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Motivation: Tutorial Goal

Overall Goal: Comprehensive review of systems and techniques that
tackle data storage and querying challenges of big RDF databases

Categorize Existing Systems

Survey State-of-the-Art Techniques

Intended Takeaways
Awareness of existing systems and techniques

Survey of effective storage and query optimization techniques of RDF
databases

Overview of open research problems

What this Tutorial is Not?
Introduction to Big Data

Introduction to Semantic Web and RDF

Introduction to SPARQL
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Today’s Agenda

Overview of RDF and SPARQL

Taxonomy of RDF Processing Systems
Centralized RDF Processing Systems

Distributed RDF Processing Systems

Open Challenges in Big RDF Processing Systems

Conclusions
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Part I

Overview of RDF and SPARQL
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RDF

RDF, the Resource Description Framework, is a data model that pro-
vides the means to describe resources in a semi-structured manner.

RDF is gaining widespread momentum and usage in different domains
such as Semantic Web, Linked Data, Open Data, social networks, dig-
ital libraries, bioinformatics, or business intelligence.

A number of ontologies and knowledge bases storing millions to bil-
lions of facts such as DBpedia1, Probase2 and Wikidata3 that are now
publicly available.

key search engines like Google and Bing are providing better support
for RDF.

1http://wiki.dbpedia.org/
2https://www.microsoft.com/en-us/research/project/probase/
3https://www.wikidata.org/
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RDF

RDF is designed to flexibly model schema-free information which rep-
resents data objects as triples, each of the form (S, P, O), where
S represents a subject, P represents a predicate and O represents an
object.

A triple indicates a relationship between S and O captured by P. Con-
sequently, a collection of triples can be represented as a directed graph
where the graph vertices denote subjects and objects while graph edges
are used to denote predicates.

The same resource can be used in multiple triples playing the same or
different roles, e.g., it can be used as the subject in one triple and as the
object in another. This ability enables to define multiple connections
between the triples, hence creating a connected graph of data.
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RDF
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RDF
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SPARQL

The SPARQL query language has been recommended by the W3C as
the standard language for querying RDF data.

A SPARQL query Q specifies a graph pattern P which is matched
against an RDF graph G .

The query matching process is performed via matching the variables in
P with elements of G such that the returned graph is contained in G
(graph pattern matching).

A triple pattern is much like a triple, except that S , P and/or O can
be replaced by variables.

Similar to triples, triple patterns can be modeled as directed graphs.
A set of triple patterns is called a basic graph pattern (BGP) and
SPARQL expressions that only contain such type of patterns are called
BGP queries.

S. Sakr (IEEE’17) Big Linked Data Processing Systems 10 / 78



Shapes of SPARQL BGP Queries

Star query: only consists of subject-subject joins where each join vari-
able is the subject of all the triple patterns involved in the query.

Chain query: consist of subject-object joins where the triple patterns
are consecutively connected like a chain.

Tree query: consists of subject-subject joins and subject-object joins.

Cycle query: contains subject-subject joins, subject-object joins and
object-object join.

Complex query: combination of different shapes.
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SPARQL
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Centralized Systems Vs Distributed Systems

The wide adoption of the RDF data model has called for efficient and
scalable RDF querying schemes.

Centralized systems: where the storage and query processing of RDF data
is managed on a single node.

Distributed systems: where the storage and query processing of RDF data
is managed on multiple nodes.

D
Q

d1Q

d2
Q

d3

Q

To Expedite Queries

(+) No Data Shuffling

(-)  Limited CPU Power 

& Memory Capacity
(-)  Existence of 

Data Shuffling

(+) Increased CPU Power 
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(a) (b)

S. Sakr (IEEE’17) Big Linked Data Processing Systems 13 / 78



Taxonomy of RDF Processing Systems

Linked Data/RDF Data
Management Systems

Centralized

Statement
Table Jena, 3Store, 4Store, Virtuoso

Property
Table Rstar, DB2RDF

Index
Permutations Hexastore, RDF-3X

Vertical
Partitioning SW-Store

Graph-Based gStore, chameleon-db

Binary
Storage BitMat, TripleBit

Distributed

NoSQL-Based JenaHBase, H2RDF

Hadoop/Spark-
Based Shard, HadoopRDF, SparkRDF, S2RDF

Main
Memory-

Based
Trinity.RDF, AdHash

Other
Systems Partout, TriAD, DREAM
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Part II

Centralized RDF Processing Systems
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Statement Tables

A straightforward way to persist RDF triples is to store triple statements
directly in a table-like structure as a linearized list of triples (ternary tuples).

.........

Producer1234 http://www.canon.comfoaf:homepage

Producer1234 Canonrdf:label

... ......

bsbm:producer
bsbm-

inst:Producer1234
Product12345

Canon Ixus 2010rdfs:labelProduct12345

Product12345 bsbm:Productrdf:type

ObjectPredicateSubject 

A common approach is to encode URIs and Strings as IDs and two separate
dictionaries are maintained for literals and resources/URIs.
Example systems include Jena4, 3Store5 , 4Store6 and Virtuoso7

4https://jena.apache.org/
5https://sourceforge.net/projects/threestore/
6https://github.com/4store/4store
7https://virtuoso.openlinksw.com/
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Indexing Permutations

This approach exploits and optimizes traditional indexing techniques
for storing RDF data by applying exhaustive indexing over the RDF
triples.

All possible combinations the three components is indexed and mate-
rialized.

