the normalized value snorm of the sample s is defined as:

snorm ← Btop + ρ ∗ |Btop − s| s > Btop (3.15)

snorm ← Bbot − ρ ∗ |Bbot − s| s < Bbot (3.16)

snorm ← s s ∈ ∆prog (3.17)

In order to suppress that the Compressor takes effect by using the full compression ratio

after a sample exceeded or fell under the boundaries a time parameter is included called

attack time which is discussed in more detail in section 2.3.2. The attack time defines the

time the Compressor has for a stepwise increase of the compression till the full compression

ratio is reached. In contrast to the attack time another parameter is specified called release

time which defines the time a Compressor has for a stepwise reduction of the compression

till the compression has no further effect which is applied when an exceeded sample value

is followed by an value which lies in the range ∆prog. If then t specifies the time the

samples lie outside the given range ∆prog the normalized sample value snorm is defined as:

snorm ← Btop + ρ ∗min
(

t

tattack
, 1
)
∗ |Btop − s| s > Btop (3.18)

snorm ← Bbot − ρ ∗min
(

t

tattack
, 1
)
∗ |Bbot − s| s < Bbot (3.19)

(3.20)

The Compressor performs a nonlinear mapping which results in an approximation of all

samples s /∈ ∆prog to the boundaries Btop and Bbot proportional to the defined ratio ρ.

Therefore, the range of the program dynamic of every single audio signal is usually unequal

to the others but within an acceptable range. If Si and Sj are the sets of all samples of

the audio signals i and j the maximal difference δ between the upper boundaries of ∆i,prog

and ∆j,prog is defined as:
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δ ← ρ ∗ |Θi,max −Θj,max| (3.21)

This illustrates that the divergence of the dynamic ranges is only influenced by ρ. De-

pending upon the increase of the ratio the divergence decreases.

In contrast to the Linear Amplitude Normalization the Compressor’s nonlinear mapping

additionally reduces the dynamic of the audio signal. Because it modifies the signal by

reducing only sample values which are outside the range of ∆prog, the ratio of every sample

value sj to its proximate sample value sj+1 might have changed after the compression

process:

sj
sj+1

6= snorm,j
snorm,j+1

(3.22)

Therefore, a Compressor using a small range [Bbot, Btop] but high ratio (e.g. 1 : 100) could

modify a high dynamical signal to a low dynamical signal. While the Linear Amplitude

Normalization reduces the volume level of quiet parts in the same way as loud parts the

Compressor only reduces the volume level of loud parts which makes quiet parts become

more present.

3.2.3 Mixer Component

The mixer component represents the core of cLynx. It mixes all passed audio signals and

multiplexes them to one single output signal. The mixer process is responsible to present

the listener a clear and significant mix-down of all audio files which are part of the current

empirical evaluation in a way that the user is able to create an acoustic association of a

specified area in a cluster structure. According to the individuality of the human auditory

sense and the differences in the person’s ability of absorbing and filtering information

several different mixer components are implemented. The mixer step tackles the issue

from three different angles:

� sequential playback

� parallel playback

� playback using 2D information

Depending on the kind of mixer component the playback time, the comfort of hearing, the

degree of concentration, the time to recognize all audio tracks etc. may differ. Maybe some

mixer processes will allow evaluation over several hours while others will force the listener

to pause the evaluation due increasing lack of concentration after already few minutes. All

these facts are highly depending on the human individuality of the listeners. In section
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4.3 an evaluation of the cLynx’s applicability is presented which especially is focused on

the individuality of the human sense.

After the mixer component has mixed the audio tracks the resulting signal is sent to the

output device of the computer. A Clipper which is explained in section 2.3.2 is directly

placed before sending the signal to the output device in order to avoid over-modulation of

the output signal.

In the first part of this section two mixers are presented which follow the approach of

sequential playback followed by two mixers which use parallel playback. In the last part a

special kind of parallel mixer is discussed which presents the user a kind of spatial acoustic

representation of the audio signals based on 2-dimensional spatial information.

Static Sequential Mixer

durat ion :=3.0
fadeTime :=0.4
cur rent :=0

while s i z e (Φ)>0 do {
while durat ion has not exp i red do {

// b u f f e r co nta ins in format ion f o r a l l channe ls
outputBuf fer := read (Φcurrent )
// sends the streamed data to the output d e v i c e
sendToDevice ( outputBuf fer )

}

while fadeTime has not exp i r ed do {
// b u f f e r co nta ins the c r o s s faded data
outputBuf fer := c r o s s o v e r ( read (Φcurrent ) , read (Φcurrent+1 ) )
sendToDevice ( outputBuf fer )

}

// removes a l l f i n i s h e d streams from Φ
cleanUp (Φ)

cur rent := nextIndex ( )
}

Listing 3.1: The example illustrates how the Static Sequential Mixer works.
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The Static Sequential Mixer merges all input signals sequentially into one single output

signal. Every audio signal is played back alone on every available channel for a specified

number of seconds defined by the duration parameter followed by another signal. The

cross-over from one track to its successer can be performed by a soft or hard changeover

which can be specified through the parameter fadeTime in seconds. The smaller fadeTime,

the shorter the cross-over and the faster the proximate track is faded in. A fadeTime of

0 seconds disables the cross-over effect which results in immediately switching to the next

track which often is conducted with a clicking noise.

Furthermore, the Static Sequential Mixer provides the best comfort of hearing because the

listener is only faced with one single track. It can be assumed that the user is able to do

the evaluation task by using that kind of mixer for quite a long time because he does not

need to be highly concentrated to recognize the currently played back sound. However,

the time the mixer needs in order to have played back every track at least once is very

high compared to a parallel playback scenario.

Listing 3.1 presents in pseudo code the function of the Static Sequential Mixer. The

duration and fadeTime parameters are initialized with 3.0 and 0.4 seconds. The array

Φ contains all audio signals which are passed to the application. As long as Φ contains

signals the playback is performed. In the first step the function read() reads a defined

number of samples of the current element of Φ to a buffer called outputBuffer. After the

reading process outputBuffer contains the data of all channels of one single track and sends

this data to the output device by applying the function sendToDevice(). This procedure

is repeated until the duration expires. Before playing back the next track a cross fade is

performed by applying the function crossover(). The passed parameters are the read data

of the current and succeeding track which again is done by the function read(). A further

invocation of the function sendToDevice() sends the mixed data to the computer’s output

device. This procedure is repeated until fadeTime expires. After the function cleanUp()

has removed all finished tracks from the array Φ and the control variable current was

updated with the index of the next track the outer while-loop starts from the beginning.

Dynamic Sequential Mixer

The Dynamic Sequential Mixer creates an output signal by passing different input signals

to the channels. That means, every channel contains a different audio signal in run-time

which requires a conversion of all tracks to mono. The Dynamic Sequential Mixer enables

a first kind of hearing tracks in parallel because the same number of tracks as channels are

available is hearable. Nevertheless, it is ranked to the Sequential Mixer segment due its

sequential playback for every channel. Figure 3.3 illustrates how the Dynamic Sequential

Mixer works. After track T1 was played back on the first channel and track T2 was played

back on the second channel for a defined number of seconds (duration parameter), T2 is
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Channel 1 Channel 2
T1 T2

T3

T4

T5T6

T7

T8

Figure 3.3: The Dynamic Sequential Mixer plays back one track per channel.

switched to channel1 and T3 to channel2. The changeover from T2 to the first channel,

T3 to the second channel and the removing of T1 is performed by using fading techniques

which have the following effects on the channels:

� channel1: T1 is faded out. The time for the fade-out is defined by fadeTime. Addi-

tionally, T2 is faded in which takes fadeTime seconds.

� channel2: T2 is faded out and T3 is faded in which both is performed in fadeTime

seconds.

In contrast to the Static Sequential Mixer the time t the mixer needs in order to have

played back every track at least once is shorter for the Dynamic Mixer. If tssm defines the

time a Static Sequential Mixer needs to perform the full playback of all passed files and

the parameter channels defines the number of active channels the time tdsm variable for

full playback of the Dynamic Sequential Mixer is specified as:

tdsm =
tssm

channels
(3.23)

Although the listener is faced with the same number of tracks within a shorter time which

forces a higher degree of concentration a loss of overview of the currently played back
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tracks is not mandatory. It is still possible to recognize all currently active audio signals;

even their lyrics can be identified. To ensure that an accurate normalization is necessary

to minimize the possibility that one track drowns all others out.

durat ion :=3.0
fadeTime :=0.4
cur rent :=0
channe l s :=2

while s i z e (Φ)>0 do {
while durat ion has not exp i red do

{
for i =0: channe l s {

// reads the data f o r a s i n g l e channel
outputBuf fer [ i ] := read (Φcurrent+i )

}
// sends the streamed data to the output d e v i c e
sendToDevice ( outputBuf fer )

}

while fadeTime has not exp i r ed do {
for i =0: channe l s {

// reads the data f o r a s i n g l e channel
outputBuf fer [ i ] := c r o s s o v e r ( read (Φcurrent+i ) , read (Φcurrent+i+1 ) )

}
sendToDevice ( outputBuf fer )

}

// removes a l l f i n i s h e d streams from Φ
cleanUp (Φ)

cur rent := nextIndex ( )
}

Listing 3.2: Pseudo code for the Dynamic Sequential Mixer.

Listing 3.2 shows the function of the Dynamic Sequential Mixer. In contrast to the function

of the Static Sequential Mixer which is explained in listing 3.1 the buffer outputBuffer

represents an array of buffers. Every index specifies the data for one channel. The variables

Φ, duration and fadeTime and the functions read(), crossover(), cleanUp() and nextIndex()
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work in the same way as explained with listing 3.1. In the first step, a defined number

of samples is read from different tracks for every channels. The index of the outputBuffer

the data is stored to specifies the channel the data is sent to by applying the function

sendToDevice(). This procedure is repeated until duration expires. In the next step, a

cross fade is performed for every channel in the same way as described above: the mixed

samples are sent to the output device. This procedure is repeated until fadeTime expires.

After the clean up task and the update of the control variable current the process starts

repeating the outer while loop.

Static Parallel Mixer

while s i z e (Φ)>0 do {
// removes a l l data from the output b u f f e r
r e s e t ( outputBuf fer )

for cur rent =0: s i z e (Φ) {
// b u f f e r co nta ins in format ion f o r every channel
outputBuf fer := outputBuf fer+read (Φcurrent )

}

// sends the streamed data to the output d e v i c e
sendToDevice ( outputBuf fer )

// removes a l l f i n i s h e d streams from Φ
cleanUp (Φ)

}

Listing 3.3: The example shows how a Static Parallel Mixer works. It plays back all audio
files simultaneously.

The Static Parallel Mixer creates an output signal by mixing all input signals simultane-

ously. Every audio signal is played back on all channels together with all other signals.

Beyond doubt the Static Parallel Mixer represents one of the fastest mixers according to

playback time which results in demanding a high degree of concentration of the listeners.

Therefore, a long and continued use over hours seems to be impossible due to mental fa-

tigue. Although it may be impossible to recognize single tracks, the mixer can give a quick

and rough overview of the audio tracks in a defined area within a cluster structure. The

quality of the overview, of course, depends on the underlying structure of data points. In
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highly heterogeneous areas the Static Parallel Mixer’s expressiveness is limited, because

the mixed signal contains such a huge number of tracks of different genres that the eval-

uator is not able to filter the information. In low heterogeneous or nearly homogeneous

areas the Static Parallel Mixer can help the listener in quickly detecting tracks which do

not fit to the others (outliers). E.g., a selected area contains 15 tracks, 13 classical and

two Heavy Metal pieces. For such a structure the Static Parallel Mixer seems to be the

best tool for a fast outlier detection. In contrast to that the outlier detection within a

structure of 15 tracks which only contains 2 classical but 13 Heavy Metal pieces is nearly

impossible. Therefore, the application of the Static Parallel Mixer near clusters could give

the listener an appropriate overview of the underlying data within a short time.

Listing’s 3.3 pseudo code explains how the Static Parallel Mixer performs the mix-down.

All variables and functions used except reset() are explained together with listing 3.1. The

function reset() removes all data from the buffer outputBuffer. In the next step a defined

number of samples of every signal is stored in the buffer which is passed to the output

device next. After applying the clean-up task this procedure is repeated until Φ contains

no further signals.