< S,P,O >

SPO SOP PSO POS OSP OPS

The foundation for this approach is that any query can be answered
using the available indices so that it allows fast access to all parts of
the triples by sorted lists and fast merge-joins.

Example systems include Hexastore8 and RDF-3x9
8Weiss, Cathrin, Panagiotis Karras, and Abraham Bernstein. Hexastore: sextuple

indexing for semantic web data management. PVLDB 2008
9Neumann, Thomas, and Gerhard Weikum. RDF-3X: a RISC-style engine for RDF.

PVLDB 2008
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Property Tables

RDF does not describe any specific schema for the graph.

There is no definite notion of schema stability, meaning that at any
time the data schema might change.

There is no easy way to determine a set of partitioning or clustering
criteria to derive a set of tables to store the information.

Storing RDF triples in a single large statement table presents a number
of disadvantages when it comes to query evaluation. In most cases,
for each set of triple patterns which is evaluated in the query, a set of
self-joins is necessary to evaluate the graph traversal.

Since the single statement table can become very large, this can have
a negative effect on query execution.
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Property Tables

The main goal of clustered property tables is to cluster commonly accessed
nodes in the graph together in a single table to avoid the expensive cost of
many self-join operations on the large statement table encoding the RDF data.

The property tables approach attempts to improve the performance of eval-
uating RDF queries by decreasing the cost of the join operation via reducing
the number of required

...

...

aaa

NULL

NumericProperty1

............

bsbm:Product Canon Ixus 2010Product12345

LabelTypeSubject 

.........

Producer1234 http://www.canon.comfoaf:homepage

ObjectPredicateSubject 

Left-Over Triples

Product Property Table

Example systems include DB2RDF10, Jena2
10Bornea, Mihaela A., et al. Building an efficient RDF store over a relational

database. SIGMOD, 2013
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Vertical Partitioning

This approach applies a fully decomposed storage model.

The approach rewrites the triple table into m tables where m is the number
of unique properties in the dataset. Each of the m table consists of two
columns: subject and the object value. The subjects which are not described
by a particular property are simply omitted from the table for that property.
For the case of a multi-valued attribute, each distinct value is listed in a
successive row in the table for that property.

Each of the m tables is indexed by subject so that particular subjects can
be retrieved quickly. Fast merge join operations are exploited to reconstruct
information about multiple properties for subsets of subjects.

bsbm:ProductProduct12345

Subject Object

CanonProducer1234

Canon Ixus 2010Product12345

Subject Object

<rdf:type> <rdfs:label>

... ...

xxxuuu

Subject Object

<aaa>

Example systems include SW-Store11

11Abadi, Daniel J., et al. Scalable semantic web data management using vertical
partitioning. VLDB, 2007
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Graph-Based Storage

RDF naturally forms graph structures, hence one way to store and process it
is through graph-driven data structures and algorithms.

Some approaches have applied ideas from the graph querying world to effi-
ciently handle RDF data.

SPARQL queries are treated as sub-graph matching problem.

Example systems include gStore, chameleon-db, TurboHOM++
12, AMbER13

12Kim et al. Taming subgraph isomorphism for RDF query processing. PVLDB, 2015
13Ingalalli et al. Querying RDF Data Using A Multigraph-based Approach. EDBT, 2016.
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Graph-Based Storage: gStore14

RDF graph is stored as a disk-based adjacency list table.

For each class vertex in the RDF graph, gStore assigns a bit string as its vertex
signature.

During query processing, the vertices of the SPARQL query are encoded into
vertex signatures and then the query is encoded into its corresponding query
signature graph.

Answering the SPARQL query is done by matching the vertex signature of the
query graph over vertex signature of the RDF graph.

?name

?m

*02-12* *04-15*

BornOnDate DiedOnDate

hasName

(a) Query Q2

?m ?city

FoundYear

1718

bornIn

bornOnDate

*1976*
?name

hasName

(b) Query Q3

Figure 2: Query Graphs

2. PRELIMINARIES
RDF data are a collection of triples denoted as SPO (subject,

property, object), where subject is an entity or a class, and property
denotes one attribute associated to one entity or a class, and object
is an entity, a class, or a literal value. According to the RDF stan-
dard, an entity or a class is denoted by a URI (Uniform Resource
Identifier). For example, in Figure 1, “http://en.wikipedia.org/wiki/
United States” is an entity, “http://en.wikipedia.org/wiki/Country”
is a class, and “United States” is a literal value. In this work, we
will not distinguish between an “entity” and a “class” since we have
the same operations over them. RDF data can also be modeled as
an RDF graph, which is formally defined as follows:

DEFINITION 2.1. A RDF graph is denoted as G = 〈V, LV , E,
LE〉, where (1) V = Vc ∪ Ve ∪ Vl is a collection of vertices that
correspond to all subjects and objects in RDF data, where Vc, Ve,
and Vl are collections of class vertices, entity vertices, and literal
vertices, respectively. (2) LV is a collection of vertex labels. Given
a vertex v ∈ Vl, its vertex label is its literal value. Given a vertex
v ∈ Vc∪Ve, its vertex label is its corresponding URI. (3) E = (v1, v2)
is a collection of directed edges that connect the corresponding
subjects and objects. (4) LE is a collection of edge labels. Given
an edge e ∈ E, its edge label is its corresponding property.

Figure 1(b) shows an example of an RDF graph. The vertices
that are denoted by boxes are entity or class vertices, and the oth-
ers are literal vertices. A SPARQL query Q is also a collection
of triples. However, some triples in Q have parameters or wild-
cards. In Q2 (in Section 1), “?m” is a parameter and “?dd” in
FILTER(regx(?dd,“04-15”)) is called a wildcard. Thus, as shown in
Figure2(a), we can rewrite “?dd” and FILTER(regx(?dd,“04-15”))
as “*04-15*”.

DEFINITION 2.2. A query graph is denoted as Q = 〈V, LV , E, LE〉,
where (1) V = Vc ∪ Ve ∪ Vl ∪ Vp ∪ Vw is collection of vertices that
correspond to all subjects and objects in a SPARQL query, where
Vp and Vw are collections of parameter vertices and wildcard ver-
tices, respectively, and Vc and Ve and Vl are defined in Definition
2.1. (2) LV is a collection of vertex labels. For a vertex v ∈ Vp,
its vertex label is φ. The vertex label of a vertex v ∈ Vw is the sub-
string without the wildcard. A vertex v ∈ Vc ∪ Ve ∪ Vl is defined in
Definition 2.1. (3) E and LE are defined in Definition 2.1.

Figure 2(a) shows a query example that corresponds to Example
2. “*02-12*” is a wildcard vertex, and its label is “02-12”. “?m” is
a parameter vertex and its label is φ.

DEFINITION 2.3. Consider an RDF graph G and a query graph
Q that has n vertices {v1, ..., vn}. A set of n distinct vertices {u1, ..., un}
in G is said to be a match of Q, if and only if the following condi-
tions hold:

1. If vi is a literal vertex, vi and ui have the same literal value;

2. If vi is an entity or class vertex, vi and ui have the same URI;

3. If vi is a parameter vertex, there is no constraint over ui;

4. If vi is a wildcard vertex, vi is a substring of ui and ui is a
literal value.

5. If there is an edge from vi to v j in Q with the property p, there
is also an edge from ui to u j in G with the same property p.

Given a query graph Q2 in Figure 2(a), vertices (005,009,010,011)
in RDF graph G form a match of Q2. Answering a SPARQL query
is equivalent to finding all matches of its corresponding query graph
in RDF graph.

DEFINITION 2.4. (Problem Definition) Given a query graph Q
over an RDF graph G, find all matches of Q over G according to
Definition 2.3.

3. OVERVIEW OF gStore
Our general framework consists of both offline and online pro-

cesses. During offline processing, we first represent an RDF dataset
by an RDF graph G and store it by its adjacency list table T , as
shown in Figure 4. Then, we encode each entity and class vertex
into a bitstring (called vertex signature). The encoding technique
will be discussed in Section 4. According to RDF graph’s structure,
we link these vertex signatures to form a data signature graph G∗,
in which, each vertex corresponds to a class or an entity vertex in
the RDF graph, as shown in Figure 3. Specifically, G∗ is induced
by all entity and class vertices in G together with the edges whose
endpoints are either entity or class vertices. At run time, we can
also represent a SPARQL query by a query graph Q and encode
it into a query signature graph Q∗. Then, finding matches of Q∗

over G∗ leads to candidates (denoted as CL). Finally, we verify
each candidate by checking adjacency list table T . Note that, the
matches of Q over G are denoted as RS .

Figure 3 shows an example of a data signature graph G∗, which
corresponds to RDF graph G in Figure 1(b). Note that each entity
and class vertex in G is encoded into a signature. We also encode
query Q3 (in Figure 2(b)) into a query signature graph Q∗, as shown
in Figure 3. There is only one match of Q∗ over G∗, that is CL =
{(001, 002)}. Finally, by checking the adjacency list T (in Figure
4), we can find that (001, 002) is also a match of Q over G.

0010 1000 1000 0100

1000 0001

0001 1000

0000 0001

001 002

003

004
005

1000 1000
006

0001 0100

008

0000 1000 1000 0000

Query  Signature Graph 

Data Signature Graph

0100 0100
007

*Q

*G

10000

00010

01000

00010

0010000010

00001

00010

10000

Figure 3: Signature Graphs

Finding matches of Q∗ over G∗ is known to be NP-hard since it
is analogous to subgraph isomorphism. Therefore, we propose an
index and filtering strategy to reduce the search space over which
we do matching. Reducing the search space has been considered in
other works as well (eg. [17, 24]).

According to this framework, there are two issues to be addressed.
First, the encoding technique should guarantee that there are no
no-false-negatives, i.e., RS ⊆ CL. Second, an efficient subgraph
matching algorithm is required to find matches of Q∗ over G∗. To
address the first issue, we propose a coding technique in Section 4.
For the second issue, we design novel index structures (called VS
and VS∗-trees) and query algorithms in Sections 5 and 6.

4. STORAGE SCHEME AND ENCODING
TECHNIQUE

We propose a graph-based storage scheme for RDF data. Specif-
ically, we store an RDF graph G using a disk-based adjacency list

484

14Zou, Lei, et al. gStore: a graph-based SPARQL query engine. VLDB J., 2014
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Graph-Based Storage: chameleon-db15

A workload-aware RDF data management system that automatically
adjusts its layout of the RDF database with the aim of optimizing the
query execution time and auto-tuning its performance.

In contrast to gStore which evaluates the queries over the entire RDF
graph, chameleon-db partitions the RDF graph and prunes out the
irrelevant partitions during query evaluation by using partition indexes.