Dynamic Parallel Mixer

The Dynamic Parallel Mixer creates an output signal by mixing all input signals in parallel

but with a changing weight. As the Static Dynamic Mixer, every audio signal is played

back on all channels together with all other signals. But in contrast to that, one audio

signal is played back louder for a defined number of seconds, called duration. When the

duration time is up the succeeding audio signal is played back louder. The cross-over

from one loud signal to the next can be performed soft or hard. The parameter fadeTime

defines the duration of the fade effect in seconds. A fadeTime of nearly 0 seconds forces

the mixer to switch to the proximate signal immediately, however often conducted with a

disturbing noise. Unlike the Static Parallel Mixer the Dynamic Parallel Mixer highlights

tracks in order to play them louder. Therefore, it is easier for the listener to recognize

all played back signals while individually presenting an overview of the cluster structure’s

entire audio content. In order to zoom out the currently louder played track two volume

parameters can be specified. The parameter masterVolume vmaster defines the volume

level of all signals in percentage which causes a sample value scurr of

scurr = sorig ∗ vmaster (3.24)

if sorig is a sample’s original value. So a masterVolume of 60% sets the volume level of all

signals to 60% of their original value. Furthermore, the parameter volume specifies the

percentage of the volume added to the master volume level of the currently highlighted
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durat ion :=3.0
fadeTime :=0.4
masterVolume :=60
volume :=130
cur rent :=0

while s i z e (Φ)>0 do {
// beg in : S t a t i c P a r a l l e l Mixer par t
r e s e t ( outputBuf fer )

for i =0: s i z e (Φ) {
// b u f f e r co nta ins in format ion f o r every channel
outputBuf fer := outputBuf fer+read (Φi ) *masterVolume /100

}
//end : S t a t i c P a r a l l e l Mixer par t
// beg in : Dynamic P a r a l l e l Mixer par t
i f durat ion has not exp i red do {

//add data o f c u r r e n t l y l o u d e r s i g n a l
outputBuf fer := outputBuf fer+read (Φcurrent ) *( volume /100 − 1)

}
else do {

//add c r o s s o v e r data from l o u d e r s i g n a l and i t s succeed ing s i g n a l
outputBuf fer := outputBuf fer+

c r o s s o v e r ( read (Φcurrent ) , read (Φcurrent+1 ) ) *( volume /100 − 1)
}
i f durat ion and fadeTime have exp i red do {

cur rent := nextIndex ( )
}
//end : Dynamic P a r a l l e l Mixer par t

// sends the streamed data to the output d e v i c e
sendToDevice ( outputBuf fer )
// removes a l l f i n i s h e d streams from Φ
cleanUp (Φ)

}

Listing 3.4: Dynamic Parallel Mixer
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signal. A volume of 120% increases the volume of the currently louder signal by 20% of its

original value. If sorig again specifies the original value of the currently highlighted signal

s and vmaster and vloud define the master volume and volume the current sample value

scurr is calculated as:

scurr = sorig ∗ vmaster + sorig ∗ (vloud − 1) (3.25)

scurr = sorig ∗ (vmaster + vloud − 1) (3.26)

That means, for the currently louder signal with a volume of 120% that it is played with

80% of the original volume level. When increasing the signal’s volume level over 180%

frequently over-modulation of the signal appears. In that case the masterVolume control

allows the user to decrease the general volume level which, as a consequence, makes the

notion of the currently highlighted signal clearer.

Listing 3.4 presents the function of the Parallel Dynamic Mixer. Besides the parameters

volume and masterVolume, which are explained in the previous paragraph, all variables

and functions are discussed either with listing 3.1 or listing 3.3. After a defined number of

samples of all signals are stored in the buffer in consideration of the masterVolume level

the dynamic step starts which in general has the same flow as the Static Sequential Mixer

described in section 3.2.3 but additionally takes the volume of the currently highlighted

signal in account.

Distance Mixer

The Distance Mixer creates an output signal on the basis of 2-dimensional, spatial infor-

mation (see next paragraph and section 2.2.2) of the input signals. That means, every

signal is represented by a data point on a plane having an x and y coordinate. The listener

himself is located in the origin (0/0) of the coordinate system. The signal’s distance to

the origin (listener) is expressed by its volume level so that the volume level of a signal

decreases with increasing distance to the origin. If δmax denotes the metric measuring of

the maximal distance (the distance from the origin to one of the corners) and the origin

is located in (0/0) the distance δ of the audio signal i to the listener is defined as:

δi =

√
x2
i + y2

i

δmax
(3.27)

The Distance Mixer supports 2-dimensional playback on two and four channels. Figure

3.4 visualizes eight audio tracks widespread over a plane. For the two channel mode all

files located in the negative x range are played back on the left channel and all signals in

the positive x range on the right channel. A more specific segmentation is performed in
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LEFT CHANNEL RIGHT CHANNEL

(a) The plot visualizes eight signals dis-
tributed on a plane. All signals placed on
the negative x side are played back on the
left channel, all others on the right channel
with a volume level according to their dis-
tance to the origin.

(b) displays the positioning of the two speak-
ers for the two channel mode.

FRONT LEFT FRONT RIGHT

REAR LEFT REAR RIGHT

(c) The plot visualizes eight signals dis-
tributed on a plane. All signals placed on
the negative x side are played back in one
of the left speakers, all others in one of the
right speakers. The signals located in the
positive y part are played back in the front,
all others in the rear speakers.

(d) displays the positioning of the speakers
for the four channel mode.

Figure 3.4: Two and four channel mode of the Distance Mixer.



48 CHAPTER 3. CLYNX

channe l s :=2

while s i z e (Φ)>0 do{
r e s e t ( outputBuf fer )

for cur rent =0: s i z e (Φ) do {
i f getXCoordinate (Φcurrent )>0 do

{
// b u f f e r co nta ins in format ion f o r the l e f t channel
outputBuf fer [ 0 ] : = outputBuf fer [0 ]+ read (Φcurrent ) * getDi s tance (

Φcurrent )
}
else i f getXCoordinate (Φcurrent )<0 do {

// b u f f e r co nta ins in format ion f o r the r i g h t channel
outputBuf fer [ 1 ] : = outputBuf fer [1 ]+ read (Φcurrent ) * getDi s tance (

Φcurrent )
}

}

// sends the streamed data to the output d e v i c e
sendToDevice ( outputBuf fer )

// removes a l l f i n i s h e d streams from Φ
cleanUp (Φ)

}

Listing 3.5: Distance Mixer example

the four channel mode in which the positive and negative x range in each case is split into

two areas. All signals located in the positive y range are sent to the front channel (left or

right) and all in the negative y range are sent to the rear channel. Figure 3.4 illustrates

the positioning of the front and rear speakers around the listener.

Based on coordinate information every audio signal is played back on a specific channel

together with all other signals which appear in the same area having a defined volume

level. According to the example of figure 3.4 the listener hears four signals per channel

in the two channel mode and two signals on every channel in the four channel mode.

Because the Distance Mixer plays back all signals in parallel it is ranked to the Parallel

Mixers segment. As for all other Parallel Mixers the playback time is very short which also

results in the need of a high degree of concentration of the listener. The Distance Mixer
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also presents an overview of the underlying data points but the most detailed because

of taking the position of the signal within the area and its distance to the listener into

account. That allows the evaluator to recognize if a possible outlier is located in the middle

or the boundary of the area. The problem which occurs in very densely populated areas

is that tracks having a short distance could drawn all other tracks of its channel out.

Listing 3.5 describes the Distance Mixer in the two channel mode. It works in the same

way as the Static Dynamic Mixer which is discussed in section 3.2.3 but is extended by the

functions getXCoordinate() which returns the x-coordinate of passed signal. Furthermore,

the variable outputBuffer represents an array of buffers which is organized in a way that

all data stored in index 0 are sent to the left and all of index 1 are sent to the right channel

by applying the function sendToDevice().

Spatial Information

The Distance Mixer which is discussed in the paragraph above uses 2-dimensional, spatial

information in order to present the listener a very detailed overview of the underlying data

points of a cluster structure. According to the run-time mode the application is executed

in the source of the spatial information differs.

If cLynx extends the PlaySOM which is discussed in section 2.2 as Plug-In (see Plug-In

Mode in section 3.3.4) the spatial information is provided by the underlying system. As

explained in section 2.2.2 the exact position of an input is calculated under consideration

of its at least three best matching units on a SOM. The resulting spatial information

and the corresponding audio signals are passed to cLynx through the interface which is

discussed in section 3.3.4 in order to perform an evaluation using the Distance Mixer.

In the Stand-Alone Mode (see section 3.3.1) the 2-dimensional information which specifies

the exact position of pieces in the clustering structure must be defined by the user due the

absence of an underlying application which could pass that kind of information. For that

reason the directory of the audio files additionally must contain an obligatory file named

sample.coordinates which specifies the x and y coordinates of all tracks in the directory.

The coordinates file is built up like a simple property file using the format of a Key-Value

list like key=value. Except one predefined key all other keys are specified through the

name of the audio tracks. The specification of the x and y coordinates of two of the tracks

evaluated in cLynx of figure 3.5 looks like:

(track)=(x-coordinate)[ ,;](y-coordinate)

myTrack1.wav=-1,0

myTrack2.mp3=8,0

If a sound file’s coordinates are not specified the track is not considered by the Distance

Mixer which results in total silence when no coordinates file is specified. Additionally to
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the spatial information of the tracks the width of the unit must be defined through the key

width used to calculate δmax which is part of equation 3.27. The parameter width defines

the horizontal length of the unit which additionally is the height as cLynx always supposes

the underlying plane as a square. When representing the data of figure 3.4 width can be

initialized with 20 for instance. Furthermore, width could also have the value 18 because

all points lie in a coordinate system with an x-axis of [-9,9] and y-axis of [-9,9]. Acoustically

the width of 20 differs to the width of 18 in the volume level of the tracks because it is part

of the calculation of the maximal distance δmax to the listener. According to the equation

3.27 the distance of a signal δi decreases with increasing δmax which furthermore means

that the signal’s volume level increases with increasing δmax.

3.2.4 Extending cLynx

In order to support further research cLynx is implemented in a way that the extension of

new components is easily enabled. Whenever a new analysis, normalization or mixer com-

ponent has been implemented based on the information given in the following paragraphs,

the component must be made available to cLynx which differs for several Run-Time Modes.

To make a new component available in the Console Mode the class Constant has to be

modified by enabling it to identify the Integer representation of the new component which

is passed through the settings.properties file. To ensure this the getter-methods of the

specified component have to be extended.

The modulations in order to make new components visible in the GUI Mode are much

more complex than the extensions required by the Console Mode. First of all, a new

instance of JDefPanel must be defined which graphically represents the new component

and contains all its parameters. It must be added to the corresponding container class

JSelectionPanel which manages the switching through the several JDefPanel instances.

All parameters of the new JDefPanel must be defined through the setInputComponent()

method which enables them being editable in run-time when setting the flag chMonitor

to true.

Analysis Component

In order to implement an additional analyzer, the programmer’s interest should be focused

on the audio.statistic package. Every new analysis component must extend the abstract

class AbstractAnalyser and has to define its ID variable in the constructor. In the second

step the calculation of the values has to be implemented in the class AnalyserTool. It

is important that for every analyzer the maximum and minimum values are calculated,

otherwise it will result in a Java NullPointerException.



3.3. RUN-TIME MODES 51

Normalization Component

When extending the normalization component, the developer should be focused on the

audio.norm package. Every new normalization process must implement the Java interface

INormalization. An abstract Compressor is implemented in the abstract class Abstract-

Compressor which should be extended when implementing another Compressor instance.

Mixer Component

The most complex extension is represented by the implementation of an additional mixer

component. In this case the package audio.mux contains all relevant classes. Every new

mixer is represented as a stream and therefore must extend the abstract class AudioStream.

In the constructor of every new mixer process the variables

� max parallel tracks

� input to output channel

� PROV IDER

� FILES

� SAMPLE LIST

have to be defined. For further information of the several data structures read the relevant

passages of cLynx’s Java API.

3.3 Run-Time Modes

The cLynx tool can be executed in several different run-time Modes which will be discussed

in detail in the following paragraphs. The application flow within cLynx will not highly

differ between the different modes. The two main modes are represented by the:

� Stand-Alone Mode

� Plug-In Mode

While the Plug-In Mode is only executable using a graphical interface the Stand-Alone

Mode additionally allows starting the application through a command line in the console

which furthermore makes cLynx distinguishable between:

� Console Mode

� GUI Mode

The main difference between all modes is represented by the modality of parameter passing.

While the GUI Mode allows the definition of the parameters through several dialogs the

Console Mode needs a property file which contains all required parameters. In the first
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Parameter ID Must Type Default Value

audio dir y Url n/a

ext y String n/a

repeat n Boolean false

fadeIn n Double 1.0

mux n Integer 0

duration n Double 3.0

fadeTime n Double 0.3

targetChannels n Integer 2

volume n Double 0.8

mastervolume n Double 0.6

distanceChannels n Integer 2

normalizer n Integer 0

compressionrate n String 4:1

attack n Integer 50

release n Integer 50

analysis n Double 0

threadLoading n Boolean false

threadNO n Integer 2

Table 3.1: All keys of the setting file which passes all required parameters to cLynx in the
Stand-Alone Console Mode.

part of this section both Stand-Alone Modes are described followed by an explanation of

the Plug-In Mode. In the last part developers are guided through the integration of the

cLynx plug-in into their applications.

3.3.1 Stand-Alone Mode

The Stand-Alone Mode allows the usage of cLynx without an application which passes

the required parameters to the tool. Therefore, the user is responsible to pass all required

parameters to the tool which makes this mode especially suitable for test runs and prede-

fined evaluation scenarios. When executing cLynx in the Stand-Alone Mode a coordinates

file has to be created which is documented in section 3.2.3, otherwise the Distance Mixer

can not be used.
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Console Log Level

Console

Playercontrol:

Play | Stop | Continue

Settingcontrol:

Multiplexerselection
Analyserselection
Normalizerselection

Show / Hide
Console

Interactive Playlist

Figure 3.5: cLynx’s graphical user interface.

3.3.2 Console Mode

The Console Mode allows the user to execute the application through a command line in

the console without needing a GUI. Before starting cLynx a property file must be created,

which contains all required parameters. Table 3.1 illustrates all required parameters of

the settings file and their default values. The range of valid values for each key is equal to

the possible values listed in table A.1. Apart from the parameters audio dir and ext all

others do not have to be specified as default values are defined for them. To execute the

tool in this mode use the command:

java -Xmx1500M -cp [CLASSPATH] as.clynx.CLynx -s [PATH TO SETTINGS FILE]

3.3.3 GUI Mode

The GUI Mode allows the user to execute cLynx with a graphical user interface by the

command:

java -Xmx1500M -cp [CLASSPATH] as.clynx.CLynx

The GUI allows the definition of all parameters directly within several dialogs. The cLynx’s

graphical user interface which is depicted in figure 3.5 can be divided into four main parts.

All parameters for the mixer, analyzer and normalizer can be specified in the Settingcontrol.

In contrast to the Console Mode several parameters can be changed in run-time by the

user. By using the player buttons in the Playercontrol the playback can be started, paused

and stopped. When pushing the play button an open dialog appears which asks the user to

specify the path to the audio files. The selection of the repeat button enables or disables

endless playback of the tracks. The Interactive Playlist visualizes all tracks which are
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evaluated and highlights the currently active track in green and already finished tracks

in red. Some mixer, e.g. both Sequence Mixer and the Dynamic Parallel Mixer, allow

direct interaction through mouse selection in the play list. A double click event during the

playback with selected Static Sequential Mixer forces the player to switch to the selected

track. The Dynamic Sequential Mixer is forced to play the selected track on the front left

channel and the Dynamic Parallel Mixer plays the selected track louder.

The right side of the graphical user interface is represented by the Console. The Console

can be hidden and shown again by pushing the Show/Hide Console button in the center.

The Console Log Level defines which and how much information should be displayed in

the console. When selecting a log level of 2 all messages with an equal or higher priority

than 2 are displayed in the console field, all lower than 2 do not pass the information level

filter.

3.3.4 Plug-In Mode

The Plug-In Mode allows developers to integrate cLynx in their application. In contrast to

the Stand-Alone Mode only the graphical representation is available in the Plug-In Mode.

The application flow does not differ from the Stand-Alone GUI Mode except for the passing

the parameters. The spatial information which is explained in detail in section 3.2.3 and

the corresponding tracks are provided by the underlying system and passed to cLynx

through communication interfaces which are accessible in cLynx’s package interfaces. The

next paragraphs document how cLynx can be integrated in other applications.

Integration of cLynx

The cLynx plug-in can easily be added to a Java Swing1 application as it extends the

JPanel class of Java’s Swing package. Listing 3.6 demonstrates how cLynx has to be

integrated in other applications. The two most important commands are the explicit

announcement that cLynx is in the Plug-In Mode which is performed through the line

CLynx.PLUG IN = true and the passing of an interface which manages the communication

between the extended system and the plug-in. This is done by applying the function

setCLynxConnector().

The communication between the underlying system and cLynx is managed by cLynx’s

communication interface CLynxConnector. It sends the spatial information (see section

3.2.3) and its corresponding audio tracks to cLynx. As mentioned above, the interface is

set by the function setCLynxConnector().

1Swing is part of Sun Microsystems Java Foundation Classes (JFC), which covers a group of features

for building graphical user interfaces (GUIs). JFC additionally encompass classes for adding 2D drawing

functionality and interactivity to Java applications. [Horton, 2000]



3.4. SUMMARY 55

GridBagConstraints c o n s t r a i n t s = new GridBagConstraints ( ) ;

c o n s t r a i n t s . f i l l = GridBagConstraints .BOTH;

c o n s t r a i n t s . weightx = 0 . 1 ;

c o n s t r a i n t s . weighty = 0 . 1 ;

// Enables Plug−In Mode

CLynx . PLUG IN = true ;

// c r e a t e s a new GUI

CLynx t o o l = new CLynx ( ) ;

// s e t s the communication i n t e r f a c e

t o o l . setCLynxConnector ( this ) ;

getContentPane ( ) . add ( too l , c o n s t r a i n t s ) ;

Listing 3.6: This code simply instructs how to integrate cLynx into an external application.

3.4 Summary

In this chapter the cLynx tool was discussed which aims at supporting users in acoustically

evaluating music similarity measures. It offers diverse features for presenting a meaningful

signal to the user. Several Mixer components perform different mix-down types, primarily

based on parallel and sequential playback. While simple simultaneous playback is extended

by highlighting single songs, sequential playback can be performed by playing a track on all

channels or by switching it through the channels. A special mixer instance extends parallel

playback by generating an acoustic representation of the signals’ spatial appearance on

a 2-dimensional lattice. According to the run-time mode, the required coordinates are

provided by the user or an underlying system, which is extended by cLynx. The plug-in

mode of cLynx easily can extend applications, what already is realized with the PlaySOM

application. The user study presented in the next chapter is based on the interplay of

both systems.
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This chapter presents the results of two separate evaluations. The first study concerns the

cLynx’s most time-expensive part, the Analysis Component. In order to tune the perfor-

mance of this component two faster approaches for accurate description value extraction

are analyzed. Both methods calculate these values by only processing the music signals

partially.

In the second part of this chapter an evaluation is discussed which analyses the applicabil-

ity of cLynx for music similarity judgment and outlier detection. Additionally, the study

is focused on the human cognition of music and subjective music similarity judgment. Fur-

thermore, the evaluation tries to detect connections between subjective interpretation and

individual preferences and the subjects’ perception of music similarity and susceptibility

to outlier detection.

57
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Genre #Songs

Classic 640

Electronic 229

Jazz and Blues 52

Metal and Punk 90

Rock and Pop 203

World 244

Table 4.1: Organization of the ISMIRgenre test set

4.1 Test-Set

All evaluations were performed on the ISMIRgenre collection [Lidy and Rauber, 2005] from

the Audio Description Contest on Genre Classification of the International Conference

on Music Information Retrieval 2004 which contains 1458 audio files. All songs in the

collection are organized in six genres each containing a different number of tracks which

are presented in table 4.1. The compiled test set does not contain full tracks but 30 second

long pieces available in 128 kbps, 44 kHz, stereo MP3 format. Furthermore, the test set

was converted to 16 Bit, 44 kHz, PCM signed, stereo WAV format for the analysis tuning

evaluation in section 4.2.

4.2 Analysis Tuning

As already discussed in section 3.2.1 the analysis component represents a fundamental step

for presenting the evaluator a meaningful output signal. It is responsible for computation

of the so called description value sets of all audio signals passed which build the basis for

the calculation of the global upper and lower boundary and contain the following values:

� Minimal Sample Value

� Maximal Sample Value

� Arithmetic Mean Value

� Root Mean Square Value

� Standard Deviation Value

The calculation of a set of description values is performed by processing an audio file

entirely which on the one hand provides accurate results but on the other hand is cLynx’s

most time-expensive task. Therefore, two other approaches are evaluated in order to lower

the computation time of the analysis. Both processes only use parts of the underlying audio

data extracted in a random or uniform way which is explained in the following paragraphs.
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4.2.1 Procedure

In order to accelerate the time-expensive analysis task the calculation of a set of description

values is performed by processing the underlying audio data only partially. If therefore

the computation of the description value set of the signal i is based on 50% of the signal’s

data the resulted set is defined as Θi,50. In order to have a reference value the original

description value set additionally is calculated by using the conventional method which,

of course, uses 100% of the data. So the original description value set of the audio signal

i is defined as:

Θi = Θi,100 (4.1)

The differences δ between all single values of Θi and Θi,50 build the set ∆i,50 and can be

calculated by a simple subtraction of the partial values from the original values for every

file i:

δi,max = Θi,max −Θi,50,max (4.2)

δi,min = Θi,min −Θi,50,min (4.3)

δi,µ = Θi,µ −Θi,50,µ (4.4)

δi,rms = Θi,rms −Θi,50,rms (4.5)

δi,σ = Θi,σ −Θi,50,σ (4.6)

So ∆i describes the distance between the original set and the set calculated by only using

parts of the data. In order to make the resulting values more transparent the distances

are smoothed and normalized. Smoothing the data is done by averaging all resulting sets

∆i,50 of a common genre which builds the set ∆50. To do that 15 audio files of each

genre are selected randomly. The normalization of the results is based on a value which

represents the greatest possible oscillation for the audio signals. Because the whole test

was performed on 16 Bit PCM SIGNED, stereo tracks (see section 4.1) the largest sample

value is represented by the value 215.

High distances within a set ∆ point out that the description value set calculated using

only partial source data does not give an accurate description of the underlying audio

signal’s structure. Based on highly deviating values the calculation of the global upper

and lower boundaries which are explained in section 3.2.1 does not give accurate results

which causes inefficient normalization. As a consequence, loud signals are still too loud

after the normalization process and therefore could drawn quiet tracks out.
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Classic Metal & Punk

value arithmetic mean arithmetic mean

δmax 0.124 0.004

δmin 0.046 0.023

δµ 3.72E-05 6.01E-05

δµrms 0.008 0.004

δσ 0.008 0.004

Table 4.2: Averaged, normalized differences of ∆50 and a π of 10 for the genres Classic
and Metal.

4.2.2 Random Selection Approach

Instead of processing an audio file entirely the random approach deals with the analysis

of only a predefined number of randomly selected parts of an audio file. The degree of

partitioning is defined through the partition coefficient π. A π of 10 specifies a partitioning

of an audio signal into ten consecutive parts with equal length in order to aggregate 10% of

the underlying audio information for every part. The calculation of the description value

set is performed on the basis of randomly chosen 50% of those parts which means taking

5 random samples from the partitioned audio signal. So the resulting description value

set Θi,50 is based on randomly chosen 50% of the signal’s data. As described in section

4.2.1 all Θi,50 of 15 randomly selected audio files of a common genre build the basis for

the calculation of the distance set ∆50.

Table 4.2 presents the normalized differences of the ∆50 set of Classical music using a

partition coefficient of 10. Except δmax and δmin all other values are in an acceptable

range of < 1%. Especially the difference of the arithmetic mean δµ is near 0. In contrast

to that a divergence of more than 12% of the description value δmax is very high. It means

that the averaged divergence between the description values Θi,50,max and Θi,max of a

Classical file i amounts 12% of the signal’s maximal possible oscillation, as shown in figure

4.1. Even when examining ∆70 using the same partition coefficient the maximal difference

decreases but again is greater than 12%. Therefore, both resulting description value sets,

Θ50 and Θ70, are not representative for the underlying signal due too high divergence

from the original values. Based on such differing values the calculation of the global

upper and lower boundaries does not give accurate results, causing inappropriate inefficient

normalization. As a consequence, loud signals are still too loud after the normalization

process and therefore could drawn quiet tracks out. An indicator for the high value of δmax
and δmin can be found in the dynamic structure of the signals which is discussed in detail

in section 2.3.1. Because Classical tracks are such high dynamical pieces the detection of



4.2. ANALYSIS TUNING 61

Figure 4.1: Trend of δmax, δmin and δσ for the sets ∆70 to ∆10 and a π of 10 for the genre
Classic.

its greatest oscillation is difficult. In contrast to Classical pieces Heavy Metal and Punk

tracks are considered to low dynamical signals because most of the Heavy Metal tracks

start with high volume and continue with that volume level until the end. Therefore,

the same test is repeated using 15 randomly selected tracks of the genre Metal and Punk

which again are divided into equal-sized parts by using a partition coefficient of 10. The

results when taking 5 random samples of each partitioned signal are presented in table

4.2. The values of δmax and δmin are much smaller compared to the results of the Classical

pieces because tracks of this genre reach the maximal oscillation more often. Figure 4.1

illustrates the trend of the differences δmax, δmin and δsigma of the sets ∆70, ∆50, ∆20 and

∆10 for the genre Classic when using a fixed π of 10. It confirms the general assumption

that all differences of a set ∆ increase with decreasing number of sample takes, which

should be valid for all genres.