The main goal of the partitioning strategy is to carefully identify the
graph partitions that truly contribute to the final results in order to min-
imize the number of dormant triples which is required to be processed
during query evaluation and hence improve the system performance for
that workload.

To prune the irrelevant partitions, it uses an incremental indexing tech-
nique that uses a decision tree to keep track of which segments are
relevant to which queries.

15Aluc et al. chameleon-db: a workload-aware robust RDF data management system.
University of Waterloo, Tech. Rep. CS-2013-10, 2013.

S. Sakr (IEEE’17) Big Linked Data Processing Systems 23 / 78



Binary Storage: BitMat16

A 3-dimensional (subject, predicate, object) bit matrix which is flat-
tened in 2-dimensions for representing RDF triples.

Each element of the matrix is a bit encoding the absence or presence
of that triple. Therefore, very large RDF triple-sets can be represented
compactly in memory as BitMats.

The data is compressed on each row, using RLE, and Bitwise AND/OR
operators are used to process join queries expressed as conjunctive pat-
terns.

During query processing, the BitMat representation allows fast identi-
fication of candidate result triples in addition to providing a compact
representation of the intermediate results for multi-joins.

16Atre et al. Bitmat: A main-memory bit matrix of rdf triples for conjunctive triple
pattern queries. ISWC, 2008.
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Binary Storage: BitMat

Generic relational data can have varied dimensions (i.e. number of columns),
and hence the SQL query processing algorithms have to encompass this nature of
relational data. As opposed to that, an RDF triple is a fixed 3-dimensional (S, P,
O) entity and the dimensionality of SPARQL conjunctive triple pattern queries
is also fixed (which depend on the number of conjunctive patterns in the query).
Hence while building the BitMat structure and query processing algorithms, we
made use of this fact.

In essence, BitMat is a 3-dimensional bit-cube, in which each cell is a bit
representing a unique triple denoting the presence or absence of that triple by
the bit value 1 or 0. This bit-cube is flattened in a 2-dimensional bit matrix for
implementation purpose. Figure 1 shows an example of a set of RDF triples and
the corresponding BitMat representation.

Object

:released_in :similar_plot_as :is_a

:the_thirteenth_floor

:the_matrix 0     1     0

0     1     0

0     0     0

1     0     0

0     0     1

0     0     1

:the_matrix "1999"

"1999":released_in

:released_in

:similar_plot_as :the_matrix

:the_matrix :is_a :movie

:is_a :movie

:the_thirteenth_floor

:the_thirteenth_floor

:the_thirteenth_floor

Distinct subjects: [

Distinct predicates: [ :is_a ]:released_in, :similar_plot_as,

Distinct objects: [ ]

:the_matrix,

:movie:the_matrix, "1999",

]:the_thirteenth_floor

Note: Each bit sequence represents sequence of objects (:the_matrix, "1999", :movie)

Subject Predicate

Fig. 1. BitMat of sample RDF data

If the number of distinct subjects, predicates, and objects in a given RDF
data are represented as sets Vs, Vp, Vo, then a typical RDF dataset covers a very
small set of Vs ×Vp ×Vo space. Hence BitMat inherently tends to be very sparse.
We exploit this sparsity to achieve compactness of the BitMat by compressing
each bit-row using D-gap compression scheme [7]1.

Since conjunctive triple pattern (join) queries are the fundamental building
blocks of SPARQL queries, presently our query processing algorithm supports
only those. These queries are processed using bitwise AND, OR operations on
the compressed BitMat rows. Note that the bitwise AND, OR operations are
directly supported on a compressed BitMat thereby allowing memory efficient
execution of the queries. At the end of the query execution, the resulting filtered
triples are returned as another BitMat (i.e. a query’s answer is another result
BitMat). This process is explained in Section 4.

Figure 2 shows the conjunctive triple pattern for movies that have similar plot
and the corresponding result BitMat. Unlike the conventional RDF triple stores,

1 E.g. In D-gap compression scheme a bit-vector of “0011000” will be represented as
[0]-2,2,3. A bit-vector of “10001100” will be represented as [1]-1,3,2,2.

34
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Binary Storage: TripleBit17

It is designed as a storage structure that can directly and efficiently
query the compressed data.

TripleBit sorts the columns by predicates in lexicographic order and
vertically partition the matrix into multiple disjoint buckets, one per
predicate.

TripleBit uses two auxiliary indexing structures:

ID-Chunk bit matrix: supports a fast search of the relevant chunks
matching to a given subject or object.

ID-Predicate bit matrix: provides a mapping of a subject (S) or an
object (O) to the list of predicates to which it relates.

These indexing structures are effectively used to improve the speedup
for scan and merge-join performance.

17Yuan et al., TripleBit: a fast and compact system for large scale RDF data.
PVLDB, 2013
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Part III

Distributed RDF Processing Systems
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Processing Models of RDF Systems
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NoSQL Databases

NoSQL database systems represent a new generation of low-cost, high-
performance database software which is increasingly gaining more and
more popularity.

These systems promise to simplify administration, be fault-tolerant and
able to scale on commodity hardware (Scale out).

The original intention has been modern web-scale databases. The
movement began early 2009 and is growing rapidly.

Design Features of NoSQL Database Systems
The ability to horizontally scale out throughput over many servers.

A simple call level interface or protocol (in contrast to a SQL binding).

Efficient use of distributed indexes and RAM for data storage.