In order to demonstrate the statistical processing, an exemplary audio signal was divided

into consecutive parts with equal length in order to aggregate 10% of the underlying

audio information for every part. This rather coarse partitioning of the audio signals

was deliberately chosen to clearly describe the estimation of desired statistical moments

although it definitely causes a strong variation between the respective estimates of every

part. Therefore, the degree of partitioning is increased, which as a consequence, decreases

the audio information aggregated by each part. That means, the set ∆50 was calculated

by taking more but smaller samples in order to increase the distribution of the samples

which should result in more accurate description values. Figure 4.2(a) and 4.2(b) depict

the trends δmin and δmax of the set ∆50 according to varying partition coefficients for
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(a) δmax, δmin and δσ of ∆50 for varying
π of the genre Classic

(b) δmax, δmin and δσ of ∆50 for varying
π of the genre Metal and Punk

(c) All averaged maximal differences of
the sets ∆70, ∆50, ∆30 and ∆10 of all
genres using different aggregate coeffi-
cients.

Figure 4.2: Several differences of various ∆ sets for varying partitioning.

the genres Classic and Metal. Contrary to the assumption the best approximation for

the genre Classic occurs for a partition coefficient of π = 2 which represents the case

of splitting the signal into two parts and either taking the partition which contains the

beginning or the end of a piece of music. The trends of δmin and δσ for the genre Metal

and Punk for varying π permanently lay under 2.5% and is nearly constant for a π of 2 to

50. Both genres represent the maximal and minimal extreme of all sets ∆ from all genres

over all degrees of partitioning. Figure 4.2(c) depicts the trend of all averaged maximal

differences of the sets ∆70, ∆50, ∆20 and ∆10 of all genres defined as:

max (∆x) = max (δmax, δmin, δσ, δµ, δrms) δ ∈ ∆x (4.7)

Again, the trends disagree with the assumption that the quality of Θ raises with increasing

π but it illustrates that the difference between the original and approximated description
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(a) Classic (b) Metal and Punk

(c) all genres

Figure 4.3: δmax, δmin and δσ for various genres on uniformly distributed sample takes

values decreases with increasing number of sample takes. While the divergence of the

maximal value of the set ∆10 constantly is grater than 30%, the maximal values of the

sets ∆50 and ∆70 nearly never exceed 20%.

4.2.3 Uniform Selection Approach

Additionally to the random test the experiment is extended by the calculation of the

description values based on uniformly distributed sample takes. So the set Θi of a randomly

chosen audio signal i is computed based on a set S of audio sample values created by

uniform takes from the source signal. If therefore S aggregates 50% of the data it contains

every 2nd sample value of the underlying audio signal and if S contains 20% of the original

source it considers every 5th sample etc. So of each arbitrarily sized part of the signal

is taken the same number of samples. As a consequence, the quality of Θ should be

much better compared to the results presented for the random approach. Figure 4.3(a)

illustrates the trend of δmax and δmin for decreasing aggregation of S from 50% to 1%

of the source data. Even when using 10% of the underlying data the maximal difference

is smaller than 2.2% of the signal’s maximal oscillation which is a great improvement
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compared to the results of the random approach shown in figure 4.1. Furthermore, the

results of the genre Metal and Punk are depicted in figure 4.3(b). There is no deviation

from the original values for ∆50 to ∆10 and a difference of 4.6% when using only 1% of the

underlying data. Although figures 4.2(c) and 4.3(c) are not completely comparable due to

different partition sizes, they illustrate that the calculation based on uniform selection of

1% of all samples creates description values of higher quality than the computation based

on randomly chosen 50% of the samples.

4.2.4 Summary

The evaluation presented two different approaches for optimizing the analysis process. The

results pointed out that the random approach does not produce accurate description values

for the underlying song. Interestingly, the increase of the distribution of samples taken

by rising π did not improve the quality of the resulting description set Θ. By contrast,

the uniform approach works significantly better. As shown in figure 4.3(c) the averaged

deviations over all genres of Θ50 (0.2%) and Θ20 (0.9%) to the original description values

are minimal.

4.3 User Study

Because of raising demand of innovative structuring approaches for huge music repositories,

science steadily is challenged to find novel methods for organizing data. Most approaches

perform an organization by specifying a special similarity measurement, based on the

human intuitive process of structuring. The key problem arising with the definition of

similarity is the subjective human interpretation of music similarity. Human cognition

of music inherently is biased by subjective interpretation and reasoning which usually is

based on knowledge and conventions of the real world. Therefore, it makes sense measuring

the quality of music similarity in a subjective way based on listening tests. Several user

studies have been applied to this problem which are reviewed in section 2.4.2.

In this section a user study is presented which is focused on human cognition of music

and subjective music similarity judgment. The underlying organization method applied

to a music data set is based on the Self-Organizing Map approach. The listening test was

performed using the cLynx tool which extends the application PlaySOM (see section 2.2)

as plug-in.

4.3.1 Parameter Analysis

cLynx, which is discussed in detail in chapter 3, offers several features for analyzing,

normalizing and mixing audio data. Several of these functions enable the user to define

parameters to directly influence the character of the resulting mix-down. In order to make
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ID % louder

DPM1 50%

DPM2 100%

DPM3 150%

DPM4 200%

Table 4.3: Several configurations of the Dynamic Sequential Mixer. The ratio item specifies
the level the current song is played louder than the background noise.

the user study in section 4.3.2 more transparent a pre-study was performed to discover

the optimal configuration of required parameters. The parameters evaluated by this study

are:

� duration: The duration specifies the time a song can be perceived by the listener.

This parameter is required for both Sequential Mixers and the Dynamic Parallel

Mixer.

� volume and master-volume: The volume and master-volume parameters are used to

highlight songs when using the Dynamic Parallel Mixer.

The pre-study was performed on four subjects using cLynx. On a music map based on

the music data set discussed in section 4.1 each of the subjects was acoustically presented

four regions of the PlaySOM application. All specified areas contained at least six tracks

and although covering outliers (e.g. songs not fitting to the rest of songs in the area) each

region could be clearly assigned to one genre. While two regions covered Classical songs

the others contained Rock and Electronic tracks. The areas assigned to Classic could

be clearly distinguished between singing based and instrumental oriented music. The

playback was performed by the cLynx plug-in using different parameter configurations. Six

times every region was presented to each subject using constant duration, but changing

Mixer components. So the presentation of one area used both Sequential Mixers and

several Dynamic Parallel Mixers using different volume levels. Table 4.3 illustrates the

various configurations of the Dynamic Parallel Mixer component used for every region

related audio presentation. The various Dynamic Parallel Mixer settings differ in their

volume level a highlighted song is played louder than the background noise. E.g., the

highlight effect of DPM1 plays highlighted tracks 50% louder. After every presentation

each subject was interviewed using the questions listed in table B.1 in appendix A.

Duration Parameter

The ideal setting of the duration parameter was evaluated by presenting every subject

four regions with differing duration times. The duration parameter was fixed at 1, 2, 3
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Mixer Duration Genre Error Confidence

Identification #Songs Level

SSM 1 100% 4.25 8.25

DSM 1 75% 3.75 7.75

DPM1 1 75% 4 6.5

DPM2 1 50% 4.5 6.5

DPM3 1 50% 3.75 6.75

DPM4 1 75% 3.5 7.5

SSM 2 100% 1.5 8.25

DSM 2 100% 1.25 8.25

DPM1 2 100% 3.25 7

DPM2 2 100% 3.5 7.5

DPM3 2 100% 3.5 7.75

DPM4 2 100% 3 8.25

SSM 3 100% 1.75 8.5

DSM 3 100% 2.5 8.5

DPM1 3 75% 3.75 6.5

DPM2 3 100% 3.5 7.5

DPM3 3 75% 3.75 8

DPM4 3 75% 2.75 8.25

SSM 4 100% 2 8.5

DSM 4 100% 3 8.5

DPM1 4 100% 2.25 7

DPM2 4 100% 2.25 7.5

DPM3 4 100% 2.5 7.75

DPM4 4 100% 2.25 8.25

Table 4.4: Correct genre identification and difference of the detected number of songs
to the real number of songs and the subject’s confidence level according to the duration
parameter and Mixer component

and 4 seconds having constant value for all region related listening situations. After ev-

ery listening situation each subject was asked whether the duration time had comfortable

length or not. As illustrated in figure 4.4(a) the subjects sensed durations smaller than 3

seconds as short and felt nearly comfortable with a duration value of 4 seconds. Addition-

ally, this trend was confirmed by the subject’s bearing. While seeming to be overburdened

when being confronted with a duration time smaller than 3 seconds, the subjects’ behavior

expressed that they worked with full capacity without being overrun when the duration
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(a) Subject’s feeling for duration parameter. (b) Subject’s ability to identify the high-
lighting effect of the Dynamic Parallel Mixer
for varying duration.

Figure 4.4: Participant’s feeling of duration and identification of DPM’s highlighting effect.

was fixed at 4 seconds. Besides the subjects consistently felt more confident with their

answers when using one of the Sequential Mixers, which is expressed by the confidence

level1 in table 4.4, a better identification of the highlighting effect of the Dynamic Parallel

Mixers emerged for DPM3 and DPM4. This trend became more apparent with increasing

duration. Nearly all subjects could recognize the highlighting effect of DPM3 and DPM4

when using a duration of length 3 or 4 seconds. The trend of all Dynamic Parallel Mixer

configurations regarding changing duration is depicted in figure 4.4(b). Remarkably, al-

though the subjects sensed a duration of 2 seconds as short, they were able to detect the

correct genre and to estimate the number of perceived songs better than for a duration of

3 seconds as shown in table 4.4. Nevertheless, they felt more confident with their answers

when the duration was fixed at 3 seconds. However, except this fact the correct identifi-

cation of the region’s assigned genre and the estimation of the number of perceived songs

yield better results with longer duration.

Volume Level

As already mentioned in the paragraph above the detection rate for the various Dynamic

Parallel Mixer configurations listed in table 4.3 raised in parallel to the increase of the

duration of playback of individual tracks. Figure 4.4(b) illustrates that only few subjects

recognized the highlighting effect of the Dynamic Parallel Mixer for a duration lower than

3 seconds. Although most subjects thought of perceiving several songs nearly in the same

volume level the mixer configurations DPM3 and DPM4 were better identified. This

1All participants were ask to rate how confident they felt with their answers. A score of 1 denotes

unconfident and 10 means very confident.
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trend is confirmed by the use of a duration of 3 and 4 seconds when nearly all subjects

recognized the highlighting effect of the configurations DPM3 and DPM4 as depicted in

figure4.4(b). Furthermore, the users felt more confident with their answers when improving

the highlighting ratio of the Dynamic Parallel Mixer which is illustrated in table 4.4.

4.3.2 Subjective Evaluation

As described in this section’s introduction subjective music similarity judgment is a very

important and sophisticated task, because of the differing human cognition of music and

interpretation of acoustic similarity. Therefore, the evaluation of music organization ap-

proaches based on music similarity measurements typically is performed by subjective

listening tests. Evalutron [Gruzd et al., 2007], an evaluation tool developed by Stephen

Downie’s IMIRSEL lab for MIREX 2006 and which is discussed in section 2.4.1, supports

subjects in analyzing and judging music similarity. A novel approach which is applied

to assist subjects in subjective music similarity analysis and judgment is the cLynx tool,

which is presented in chapter 3 of this thesis.

The user study, which is discussed in the following paragraphs, was performed based on

the cLynx tool. The key goal of the study is to analyze the human cognition of music and

the subjective interpretation of heard audio data regarding different listening conditions

simulated by the various mixer components of cLynx. The human’s ability of filtering

music (outlier detection) and judging music similarity and the subjective level of listening

enjoyment according to sequential and parallel music playback were evaluated in order

to find preferred mixer types for specified cluster regions visualized by the PlaySOM

application.

Setup

13 human subjects participated in the evaluation. The subjects coming from varying

professional guilds were equipped with differing musical pre-conditions and previous tech-

nical knowledge. 9 participants enjoyed instrumental education in their childhood and 2

of them play music with an instrument this very day occasionally. The test was performed

using the PlaySOM application (see section 2.2) which organized the ISMIRgenre music

collection discussed in section 4.1. The playback was performed by cLynx plugged into

PlaySOM.

Prior to every evaluation process each subject was shortly introduced into the area of

Music Similarity Systems on the basis of the PlaySOM application. After this explanation

every subject was aware of what a Music Similarity System is and how a 2-dimensional

representation of music libraries could look like without knowing technical concepts or

possible performance values. In order to present the subjects a better audio quality all



4.3. USER STUDY 69

30,4%
Rock & Metal

30,4%
Electronic

39,2%
Classic

Figure 4.5: Genre based segmentation of all listening situations.

listening tests were performed using an ear-phone. Thus, the results were not actively

influenced by disturbing noise of the environment. The ear-phone contained a volume

control which enabled every subject to specify the master volume by her/himself.

Every participant was acoustically presented various regions of the PlaySOM application

using the cLynx plug-in with varying configurations. Each presentation, called listening

situation, used special mixer configurations which did not change between the subjects.

So every listening situation was equal for all subjects. cLynx’s defined mixer settings

were derived from the results of a pre-study, which are presented in the previous section.

Consequently, the duration parameter was fixed at 3.5 seconds for all mixer components.

Furthermore, the Dynamic Parallel Mixer used a volume setting, which played-back the

highlighted songs 200% louder than the background noise regarding a master volume of

40. The cross-fade parameter was set to 0.2 seconds. Furthermore, the music signals were

normalized using the Linear Amplitude Normalization (see section 3.2.2) which received

the required data from the Statistical Analyzer (root mean square and standard deviation)

as described in section 3.2.1.

Each subject was confronted with 23 listening situations covering 11 different regions of

the PlaySOM application which comprised areas assigned to the genres:

� Rock and Metal

� Electronic
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ID Mixer Column Index Row Index #Songs Genre

1 SPM 18–19 13 19 Classic

2 SPM 2–4 0–1 7 Electronic

3 SPM 4 2 5 Electronic

4 SPM 14 0 2 Classic

5 SPM 4–5 12 22 Rock and Metal

6 SPM 2–3 12 3 Rock and Metal

7 SPM 4 12 3 Rock and Metal

8 SPM 18–19 3–4 18 Classic

9 SPM 18–19 12 8 Classic

10 DPM 5 12 19 Rock and Metal

11 DPM 4 2 5 Electronic

12 DPM 14 0 2 Classic

13 DPM 2–3 12 3 Rock and Metal

14 SSM 0 1 15 Electronic

15 SSM 4 2 5 Electronic

16 SSM 2–3 12 3 Rock and Metal

17 SSM 18–19 12 8 Classic

18 SSM 18–19 3–4 18 Classic

19 DSM 18–19 3–4 18 Classic

20 DSM 18–19 12 8 Classic

21 DSM 4 2 5 Electronic

22 DSM 0 1 15 Electronic

23 DSM 2–3 12 3 Rock and Metal

Table 4.5: Detailed overview of all listening situations.

� Classic

Because of the high acoustic similarity of the Rock and Metal tracks covered by the test-set

both genres were merged to the super-genre ’Rock and Metal’. Figure 4.5 shows the genre

based segmentation of all listening situations. The 23 listening situations presented 9 areas

assigned to Classic, 7 areas assigned to Electronic and 7 areas assigned to Rock and Metal.

The 9 Classical regions covered 4 voice based and 5 instrumental oriented Classical areas.

Table 4.5 illustrates all listening situations. It lists the position of the corresponding region

in the PlaySOM application along with the mixer type used for the playback. Obviously

various regions were presented several times using different mixer types. Prior to every

listening situation each subject was shown where the presented region was located in the
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Figure 4.6: Every region of all listening situations marked in the music map.

music map. Figure 4.6 depicts each location of every listening situation in the music map

of the PlaySOM application. After every listening situation each subject was interviewed

using the questions listed in table B.2 in appendix B. Furthermore, every subject had to

answer 11 over-all questions after the successful performance of all listening situations.

This questionnaire is shown in table B.3 in appendix B.

All subjects were evaluated using the same main ordering of listening situations as listed in

table 4.5. The participants were presented the listening situations based on the Static Par-

allel Mixer (SPM) first, followed by the ones using the Dynamic Parallel Mixer (DPM), the

Static Sequential Mixer (SSM) and the Dynamic Sequential Mixer (DSM). The sequence

of regions within this main organization changed between the subjects.

Results and Discussion

A very indicative characteristic of pieces of music is represented by singing parts. Be-

cause composers normally are interested in setting the human voice into the centre of

compositions surrounded by instrumentation a high degree of voice identification can be

assumed over all genres. This assumption is confirmed by the evaluation results, offering

that nearly all subjects recognized existing singing components irrespective of the type

of used mixer component. Figure 4.7 illustrates the averaged voice detection rate of all

listening situations of a mixer component. Only the cognition of voice for the region cov-

ered by the listening situations 8, 18, 19 highly diverged. This area primarily consists of
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Figure 4.7: Voice detection and lyrics understanding according to all mixer types.

18 classical instrument-oriented songs but additionally contains a Rock piece with singing

passages. Although 77% of the subjects perceived the singing parts when using both Se-

quential Mixer components only 8% were able to recognize a voice in the mix-down of the

Static Parallel Mixer. In contrast to the high degree of correct voice identification over

all listening situations, only few subjects were able to perceive the lyrics when using a

Parallel Mixer instance. As depicted in figure 4.7 the degree of understanding is much

higher when using one of the Sequential Mixer components.

A very difficult task for all subjects was estimating the perceived number of tracks during

one listening situation. Especially listening situations based on the Static Parallel Mixer

produced a mix-down which did not enable evaluators to reliably estimate the number

of recognized songs. Nearly every participant shrugged their shoulders when being asked

to estimate the perceived number of songs based on the mix-down of a Parallel Mixer

instance. Interestingly subjects only rarely thought of having listened to more songs than

there actually were. Only three subjects thought of having listened to more than 10 songs

during a parallel playback scenario. The subjects estimated 72% of all possible scenarios

smaller than 6 although only 47% definitely were. This result especially diverged for

listening situations using the Static Parallel Mixer, where only 44% of the regions contained

fewer than 6 songs. Anyway, the subjects estimated 84% of the areas containing fewer

songs than 6. Table 4.5 delivers an insight of the number of songs covered by each listening

situation. Although the subjects were not able to filter out the correct number of tracks

during a parallel playback scenario the number they detected correlates with the number

it actually was. Figure 4.8(b) illustrates the trend of the estimated number of tracks

ordered according to the size of the presented region. Interestingly, although 87.2% were
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mated songs according to the ordering
in increasing region size.

Figure 4.8: Trends of the estimation of the number of perceived songs.

incorrectly estimated the trend of the estimated scores corresponds to the trend of the

underlying region’s size. Generally, the participants undervalued the number of perceived

tracks with decreasing divergence from the Parallel to the Sequence Mixer components.

As depicted in figure 4.8(a) the best estimation results emerged when using the Static

Sequential Mixer where 26% of the regions’ size was correctly estimated. Remarkably, the

use of the Dynamic Parallel Mixer conveys the listener an overview of the underlying data

which nearly enables an estimation quality like the SSM does. Its performance of 25%

correctly estimated numbers of songs is superior to the DSM.

A key aim of the evaluation was to analyze the subjects’ ability in detecting the main

genre of the presented region. While the detection of voice and estimation of region size

was not influenced by the subjects’ music knowledge and conventions of the real world, the

assignment of a music mix-down to a main genre correlated with the participants’ musical

education and preferred genre. As depicted in figure 4.9(a) the subjects felt harder to

correctly filter the main genre out of parallel playback than sequential playback. Figure

4.9(b) confirms the over-all trend of correct genre detection from parallel to sequential

music playback based on four regions, all only used in combination with SPM, DSM and

SSM. Interestingly, subjects who enjoyed a classical instrumental education, e.g. piano,

were able to specify classical genres in more detail. They distinguished between e.g.

Folklore, Choral, Church Music, etc. while others simply assigned the same areas to

Classic. When confronting each of these subjects to this fact after having finished the

evaluation process, they thought of simply assigning the area to Classic as too coarse and

therefore false since all Classical music is not the same. A similar effect occurred when

subjects were confronted with regions which contained pieces of their preferred genre.

E.g., each subject was presented four listening situations covering the same area which
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(a) Genre detection according to all 23
listening situations.

(b) Trend according to the listening
scenario ID’s 3, 6, 8, 9, 15, 16, 17, 18,
19, 20, 21, 23.

Figure 4.9: Ability of genre detection related to the mixer type.

contained three tracks of the genre Rock and Metal (ID’s 6, 13, 16 and 23). Only Subject6,

who prefers the genre Punk, consistently over all different playback scenarios identified the

main genre as Punk, while all others simply assigned the cluster region to Rock and Metal.

Although Punk is a sub-genre of Metal, during the debriefing the subject mentioned that

the tracks of this region never ever can simply be assigned to the genre Rock and Metal. In

contrast to this accurate identification the same subject was not able to identify Classical

regions in the same precise way.

In parallel to this effect the outlier detection highly diverged between the subjects. Sub-

jects detected non-fitting passages in areas consisting of tracks of their preferred genre

more often. This indicates that subjects judge areas of their preferred genre stronger than

other regions. E.g., the listening situations 14 and 22 are both based on a Sequential

Mixer and cover the same region. The area contains 15 pieces of Electronic music. In

order to compare the results of Subject9, obviously being a fan of Electronic music, with

all 12 remaining subjects the results of Subject9 were extracted. Based on the mix-down

of the Static Sequential Mixer only 23% of the remaining subjects thought that the region

contains unfitting passages. Each of these participants detected exactly one single song

which did not fit to the others. For the same region no one recognized a non-fitting piece

during the listening situation based on the Dynamic Sequential Mixer. In contrast to

that Subject9 detected four improper songs based on the SSM and three based on the

DSM. Subject9 argued that the region consists of songs derived from completely different

genres. As a consequence, Subject9’s similarity assessment was much stricter compared to

the remaining subjects. All remaining subjects rated the ground-similarity of the region
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(a) Outlier detection rate according to
all 23 listening situations.

(b) Trend according to the listening
scenario ID’s 3, 6, 8, 9, 15, 16, 17, 18,
19, 20, 21, 23.

(c) Trend of similarity scores and con-
fidence level.

Figure 4.10: Several trends from parallel to sequential playback.

with 8.232 on average while rating their confidence level with 7.623 when using the Static

Sequential Mixer. In contrast to that Subject9 rated the ground-similarity within the area

with 4 with a confidence level of 10. This example indicates the trend that subjects per-

form a stricter judging for regions containing tracks of their preferred genre additionally to

a more accurate differentiation between genre types. Consequently, the results yielded by

judgments of areas of preferred genres might be of higher quality. However, most subjects

argued for the detection of outliers with noticeably bothersome instruments in the music.

The subjects’ ability of detecting improper passages increased by switching from parallel

playback to sequential playback. Figure 4.10(a) depicts this trend. While fewer than the

half of all subjects detected an unfitting song during listening situations based on the

Static Parallel Mixer, 75% of the participants thought of having perceived an improper

song in a mix-down based on the Static Sequential Mixer. Although based on sequen-

2All participants were asked to rate the ground-similarity of the presented region (see question 9 in

table B.2). A score of 1 denotes not similar and 10 means very similar.
3A score of 1 denotes unsure and 10 means very sure.
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Figure 4.11: Subjects’ perception of the different mixer types.

tial playback genre detection worked better, 60% of the subjects detected unfitting songs

when using the DPM. The general trend is confirmed when analyzing four areas which

all appeared in combination with the SPM, SDM and SSM which is illustrated in figure

4.10(b). Nevertheless, based on the SPM an outlier detection rate of 62% was achieved.