The ability to dynamically define new attributes or data schema.
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Main Categories of NoSQL Database Systems18

Key-value stores: A collection of objects where each object has a
unique key and a set of attribute/ value pairs.

Extensible record stores: Variable-width tables (Column Families)
that can be partitioned vertically and horizontally across multiple servers.

Document stores: Consists of objects with a variable number of at-
tributes with a possibility of having nested objects.

Graph stores: A database that uses graph structures with nodes,
edges, and properties to represent and store data. objects.

18Sakr et al. ”A Survey of Large Scale Data Management Approaches in Cloud
Environments”.IEEE Communications Surveys and Tutorials (IEEE COMST) 13(3),
2011

S. Sakr (IEEE’17) Big Linked Data Processing Systems 30 / 78



Main Categories of NoSQL Database Systems

M

D

After NoSQL

Relational Analytical (OLAP) Key-Value

Column-Family DocumentGraph

key value

key value

key value

key value

8
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NoSQL Database Systems

http://nosql-database.org/
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NoSQL-Based RDF Systems

No SQL Systems

HBase

Jena-HBase

H2RDF, H2RDF+

Accumulo

Rya

Amazon S3

AMADA

MongoDB

D-SPARQ
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NoSQL-Based RDF Systems: JenaHBase19

It uses HBase, a NoSQL column family store, to provide various custom-built
RDF data storage layouts which cover various tradeoffs in terms of query
performance and physical storage

It designs several HBase tables with different schemas to store RDF triples.

The simple layout uses three tables each indexed by subjects, predicates
and objects.
For every unique predicate, the vertically partitioned layout creates two
tables where each of them is indexed by subjects and objects.
The indexed layout uses six tables representing the six possible combi-
nations of indexing RDF triples.
The hybrid layout combines both the simple and vertical partitioning.
The hash layout combines the hybrid layout with hash values for nodes
and a separate table maintaining hash-to-node encodings.

For each of these layouts, JenaHBase processes all operations (e.g., loading
triples, deleting triples, querying) on a RDF graph by implicitly converting
them into operations on the underlying storage layout.

19Khadilkar et al., Jena-HBase: A distributed, scalable and efficient RDF triple store.
ISWC, 2012.
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NoSQL-Based RDF Systems: JenaHBase

Jena-HBase Store

Connection Config Formatter

Query Planner Layout Loader

Layout 1 –
Simple

Layout 2 –
Vertically Partitioned

Layout 3 –
Indexed

Layout 4 –
Vertically Partitioned

and Indexed

Layout 5 –
Hybrid

Layout 6 –
Hash
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NoSQL-Based RDF Systems: H2RDF+20

A distributed RDF storage system that combines a multiple-indexing
scheme over HBase and the Hadoop framework.

H2RDF+ creates three RDF indices (spo, pos and osp) over the HBase
store.

During the data loading, H2RDF collects all the statistical information
which is utilized by the join planner algorithm during query processing.

During query processing, the Join Planner navigates through the query
graph and greedily selects the joins that need to be executed based on
the selectivity information and the execution cost of all alternative join
operations.

H2RDF+ uses a join executor module which, for any join operation,
chooses the most advantageous join scenario by selecting among cen-
tralized and fully distributed execution, via the Hadoop platform.

20Papailiou et al. H2RDF+: an efficient data management system for big RDF
graphs. SIGMOD, 2014.
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NoSQL-Based RDF Systems: H2RDF+
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NoSQL-Based RDF Systems: CumulusRDF21

An RDF store which provides triple pattern lookups, a linked data server
and proxy capabilities, bulk loading, and querying via SPARQL.

The storage back-end of CumulusRDF is Apache Cassandra.

The index schema of Cumulus-RDF consists of four indices (SPO, PSO,
OSP, CSPO) to support a complete index on triples and lookups on
named graphs (contexts).

The indices are stored in a flat layout utilizing the standard key-value
model of Cassandra.

Each index provides a hash based lookup of the row key, a sorted lookup
on column keys and values, thus enabling prefix lookups.

CumulusRDF translates SPARQL queries to index lookups on the dis-
tributed Cassandra indices and processes joins and filter operations on
a dedicated query node.

21Ladwig and Harth. CumulusRDF: linked data management on nested key-value
stores. SSWS, 2011
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NoSQL-Based RDF Systems: D-SPARQ22

A distributed RDF query engine on top of MongoDB, a NoSQL document
database

D-SPARQ constructs a graph from the input RDF triples, which is then par-
titioned using hash partitioning across the machines in the cluster.

After partitioning, all the triples whose subject matches a vertex are placed in
the same partition as the vertex (hash partitioning based on subject).

A partial data replication is applied where some of the triples are replicated
across different partitions to enable the parallelization of query execution.

Grouping the triples with the same subject enables D-SPARQ to efficiently
retrieve triples which satisfy subject-based star patterns in one read call for a
single document.

D-SPARQ also uses indexes involving subject-predicate and predicate-object.

The selectivity of each triple pattern is used to reduce the query runtime
during query execution by reordering the individual triple patterns within a
star pattern.

22Mutharaju et al. D-SPARQ: distributed, scalable and efficient RDF query engine.
ISWC, 2013.
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Hadoop
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Hadoop’s Execution Architecture
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Hadoop-Based RDF Systems: HadoopRDF23

A scale-out architecture which combines the distributed Hadoop frame-
work with a centralized RDF store, RDF-3X for querying RDF databases.