Sequential playback enabled the subjects recognizing the presented region in more detail

which resulted in stricter judgments. So the subjects were able to perceive more passages

in the presented mix-down which do not fit to the rest of the signal. As a consequence,

the subjects’ rating of the ground-similarity decreased for sequential playback scenarios

what is shown in figure 4.10(c). Nearly in parallel to the decrease of the similarity score

the confidence level increased.

Most of the subjects seemed to be highly concentrated while listening to a mix-down

performed by one of the Parallel Mixers. Many of them sat in a strained position, staring

into space and frowning. During the interview session the subjects felt uncertain and

needed quite a long time for answering a question. In contrast, being confronted with a

sequential playback scenario the subjects seemed to be concentrated as well but without

being overburdened with the mass of perceived information. Therefore, the participants



4.3. USER STUDY 77

69%

24%

7%

77%

8%

15%

8%

77%

15%

31%

46%

8%

15%

(a) Ranking of the different mixers accord-
ing to the longest evaluation time without
concentration loss.

(b) Reflection rate of presented genres.

Figure 4.12: Results of the over-all questionnaire presented in table B.3.

felt more confident during the interview situation and were able to respond within shorter

time. This observation is confirmed by figure 4.11 which illustrates the subjects’ perception

according to best and worst listening comfort for a region consisting of a specified number

of x tracks, i.e. 3 ranges with 1 to 4, 5 to 10 and more than 10. As depicted in figure 4.11(a)

most of the subjects consider the Static Sequential Mixer to present a mix-down with the

highest listening comfort. Interestingly, the consideration that the mix-down based on the

Dynamic Sequential Mixer has the highest listening comfort raises with decreasing number

of tracks although it should be independent from x. Figure 4.11(b) reflects the subjects’

perception of which mixer type is linked with the worst listening comfort. Confirming the

observation above the Parallel Mixer components are considered to produce a mix-down

consisting of the worst listening comfort. Although nearly all subjects connected the Static

Parallel Mixer with the worst listening comfort, about 15% of the subjects thought that

it is the most effective one. However, figure 4.11(c) shows that most subjects assigned

both of the Sequential Mixers to be most effective. Nearly all participants argued that

indeed the playback time takes longer, but the perceived impression of the underlying

data was significantly of higher quality. In correlation to these results 69% of the subjects

think that the mix-down based on the Static Sequential Mixer enables them to perform

an evaluation for the longest time without losing concentration, as illustrated in figure

4.12(a). Generally, the Sequential Mixer instances allow performing an evaluation for a

longer time without a loss of concentration than the Parallel Mixers.

After the evaluation the subjects have been confronted with 23 listening situations covering

11 different regions of the PlaySOM music map. As already mentioned, prior to every

listening situation each subject was made aware of the presented area’s location in the
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music map. In order to analyze the intuitive structure of the visual representation of the

test set the subjects were asked if they were able to spot coarsely the areas containing

the genres Rock and Metal, Electronic and Classic. As depicted in figure 4.12(b)the

corresponding areas of the three genres were correctly retrieved by the subjects with a

performance of about 92%.

While the longest evaluation nearly took 55 minutes, all evaluations on average were

finished after 45 minutes.

4.4 Summary

In this chapter two evaluations concerning tuning cLynx’s Analysis Component and ana-

lyzing cLynx’s applicability were presented.

The first study analyzed two different approaches for potentially raising the effectiveness

of cLynx’s Analysis Component by only partially analyzing the audio signal. The first

method randomly extracted sample values which represented the basis for the calculation

of a description value set Θ. The comparison to the original set Θorig figured out that the

values resulting form the random approach were not sufficiently. The second method used

uniform sample extraction by fixed interval steps and worked significantly better, with a

deviation of only 6.2% when retaining 2% of the samples.

The second evaluation studied the human’s ability of filtering music and judging music

similarity based on the PlaySOM application and the cLynx plug-in. It showed that par-

allel playback has high accuracy in voice detection but does not enable subjects to detect

the main-genre of listening examples. Additionally, the estimated number of perceived

songs correlates with the size of the presented set of tracks which means that users get

some sort of feeling of how many songs they currently evaluate. However, parallel play-

back demands a high degree of concentration which is unsustainable over a long period.

The evaluation showed that sequential playback enabled the user a much better detection

of genres. Tests pointed out that subjects performed a stricter judging of the similarity

when the set of listening examples contained tracks of their preferred genre. This effect

also occurred when subjects with musical education were confronted with listening ex-

amples consisting of Classical songs. Additionally, the degree of rigor in judging music

similarity and assigning a song as outlier increased by switching from parallel playback to

sequential playback.



Chapter 5

Conclusions and Future Work

In this thesis the problem of judging music similarity measures was described. Chapter 2

discussed basic signal processing methods and introduced into state-of-the-art techniques

applied to systems which perform music organization based on similarity measures between

audio tracks. An example system namely PlaySOM was presented which is extended by

the plug-in cLynx, a tool offering novel approaches for music playback in order to support

the user in subjective similarity judgment and outlier detection. Chapter 3 delivered a

detailed insight into the design and functionality of cLynx. The user study, discussed

in chapter 4, is based on a listening test in which subjects are confronted with acoustic

mix-downs generated by the cLynx plug-in. The evaluation pointed out that subjective

interpretation, individual preferences and previous musical knowledge correlate with the

humans’ perception of music similarity and susceptibility to outlier detection. Although

all mixer types enabled the subjects to perceive singing parts, the results of the presented

listening test justify that the subjects performed a significantly stricter outlier detection

based on sequential playback than on parallel playback. By consequence, subjects were

able to detect more unfitting passages during sequential playback scenarios. Nevertheless,

based on the DPM an outlier detection rate of 60% was achieved. Additionally, both

Sequential Mixers enabled better genre detection. However, based on the mix-down of one

Parallel Mixer 85% of the presented areas were assigned to the correct genre. Even though

the evaluation figured out that all mixers are useful for genre identification, sequential

playback is recommended for scenarios containing many songs. Additionally, simultaneous

playback is advised to get a coarse overview of the underlying audio data within short time

which could be refined by using a Sequential Mixer afterwards.

The cLynx application which is documented in chapter 3 can be improved towards faster

analysis, additional normalization and mixer component definition and improved user

interaction. The following paragraphs point out several suggestions for possible improve-

ments and useful extensions.
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� Analysis time improvement: cLynx’s most time-expensive task, the analysis compo-

nent, could be improved by performing an analysis of only parts of the data, instead

of processing a signal entirely. A thought-provoking impulse might be provided by

the uniform analysis tuning approach which is described in section 4.2. Additionally,

the random analysis tuning method, which only uses a defined number of parts of

the signal, could improve its usefulness by implementing a heuristic. A possible and

simple heuristic could force the algorithm to not only choose the parts randomly,

but select some from the beginning, the middle and the end. This could eventually

make the results more representative to the original values.

� Interactive Distance Mixer: The Distance Mixer presents the most immersive over-

view of a defined area in a cluster structure because of taking the spatial position

of the signal within the area and its distance to the listener into account. As dis-

cussed in section 3.2.3 the Distance Mixer’s problem is that signals which are placed

very near to the origin (listener) can overlap other signals. Therefore, it would be

advantageous to undock the listener from the origin and place her/him to different

positions within the selected area. This would make signals accessible which are

overlapped by a signal when the listener is placed in the origin. Additionally, the

positioning of the signals could be implemented graphically in a similar way as de-

scribed in [Latif and Mayer, 2007] extended by a graphical instance which represents

the listener and allows to drag her/him to several positions on the plane.



Appendix A

Parameter Files

Table A.1 illustrates all keys along with their corresponding, possible values a valid start-

parameter file must consist of. They are stored in the format of a simple Key-Value list

like key=value. The parameter file can be passed using the parameter -sp in the execution

command for the Graphical Stand-Alone Mode. For the Plug-In Mode cLynx’s main class

provides the constructor CLynx(Properties p) through which the path to the file can be

passed.

Key Default Possible Values Description

mixer 0 0 = Static Sequential Mixer Type of multiplexer

1 = Dynamic Sequential Mixer

2 = Static Parallel Mixer

3 = Dynamic Parallel Mixer

4 = Distance Mixer

duration 3.0 Double value Number of seconds a track is played

back

fadeTime 0.3 Double value Delay of a crossfade

channels 2 Integer value Number of output channels for the

Sequence Dynamic Mixer

volume 130 Double value Volume for the Parallel Dynamic

Mixer

volume.master 80 Double value Master volume for the Parallel Dy-

namic Mixer

distancechannels 2 Integer value Number of channels for the Distance

Mixer

normalizer 2 0 = No Normalizer Type of Normalizer

1 = Linear Amplitude Normalizer

2 = Compressor

compression 4:1 Integer:Integer Ratio for the compressor

attack 50 Integer value Attacktime for the Compressor

release 50 Integer value Releasetime for the Compressor

analyser 3 0 = No Analyzer Type of Analyzer

1 = MinMax Analyzer

2 = Statistical Analyser1a

3 = Statistical Analyser2b

auses the arithmetic mean
buses the root mean square

Table A.1: Possible keys and values of the start-parameter file.
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Appendix B

User Study

ID Question Possible Answer

1 Did you recognize singing? Yes, No

2 Would it be possible to partly understand the lyrics? Yes, No

3 Did you recognize an Electronic beat? Yes, No

4 Did you recognize special instrumentals? Type of instruments

5 Did you recognize a dominant genre? Name of genre

6 How many tracks did you recognize? Number of songs

7 Did you hear songs not matching the main noise? Yes, No

8 How many unfitting songs did you recognize? Number of songs

9 How similar did you perceive all songs? [1,10]a

10 How did you feel the duration time? too short (1), short (2),

comfortable (3), long (4),

too long (5)

11 Would a longer duration improve the quality of your impression? Yes, No

12 How confident do you feel with your answers? [1,10]b

13 Did you sense the signals having constant equal volume level? Yes, No

a1...unequal, 10...equal
b1...unconfident , 10...confident

Table B.1: Questionnaire of the pre-study.
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ID Question Possible Answer

1 Did you recognize singing? Yes, No

2 Would it be possible to partly understand the lyrics? Yes, No

3 Did you recognize an Electronic beat? Yes, No

4 Did you recognize special instrumentals? Type of instruments

5 Did you recognize a dominant genre? Name of genre

6 How many tracks did you recognize? Number of songs

7 Did you hear songs not matching the main noise? Yes, No

8 How many unfitting songs did you recognize? Number of songs

9 How similar did you perceive all songs? [1,10]a

10 How confident do you feel with your answers? [1,10]b

a1...unequal, 10...equal
b1...unconfident , 10...confident

Table B.2: Questions each subject was asked after every listening situation.

ID Question Possible Answer

1 Which Mixer is the most comfortable for regions containing > 10

songs?

Mixer

2 Which Mixer is the most uncomfortable for regions containing > 10

songs?

Mixer

3 Which Mixer is the most comfortable for regions containing 5–10

songs?

Mixer

4 Which Mixer is the most uncomfortable for regions containing 5–10

songs?

Mixer

5 Which Mixer is the most comfortable for regions containing< 5 songs? Mixer

6 Which Mixer is the most uncomfortable for regions containing < 5

songs?

Mixer

7 Which Mixer was the most efficientaone? SSM (1), DSM (2), SPM

(3), DPM (4)

8 Order the Mixer according to the longest concentration time when

doing a long evaluation.

Mixer

9 Do you remember the region of the Music Map containing Rock and

Metal songs?

North, South, West, East

10 Do you remember the region of the Music Map containing Electronic

songs?

North, South, West, East

11 Do you remember the region of the Music Map containing Classic

songs?

North, South, West, East

aThe most efficient mixer represents the Mixer giving the subject an overview of the regions which

enables the subject to answer the questionnaire presented in table B.2 with high confidence in less time.

Table B.3: Questions each subject was asked after finishing all listening situations.
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Subject#: 1
Preferred Genre: Electro

Age: 27

Sex: male

Profession: Real Estate

Instrument: Piano

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 1 0 0 - Classic 3 0 0 6 2

2 0 0 1 Synthesizer Electro 5 0 0 8 8

3 1 1 1 Synthesizer, Percussion Electro 3 1 1 3 8

4 0 0 0 Guitar Classic 1 0 0 10 9

5 1 0 0 Percussion Rock & Metal 15 0 0 8 6

6 1 1 0 Piano Rock & Metal 2 1 1 5 7

7 1 1 0 Percussion, Guitar Rock & Metal 4 0 0 10 9

8 0 0 0 Piano, Guitar Classic 3 0 0 9 9

9 1 1 0 - Classic 3 1 1 8 8

10 1 0 0 Guitar, Percussion Rock & Metal 13 0 0 9 9

11 1 1 1 Drums Electro 4 1 1 6 8

12 0 0 0 Guitar Classic 4 0 0 7 7

13 1 1 0 Piano, Percussion Rock & Metal 4 1 1 7 8

14 1 1 1 Synthesizer Electro 17 1 1 10 9

15 1 1 1 Synthesizer Electro 5 1 1 9 9

16 1 0 1 Percussion, Guitar Rock & Metal 4 1 1 8 9

17 1 1 0 - Classic 14 1 1 9 9

18 0 0 0 Guitar Classic 17 0 0 10 9

19 1 0 0 Guitar Classic 8 1 1 9 9

20 1 1 0 Guitar Classic 7 1 1 8 8

21 1 1 1 Drums, Synthesizer Electro 6 1 1 7 8

22 1 1 1 Synthesizer Electro 17 0 0 9 9

23 1 1 0 Guitar, Percussion Rock & Metal 5 1 1 5 8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

SSM SPM SSM SPM DSM DPM SSM 1-2-4-3 S NE SE

Table B.4: Results of Subject1
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Subject#: 2
Preferred Genre: Electro

Age: 31

Sex: female

Profession: Social Worker

Instrument: -

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 1 1 0 - Classic, Chorus,

Church Music

2 1 1 6 8

2 0 0 1 Synthesizer Electro 1 0 0 10 9

3 1 1 1 Clarinet Electro 2 1 1 8 8

4 0 0 0 Stringed Instruments Classic 1 0 0 10 10

5 1 0 0 - - - - - - 2

6 1 1 0 Stringed Instrument, Per-

cussion, Guitar, Keyboard

Pop 3 1 1 6 9

7 1 1 0 Guitar, Percussion Rock & Metal 3 0 0 10 9

8 0 0 0 Harp Classic 2 0 0 10 10

9 1 0 0 Flute Classic 4 1 1 9 9

10 1 0 0 Guitar, Percussion Rock & Metal 5 1 1 9 9

11 1 1 1 Percussion, Guitar, Key-

board

Pop 6 1 1 8 8

12 0 0 0 Harp Classic 1 0 0 10 10

13 1 1 0 Stringed Instruments Pop 4 1 1 7 8

14 1 1 1 Synthesizer Electro 13 0 0 10 9

15 1 1 0 Synthesizer Electro 3 1 1 7 8

16 1 1 0 Stringed Instrument, Per-

cussion

Rock & Metal 3 1 1 2 8

17 1 1 0 Stringed Instruments,

Flute

Classic 6 1 1 8 9

18 1 0 0 Stringed Instruments, Vio-

lin

Classic 4 1 1 9 9

19 1 1 0 Stringed Instruments,

Flute

Classic 7 0 0 9 8

20 1 0 0 Stringed Instruments Classic 4 1 1 9 9

21 1 1 0 Percussion, Guitar, Syn-

thesizer

Electro 5 1 1 9 9

22 1 0 1 Synthesizer, Percussion Electro 11 0 0 10 8

23 1 1 0 Stringed Instrument, Per-

cussion, Keyboard

Rock & Metal 3 1 1 7 8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

DSM SPM DSM SPM SSM SPM DSM 2-1-4-3 S NW E

Table B.5: Results of Subject2
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Subject#: 3
Preferred Genre: Jazz

Age: 31

Sex: male

Profession: Doctor of Medicine

Instrument: Trumpet

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 1 0 0 Synthesizer Classic 3 1 1 8 7

2 0 0 1 Synthesizer Electro 3 0 0 3 5

3 1 0 1 Snare Drum, Bass Guitar,

Synthesizer

Rock & Metal 6 1 3 2 2

4 0 0 0 Guitar Classic 2 0 0 7 6

5 1 0 0 Piano, Guitar Rock & Metal 3 1 1 8 8

6 1 1 0 Percussion, Guitar Rock & Metal 4 1 1 5 9

7 1 0 0 Percussion, Guitar Rock & Metal 3 0 0 8 9

8 1 0 0 Piano, Harp Jazz 3 1 2 7 7

9 1 0 0 Strings Jazz 1 0 0 10 5

10 1 0 0 Guitar, Contrabass Rock & Metal 3 1 1 8 8

11 1 0 1 Percussion, Synthesizer World 3 0 0 8 6

12 0 0 0 Guitar Classic 1 0 0 10 10

13 1 0 0 Guitar, Harp Pop 3 1 2 1 10

14 1 1 0 Synthesizer Electro 4 1 1 9 8

15 1 0 1 Percussion, Synthesizer Electro 4 1 1 5 5

16 1 1 0 Percussion, Guitar Pop 3 1 1 6 6

17 1 0 0 Flute Classic 4 1 1 8 6

18 1 0 0 Guitar, Piano Classic 3 1 1 6 7

19 1 0 0 Percussion, Guitar, Piano Classic 3 1 1 4 8

20 1 1 0 Flute Classic 4 1 1 4 6

21 1 0 0 Bass Guitar, Percussion Pop 3 1 1 7 5

22 1 1 1 Synthesizer Electro 1 0 0 10 9

23 1 0 0 Guitar Pop 3 1 1 6 7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

SSM DSM SSM SPM DSM SPM SSM 3-1-4-2 SW NW SO

Table B.6: Results of Subject3
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Subject#: 4
Preferred Genre: Pop

Age: 28

Sex: female

Profession: Insurance Industry

Instrument: Piano

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 1 1 0 Guitar Choral, Church Mu-

sic

3 0 0 8 8

2 0 0 1 Snare Drum Electro 5 1 1 3 7

3 1 1 0 Percussion World 8 1 3 6 7

4 0 0 0 Guitar Folklore 2 0 0 10 8

5 1 0 0 - - 2 0 0 0 10

6 1 1 0 Piano, Guitar Rock & Metal 2 1 1 1 9

7 1 1 0 Guitar, Percussion Rock & Metal 3 1 1 7 8

8 0 0 0 Harp, Violin, Stringed In-

strument

Classic 3 1 2 8 7

9 1 1 0 Piano, Violin Classic 2 0 0 8 8

10 1 0 0 Guitar, Percussion Rock & Metal 2 1 1 3 7

11 1 0 1 Drums Rock & Metal 4 1 2 7 7

12 0 0 0 Guitar Folklore 2 0 0 10 9

13 1 1 0 Percussion, Guitar, Piano Rock & Metal 2 1 1 2 9

14 1 1 1 Bass, Synthesizer Electro 4 0 0 10 9

15 1 0 1 - Electro 4 1 1 8 8

16 1 1 0 Guitar Rock & Metal 3 1 1 6 7

17 1 1 0 Harp, Flute Classic 3 0 0 10 8

18 1 0 0 Guitar, Piano Classic 2 1 1 7 9

19 0 0 0 Guitar, Contrabass Classic 2 1 1 7 8

20 1 1 0 Flute, Violin, Guitar Classic 2 0 0 8 9

21 1 1 1 Percussion, Bass Electro 2 1 1 5 8

22 1 1 1 Synthesizer, Bass Electro 1 0 0 10 10

23 1 1 0 Percussion, Flute, Guitar Rock & Metal 2 1 1 4 9

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

DSM SSM DSM SSM DSM SSM DSM 2-1-4-3 SW NW E

Table B.7: Results of Subject4
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Subject#: 5
Preferred Genre: Rock

Age: 30

Sex: female

Profession: Dancer

Instrument: Piano, Flute

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 1 1 0 Guitar Opera, Classic

Choral

7 1 2 9 9

2 0 0 1 Synthesizer, Snare Drum Electro 3 0 0 10 9

3 1 1 1 - Electro 3 1 2 5 5

4 0 0 0 Plucked Instrument Folklore 2 0 0 9 6

5 1 0 0 Violin Classic 5 0 0 6 6

6 1 1 0 Guitar, Percussion Rock & Metal 3 1 1 8 8

7 1 0 0 Guitar, Percussion Rock & Metal 3 0 0 10 9

8 0 0 0 Piano, Violin Classic 10 0 0 10 9

9 1 1 0 Contrabass, Piano, Bells Classic 4 0 0 9 8

10 1 1 0 Guitar, Percussion, Piano Rock & Metal 9 1 3 5 8

11 1 1 1 Guitar, Percussion, Syn-

thesizer

Electro 4 1 1 8 8

12 0 0 0 Plucked Instrument Folklore 1 0 0 10 9

13 1 1 0 Guitar, Percussion Rock & Metal 4 1 1 9 9

14 1 1 1 Synthesizer Electro 16 0 0 10 9

15 1 1 1 Synthesizer, Guitar Electro 4 1 1 9 9

16 1 1 0 Guitar, Percussion Rock & Metal 3 0 0 9 8

17 1 1 0 - Classic 7 0 0 9 9

18 0 0 0 Plucked Instrument Classic 13 0 0 10 9

19 1 1 0 Plucked Instrument, Vio-

lin, Piano, Harp

Classic 14 1 1 9 9

20 1 1 0 Organ, Flute Classic 8 0 0 9 9

21 1 1 1 Synthesizer, Drums Electro 4 1 1 9 9

22 1 1 1 Synthesizer Electro 14 0 0 10 9

23 1 1 0 Plucked Instrument, Per-

cussion, Guitar

Rock & Metal 3 1 1 8 9

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

SSM SPM SSM SPM DSM SPM SSM 2-1-4-3 S NW E

Table B.8: Results of Subject5
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Subject#: 6
Preferred Genre: Punk

Age: 26

Sex: male

Profession: Computer Scientist

Instrument: -

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 1 0 0 Bass Classic 2 1 1 1 7

2 0 0 1 Synthesizer Electro 1 0 0 10 7

3 1 0 1 Synthesizer Electro 2 1 1 3 4

4 0 0 0 Stringed Instrument Classic 1 0 0 10 9

5 0 0 0 Guitar, Percussion Rock & Metal 1 0 0 10 8

6 1 1 0 Piano Punk 2 1 1 2 8

7 1 0 0 Bass, Percussion Rock & Metal 2 1 1 7 7

8 0 0 0 Stringed Instrument Classic 1 0 0 10 4

9 1 0 0 - Classic 2 1 1 5 6

10 1 0 0 Percussion Rock & Metal 2 1 1 1 6

11 1 0 0 Percussion Pop 1 0 0 10 4

12 0 0 0 Stringed Instrument Classic 1 0 0 10 8

13 1 1 0 - Punk 3 1 1 7 5

14 1 1 1 Synthesizer Electro 12 0 0 10 8

15 1 1 0 Synthesizer, Drums Electro 6 1 1 8 7

16 1 1 0 Guitar, Bass Guitar Punk 3 1 1 4 5

17 1 1 0 - World 7 1 1 7 7

18 1 0 0 Guitar, Piano Classic 10 1 2 9 8

19 0 0 0 Guitar, Piano Classic 4 1 1 7 6

20 1 1 0 Flute Classic 4 0 0 9 9

21 1 1 0 Synthesizer, Drums, Per-

cussion

Pop 3 0 0 8 6

22 1 1 1 Synthesizer Electro 1 0 0 10 5

23 1 1 0 - Punk 3 1 1 4 5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

SSM SPM SSM SPM SSM SPM SSM 1-4-2-3 S W NE

Table B.9: Results of Subject6
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Subject#: 7
Preferred Genre: Rock

Age: 26

Sex: female

Profession: Social Worker

Instrument: Piano

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 1 1 0 Flute, Guitar Classic 4 1 1 6 7

2 0 0 1 Synthesizer Electro 3 0 0 8 8

3 1 0 1 Synthesizer Electro 4 1 1 7 7

4 0 0 0 Guitar Classic 2 0 0 9 8

5 1 0 1 Percussion Rock & Metal 3 0 0 6 7

6 1 1 0 Guitar, Percussion Rock & Metal 3 1 1 7 8

7 1 1 0 Percussion Rock & Metal 2 1 1 2 8

8 0 0 0 Piano, Harp, Plucked In-

strument

Classic 2 1 1 3 8

9 1 1 0 Flute Classic 5 1 1 7 8

10 1 1 1 Percussion, Guitar Rock & Metal 6 1 2 7 8

11 1 1 1 Synthesizer Electro 4 1 1 7 8

12 0 0 0 Guitar Classic 2 0 0 9 7

13 1 1 0 Percussion, Guitar Rock & Metal 3 0 0 7 8

14 1 1 1 Synthesizer Electro 18 0 0 9 8

15 1 1 1 Synthesizer, Drums Electro 4 1 1 7 8

16 1 1 0 Percussion, Guitar Rock & Metal 3 1 1 7 6

17 1 1 0 Plucked Instrument Classic 7 1 2 7 7

18 1 1 0 Guitar, Piano Classic 12 1 2 9 9

19 1 1 0 Guitar Flute Classic 13 0 0 8 8

20 1 1 0 Bass, Transverse Flute Classic 6 1 2 7 8

21 1 1 1 Synthesizer, Drums Electro 6 1 2 7 7

22 1 1 1 Synthesizer Electro 25 0 0 9 9

23 1 1 0 Handcuffs Rock & Metal 5 1 1 7 7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