The data partitioner of HadoopRDF executes a disjoint partitioning of
the input RDF graph by vertex using a graph partitioning algorithm
that allows triples which are close to each other in the RDF graph to
be allocated on the same node.

HadoopRDF replicates some triples on multiple machines based on
specified n-hop guarantees.

HadoopRDF automatically decomposes the input query into chunks
which can be evaluated independently with zero communication across
partitions and uses the Hadoop framework to combine the resulting
distributed chunks

23Huang et al. Scalable SPARQL querying of large RDF graphs. PVLDB, 2011
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Hadoop-Based RDF Systems: HadoopRDF
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Hadoop-Based RDF Systems: PigSPARQL24

PigSPARQL compiles SPARQL queries into the Pig query language, a data
analysis platform over the Hadoop framework.

Pig uses a fully nested data model and provides relational style operators (e.g.,
filters and joins).

A SPARQL query is parsed to generate an abstract syntax tree which is sub-
sequently compiled into a SPARQL algebra tree.

Using this tree, PigSPARQL applies various optimizations on the algebra level
such as the early evaluation of filters and using the selectivity information for
reordering the triple patterns.

PigSPARQL traverses the optimized algebra tree bottom up and generates
an equivalent sequence of Pig Latin expressions for every SPARQL algebra
operator.

For query execution, Pig automatically maps the resulting Pig Latin script
onto a sequence of Hadoop jobs.

24Schatzle et al. PigSPARQL: a SPARQL query processing baseline for big data.
ISWC, 2013
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Hadoop-Based RDF Systems: PigSPARQL
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Hadoop-Based RDF Systems: SHAPE25

The SHAPE system is implemented on top of the Hadoop framework with the
master server as the coordinator and the set of slave servers as the workers.

The SHAPE system uses RDF-3X on each slave server and used Hadoop to
join the intermediate results generated by subqueries.

The SHAPE system uses a semantic hash partitioning approach that combines
locality-optimized RDF graph partitioning with cost-aware query partitioning
for processing queries over big RDF graphs. It maximizes the intra-partition
processing capability and minimizes the inter-partition communication cost.

The SHAPE system classifies the query processing into two types: intra-
partition processing and inter-partition processing.

The intra-partition processing is used for the queries that can be fully executed
in parallel on each server by locally searching the subgraphs matching the triple
patterns of the query without any inter-partition coordination.

The inter-partition processing is used for the queries that cannot be executed
on any partition server, and it needs to be decomposed into a set of subqueries
such that each subquery can be evaluated by intra-partition processing.

25Lee and Liu. Scaling queries over big RDF graphs with semantic hash partitioning.
PVLDB, 2013
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Hadoop-Based RDF Systems: CliqueSquare26

CliqueSquare exploits the built-in data replication mechanism of HDFS,
three replicas by default, to partition the RDF dataset in different ways.

For the first replica, it partitions triples based on their subject, property,
and object values. For the second replica, it stores all subject, property,
and object partitions of the same value within the same node. Finally,
for the third replica, it groups all the subject partitions within a node
by the value of the property in their triples.

For query processing, CliqueSquare relies on a clique-based algorithm to
produces query plans that minimize the number of MapReduce stages.

The algorithm is based on the variable graph of a query and its decom-
position into clique subgraphs. The algorithm works in an iterative way
to identify cliques and to collapse them by evaluating the joins on the
common variables of each clique.

26Goasdoue et al., Cliquesquare: Flat plans for massively parallel RDF queries. ICDE,
2015.
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MapReduce for Iterative Operations

MapReduce is not optimized for iterative operations
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Spark29

Apache Spark is a fast, general engine for large scale data processing
on a computing cluster (new engine for Hadoop)27

Developed initially at UC Berkeley, in 2009, in Scala, and is currently
supported by Databricks28

One of the most active and fastest growing Apache projects

Committers from Cloudera, Yahoo, Databricks, UC Berkeley, Intel,
Groupon and others.

27M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster Computing with Working Sets. HotCloud, 2010.

28https://databricks.com/
29http://spark.apache.org/
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Spark

RDD (Resilient Distributed Dataset), an in-memory data abstrac-
tion, is the fundamental unit of data in Spark

Resilient: if data in memory is lost, it can be recreated

Distributed: stored in memory across the cluster

Dataset: data can come from a file or be created programmatically

Spark programming consists of performing operations (e.g., Map, Fil-
ter) on RDDs
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Spark VS Hadoop
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Spark Programming Model       
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Spark VS Hadoop

Spark takes the concepts and performance of MapReduce to the
next level
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Spark-Based RDF Systems: S2RDF (SPARQL on Spark for
RDF)30

Applies a relational partitioning schema for encoding RDF data called
ExtVP (the Extended Vertical Partitioning) and uses a semi-join based
preprocessing to efficiently minimize query input size by taking into ac-
count the possible join correlations between underlying encoding tables
of the RDF data (join indices).

ExtVP precomputes the possible join relations between partitions (i.e.
tables).

S2RDF determines the subsets of a VP table VPp1 that are guaranteed
to find at least one match when joined with another VP table VPp2

where p1 and p2 are query predicates.

The query evaluation of S2RDF is based on SparkSQL, the relational
interface of Spark.

30Schatzle et al., S2RDF: RDF querying with SPARQL on spark. PVLDB, 2016
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Spark-Based RDF Systems: S2X (SPARQL on Spark with
GraphX)32

RDF engine has been implemented on top of GraphX, an abstraction
for graph-parallel computation that has been augmented to Spark

It combines graph-parallel abstractions of GraphX to implement the
graph pattern matching constructs of SPARQL.