SSM SPM SSM SPM SSM SPM SPM 1-2-4-3 SW NW E

Table B.10: Results of Subject7
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Subject#: 8
Preferred Genre: Jazz

Age: 28

Sex: male

Profession: Computer Scientist

Instrument: -

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 1 0 0 Piano Classic 8 1 1 7 10

2 0 0 1 Synthesizer Electro 6 0 0 7 9

3 1 0 1 Synthesizer Electro 2 1 1 4 10

4 0 0 0 Guitar Classic 2 0 0 9 10

5 1 0 0 Snare Drums Rock & Metal 12 0 0 0 4

6 1 0 0 Percussion, Guitar Rock & Metal 6 1 1 8 9

7 1 0 0 Percussion, Guitar Rock & Metal 4 0 0 8 10

8 0 0 0 Stringed Instrument Classic 8 0 0 9 8

9 1 0 0 - Jazz 3 1 1 6 10

10 1 0 0 Percussion, Guitar Rock & Metal 8 0 0 7 5

11 1 0 1 Synthesizer, Percussion Electro 6 1 2 6 7

12 0 0 0 Guitar Classic 1 0 0 10 6

13 1 1 0 Percussion, Guitar Rock & Metal 4 1 1 5 8

14 1 1 1 Synthesizer Electro 10 0 0 6 8

15 1 1 0 Percussion, Guitar, Syn-

thesizer

Electro 4 1 2 3 9

16 1 1 0 Stringed Instrument, Gui-

tar

Rock & Metal 3 1 1 3 8

17 1 1 0 Flute Classic 7 1 2 4 8

18 1 0 0 Guitar, Piano Classic 8 1 1 6 7

19 1 0 0 Guitar, Piano, Percussion Classic 12 1 3 7 6

20 1 1 0 Flute, Guitar Jazz 7 1 3 5 6

21 1 1 1 Synthesizer, Percussion Rock & Metal 5 1 2 4 7

22 1 1 0 Synthesizer Electro 12 0 0 7 9

23 1 1 0 Guitar, Percussion, Flute Rock & Metal 4 1 2 3 7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

SSM SPM SSM DSM SSM DSM SPM 1-3-4-2 SW NW NE

Table B.11: Results of Subject8
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Subject#: 9
Preferred Genre: Electro

Age: 25

Sex: male

Profession: Computer Scientist

Instrument: -

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 1 0 0 Violin, Flute World 1 0 0 10 5

2 0 0 0 Synthesizer Electro 5 1 1 7 9

3 1 0 1 - Electro 4 0 0 6 7

4 0 0 0 Plucked Instrument World 1 0 0 10 10

5 1 0 0 Percussion Rock & Metal 2 0 0 7 6

6 1 1 1 Guitar, Percussion Pop 3 0 0 7 5

7 1 0 0 Guitar, Percussion Rock & Metal 1 0 0 10 6

8 0 0 0 Plucked Instrument World 2 0 0 8 7

9 1 1 0 Guitar World 1 0 0 10 6

10 1 1 0 Percussion Rock & Metal 8 1 2 7 8

11 1 1 1 Synthesizer, Guitar Electro 4 1 2 5 6

12 0 0 0 Guitar Pop 1 0 0 10 4

13 1 1 0 Percussion Pop 3 1 2 4 9

14 1 1 1 Synthesizer Electro 15 1 4 4 10

15 1 1 1 Percussion, Keyboard Electro 5 1 4 2 8

16 1 1 0 Percussion Rock & Metal 3 1 2 3 9

17 1 1 0 Transverse Flute Classic 8 1 2 6 6

18 0 0 0 Guitar, Piano Classic 14 1 3 7 8

19 1 0 0 Guitar, Oboe World 7 1 1 8 8

20 1 1 0 Flute Classic 8 1 3 6 7

21 1 0 1 Synthesizer Electro 8 1 1 6 7

22 1 1 1 Synthesizer Electro 26 1 3 5 9

23 1 1 0 Percussion Rock & Metal 4 1 1 7 9

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

SSM SPM SSM SPM DPM SPM SSM 1-4-2-3 S/SW NW SE

Table B.12: Results of Subject9
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Subject#: 10
Preferred Genre: Rock

Age: 22

Sex: male

Profession: Sport-Student

Instrument: Guitar

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 1 1 0 - Classic 4 0 0 9 9

2 0 0 1 Synthesizer Electro 5 0 0 9 10

3 1 1 0 Synthesizer Electro 4 1 1 7 8

4 0 0 0 Guitar Classic 3 0 0 10 9

5 1 0 0 - Rock & Metal 6 0 0 0 5

6 1 1 0 Guitar, Percussion Rock & Metal 6 1 1 7 8

7 1 1 0 Guitar, Percussion Rock & Metal 6 0 0 9 9

8 0 0 0 Stringed Instrument Classic 4 0 0 9 9

9 1 1 0 Contrabass World 4 0 0 7 7

10 1 0 0 Guitar, Percussion Rock & Metal 9 0 0 8 9

11 1 1 1 Synthesizer, Percussion Electro 5 0 0 9 9

12 0 0 0 Guitar Classic 2 0 0 10 10

13 1 1 0 Guitar, Percussion Rock & Metal 3 1 1 8 8

14 1 1 1 Synthesizer, Percussion Electro 13 1 1 8 7

15 1 1 1 Synthesizer, Drums, Bass Electro 5 1 1 7 8

16 1 1 0 Guitar, Percussion Rock & Metal 5 1 1 7 9

17 1 1 0 - World 6 1 5 2 7

18 1 1 0 Guitar, Piano Classic 12 1 2 9 10

19 1 0 0 Guitar, Piano Classic 8 1 2 7 8

20 1 1 0 Contrabass, Guitar World 7 1 5 3 6

21 1 1 1 Synthesizer, Percussion Electro 5 1 1 8 9

22 1 1 1 Synthesizer Electro 13 0 0 9 9

23 1 1 0 Guitar, Percussion Rock & Metal 4 1 1 7 8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

SSM SPM DSM SPM SSM SPM DSM 1-2-3-4 SW NW NE

Table B.13: Results of Subject10
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Subject#: 11
Preferred Genre: Rock

Age: 22

Sex: male

Profession: Student in political science

Instrument: Guitar

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 1 0 0 Bass Guitar Classic 6 0 0 8 7

2 0 0 1 Synthesizer Electro 3 0 0 8 7

3 1 0 1 Synthesizer Electro 5 0 0 6 5

4 0 0 0 Guitar Classic 3 0 0 8 8

5 1 0 0 Synthesizer Rock & Metal 4 0 0 0 4

6 1 1 0 Guitar, Percussion Rock & Metal 4 1 1 7 7

7 1 1 0 Guitar, Percussion Rock & Metal 5 0 0 7 8

8 0 0 0 Stringed Instrument Classic 4 0 0 8 7

9 1 1 0 Percussion, Keyboard Rock & Metal 7 0 0 7 6

10 1 0 0 Guitar, Percussion Rock & Metal 5 1 2 7 8

11 1 1 1 Synthesizer Electro 4 0 0 8 7

12 0 0 0 Guitar Classic 1 0 0 10 9

13 1 1 0 Guitar, Percussion Rock & Metal 3 1 2 2 7

14 1 1 1 Synthesizer Electro 12 0 0 6 6

15 1 1 1 Synthesizer, Guitar Electro 4 0 0 7 7

16 1 1 0 Guitar, Percussion Rock & Metal 3 1 1 2 7

17 1 1 0 Guitar, Harp Classic 6 1 1 7 4

18 1 0 0 Guitar, Piano Classic 10 1 2 8 8

19 1 0 0 Guitar, Percussion, Piano Classic 7 1 2 7 7

20 1 0 0 Flute Classic 6 1 1 6 7

21 1 1 0 Synthesizer, Percussion Electro 4 0 0 6 7

22 1 1 1 Synthesizer Electro 10 0 0 7 7

23 1 1 0 Guitar, Percussion Rock & Metal 3 1 1 5 7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

SSM SPM SSM SPM SSM SPM SSM 1-2-4-3 SW SE NE

Table B.14: Results of Subject11
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Subject#: 12
Preferred Genre: Rock

Age: 20

Sex: male

Profession: Student in agricultural science

Instrument: Piano

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 1 0 0 Organ Choral Classic 2 1 1 10 9

2 0 0 1 - Electro 2 1 1 8 10

3 1 1 1 Percussion Rock & Metal 2 1 1 10 8

4 0 0 0 Guitar Folklore 1 0 0 10 8

5 1 0 0 - Rock & Metal 1 0 0 10 4

6 1 1 1 Piano Rock & Metal 2 1 1 1 9

7 1 0 0 Guitar Rock & Metal 1 0 0 10 8

8 0 0 0 Piano World 3 1 2 2 7

9 1 1 1 Strings Classic 2 0 0 10 7

10 1 0 1 Guitar Rock & Metal 3 1 2 8 8

11 1 1 1 Percussion Electro 2 1 1 1 9

12 0 0 0 Guitar Folklore 1 0 0 10 9

13 1 1 0 Guitar Rock & Metal 3 1 1 6 7

14 1 1 1 Percussion Electro 10 0 0 9 9

15 1 1 1 Percussion Electro 5 1 1 6 7

16 1 1 1 Guitar, Percussion Rock & Metal 4 1 1 2 8

17 1 1 0 Strings Classic 4 0 0 9 5

18 1 0 0 Plucked Instrument Folklore 2 1 1 7 7

19 0 0 0 Guitar, Piano Classic 2 1 1 2 8

20 1 1 0 Strings Classic 3 1 1 4 6

21 1 1 0 Percussion Electro 2 1 1 2 10

22 1 1 1 Synthesizer Electro 5 0 0 10 8

23 1 1 0 Guitar, Percussion Rock & Metal 2 1 1 1 9

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

SSM SPM SSM SPM SSM SPM DSM 1-2-4-3 SW NW NE

Table B.15: Results of Subject12
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Subject#: 13
Preferred Genre: Jazz

Age: 26

Sex: male

Profession: Physiotherapist

Instrument: Piano

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 1 0 0 - Classic 5 0 0 9 6

2 0 0 1 Synthesizer Electro 6 0 0 10 9

3 1 0 1 Synthesizer Electro 4 1 1 6 7

4 0 0 0 Guitar Classic 2 0 0 9 10

5 1 0 0 Percussion Rock & Metal 15 0 0 9 5

6 1 1 0 Percussion, Guitar Rock & Metal 5 1 1 7 9

7 1 0 0 Percussion, Guitar Rock & Metal 5 0 0 8 6

8 0 0 0 Guitar, Piano Classic 7 0 0 9 9

9 1 1 0 Organ, Piano Classic 5 0 0 7 7

10 1 0 0 Percussion, Guitar Rock & Metal 10 1 3 8 6

11 1 0 1 Synthesizer, Bass, Drums Electro 5 1 2 6 8

12 0 0 0 Guitar Classic 2 0 0 10 10

13 1 1 0 Percussion, Guitar Rock & Metal 5 1 2 6 7

14 1 1 1 Synthesizer Electro 5 0 0 10 9

15 1 1 1 Percussion, Guitar, Syn-

thesizer

Electro 5 1 1 6 8

16 1 1 0 Percussion, Guitar, Flute Rock & Metal 3 1 1 4 9

17 1 1 0 Organ Classic 6 1 1 8 8

18 1 1 0 Guitar, Piano Classic 6 1 2 8 9

19 1 0 0 Percussion, Guitar, Piano Classic 5 1 2 7 9

20 1 1 0 Percussion, Guitar, Organ Classic 8 1 2 6 8

21 1 1 1 Synthesizer, Guitar,

Drums

Electro 5 1 2 5 6

22 1 1 1 Synthesizer Electro 5 0 0 10 10

23 1 1 0 Percussion, Guitar, Flute Rock & Metal 3 1 1 5 8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

SSM SPM SSM SPM SSM SPM DSM 1-2-4-3 SW NW E

Table B.16: Results of Subject13
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