Other Similar approaches

RDF engine on top the GraphLab framework, another graph-parallel
computation platform

TripleRush31 which is based on the graph processing framework Sig-
nal/Collect, a parallel graph processing system written in Scala.

31Stutz et al. Triplerush: A fast and scalable triple store. ICSSWK, 2013.
32Schatzle al., S2X: graph-parallel querying of RDF with GraphX. VLDB Workshop,

2015.
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Main Memory-Based RDF Systems: Trinity.RDF33

Trinity.RDF is built on top of Trinity, a distributed main memory-based
key/value storage system and a custom communication protocol using
the Message Passing Interface (MPI) standard.

It provides a graph interface on top of the key/value store by partition-
ing the RDF dataset across the machines using hashing on the graph
nodes where each machine maintains a disjoint part of the graph.

For any SPARQL query, a user submits his query to a proxy. Trin-
ity.RDF performs parallel search on each machine by decomposing the
input query into a set of triple patterns and conducting a sequence of
graph traversal to produce bindings for each of the triple pattern.

The proxy generates a query plan and submits the plan to all the ma-
chines that maintain the RDF dataset where each machine evaluates
its part of the query plan under the coordination of the proxy node.

33Zeng et al., A distributed graph engine for web scale RDF data. PVLDB, 2013.
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Main Memory-Based RDF Systems: AdHash 34

AdHash initially applies lightweight hash partitioning that distributes triples
of the RDF triples by hashing on their subjects.

It attempts to improve the query execution times by increasing the number of
join operations that can be executed in parallel without data communication
through utilizing hash-based locality.

AdHash continuously monitors the data access patterns of the executed work-
load and dynamically adapts to the query workload by incrementally redis-
tributing and replicating the frequently partitions of the graphs.

The main goal for the adaptive dynamic strategy of AdHash is to effectively
minimize or eliminate the data communication cost for future queries.

Hot patterns are redistributed and potentially replicated to allow future work-
loads which contain them to be evaluated in parallel by all worker nodes
without any data transfer

To efficiently manage the replication process, AdHash specifies a budget con-
straint and uses an eviction policy for the redistributed patterns.

34Harbi et al. Accelerating SPARQL queries by exploiting hash-based locality and
adaptive partitioning. VLDB J., 2016
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Main Memory-Based RDF Systems: AdHash
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Other Distributed RDF Systems: Partout35

The Partout engine relies on a workload-aware partitioning strategy that allows
queries to be executed over a minimum number of machines.

Partout exploits a representative query workload to collect information about
frequently co-ocurring subqueries and for achieving optimized data partition-
ing and allocation the data to multiple nodes.

The architecture of Partout consists of a coordinator node and a cluster of
hosts that store the actual data. The coordinator node is responsible for
distributing the RDF data among the host nodes, designing an efficient dis-
tributed query plan for a SPARQL query, and initiating query evaluation. Each
of the host nodes runs a triple store, RDF-3X.

Partout’s global query optimization algorithm avoids the need for a two-step
approach by starting with a plan optimized with respect to the selectivities
of the query predicates and then applying heuristics to obtain an efficient
plan for the distributed setup. Each host relies on the RDF-3X optimizer for
optimizing its local query plan.

35Galarraga et al., Partout: a distributed engine for efficient RDF processing. WWW,
2014.
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Other Distributed RDF Systems: DREAM36

The DREAM system has been designed as a Distributed RDF Engine with
Adaptive Query Planner and Minimal Communication.

It is designed with the aim of avoiding partitioning RDF graphs. DREAM
stores a dataset intact at each cluster machine and it partitions SPARQL
queries rather than partitioning RDF datasets.

The query planner of DREAM transforms Q into a graph, G , decomposes
G into sets of sub-graphs, each with a basic two-level tree structure, and
maps each set to a separate machine. Afterwards, all machines process their
sub-queries in parallel and coordinate with each other to return the final result.

Each of the host nodes uses RDF-3X to evaluate the sub-queries.

No intermediate data is shuffled. Only minimal control messages and meta-
data are exchanged.

DREAM is able to select different numbers of machines for different query
types, hence, rendering it adaptive.

36Hammoud et al., DREAM: distributed RDF engine with adaptive query planner and
minimal communication. PVLDB, 2015.
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Main Memory-Based RDF Systems: DREAM
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Other Distributed RDF Systems: Semstore37

SemStore system adopts a partitioning mechanism, Rooted Sub-Graph (RSG),
that is designed to effectively localize the processing of RDF queries.

After partitioning the RDF graph, the data partitioner assigns each partition
to one of the underlying computing nodes.

The SemStore partitioner uses a k-means partitioning algorithm for assigning
the highly correlated RSGs into the same node.

Each computing node builds local data indices and statistics for its assigned
subgraph and utilizes this information during local join processing and opti-
mizations.

The data partitioner builds a global bitmap index over the vertices of the RDF
graph and collects the global statistics.

Each computing node uses a centralized RDF processor, TripleBit, for local
query evaluation.

37Wu et al. Semstore: A semantic-preserving distributed rdf triple store. CIKM, 2014.
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Main Memory-Based RDF Systems: Semstore
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Federated RDF Query Processing

The proliferation of RDF datasets created a significant need for answering
RDF queries over multiple SPARQL endpoints. Such queries, referred to as
RDF federated queries.
Answering such type of queries requires performing on-the-fly data integration
and complex graph operation over heterogeneous distributed RDF datasets.
Factors like the number of sources selected, total number of SPARQL ASK
requests used, and source selection time have significant impact on the query
execution time.
To minimize the number of sub-queries most of the systems group the tripe
patterns that can be entirely executed on one endpoint.
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Federated RDF Query Processing: FedX38

To select relevant source for a triple pattern FedX sends a SPARQL
ASK query to all known endpoints.

The join order optimization is based on the variable counting technique
which estimates the cost of execution by counting free variables, that
ate not bound trough previous joins.

FedX groups triples that have the same set of sources on which they can
be executed. This allows to sent them to the endpoints as a conjunctive
query and minimize the cost of local joins as well as the network traffic.

The system implements joins in a block nested fashion. The advantage
of block nested loop join is that the number of remote requests can be
reduced by the factor determined the the size of a block.

38Schwarte et al. Fedx: Optimization techniques for federated query processing on
linked data. ISWC, 2011.
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Federated RDF Query Processing: FedX

3.1 Federated Query Processing Model

In our work, we focus on top-down strategies, where a set of user-configured
sources is known at query time, hence guaranteeing sound and complete results
over a virtually integrated data graph. Figure 1 depicts our federated query pro-
cessing model, which closely follows the common workflow for general distributed
query processing [11]. First, the SPARQL query is parsed and transformed into
an internal representation (cf. Figure 2). Next, the relevant sources for each triple
pattern are determined from the configured federation members using SPARQL
ASK requests in conjunction with a local cache (Section 3.2). The remaining op-
timization steps include join order optimization (Section 3.3) as well as forming
exclusive groups (Section 3.4). The outcome of the optimization step is the ac-
tual query execution plan. During query execution, subqueries are generated and
evaluated at the relevant endpoints. The retrieved partial results are aggregated
locally and used as input for the remaining operators. For iterative join pro-
cessing the bound joins technique (Section 3.5) is applied to reduce the number
of remote requests. Once all operators are executed, the final query result is
returned to the client.

SPARQL Request Query Result

Parsing Source Selection Query Execution
(Bound Joins)

Global Optimizations
(Groupings + Join Order)

SPARQL
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Subquery Generation:
Evaluation at
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SPARQL

Endpoint 2
SPARQL
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Fig. 1: Federated Query Processing Model

As a running example, Figure 2 depicts Life Science query 6 from our bench-
mark collections (Section 5) and illustrates the corresponding unoptimized query
plan. The query computes all drugs in Drugbank3 belonging to the category “Mi-
cronutrient” and joins computed information with corresponding drug names
from the KEGG dataset4. A standard SPARQL query processing engine imple-
menting the NLJ technique evaluates the first triple pattern in a single request,
while the consecutive joins are performed in a nested loop fashion meaning that
intermediate mappings of the left join argument are fed into the right join pattern
one by one. Thus, the number of requests directly correlates with the number
of intermediate results. In a federation, it must additionally be ensured that the
endpoints appear virtually integrated in a combined RDF graph. This can in
practice be achieved by sending each triple pattern to all federation members,
using the union of partial results as input to the next operator.

3 http://www4.wiwiss.fu-berlin.de/drugbank/
4 http://kegg.bio2rdf.org/sparql
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Federated RDF Query Processing: SPLENDID39

SPLENDID uses statistics which is obtained from VOID (Vocabulary of Inter-
linked Datasets) descriptions to optimize the execution of federated queries.

The Index Manager maintains the local copy of collected and aggregated
statistics from remote SPARQL endpoints.

The Query Optimizer transforms the query into a syntax tree, select a data
source to federate the execution and optimize the order of joins.

To select a data source for a triple pastern SPLENDID uses two inverted
indexes for bound predicates and types, with priority for types.

To join the sub-results SPLENDID implements two strategies:

For small result sets, the tuples are requested in parallel and a hash join
is performed locally.
For large result sets and high selectivity of a join variable. one sub-query
is executed and the the join variable in the second one is repeatedly
replaced with the results of the first one.

39Gorlitz and Staab. Splendid: Sparql endpoint federation exploiting void descriptions.
2nd International Conference on Consuming Linked Data, 2011.
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Federated RDF Query Processing: SPLENDID
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Fig. 2. Architecture of the SPLENDID Federator.

4.2 Query Optimizer

The SPLENDID query optimizer transforms a given query into a semantically equiva-
lent query that exhibits low costs in terms of processing time and communication over-
head. Three optimization steps are applied 1) query rewriting, 2) data source selection,
and 3) cost-based join order optimization. Query rewriting is an optimization of the
logical tree structure of a query, e.g. heuristics are used to split up complex filter ex-
pressions and relocate them close to operators which produce bindings for the filtered
variables. In the following the second and third step will be discussed in more detail.

Data Source Selection Each triple pattern in a query may potentially be answered by
different data sources. Hence, we need to identify all SPARQL endpoints which can
return results for them. First, each triple pattern with a bound predicate is mapped to
a set of data sources using the index Ip. Triple patterns which have rdf:type as predi-
cate and a bound object variable are mapped by using the index Iτ . For triple patterns
with unbound predicates we assign all data sources as there is no further information
available from the VOID descriptions.

Refining selected data sources The precision of the source selection is important. Re-
questing data from wrongly identified data sources, which can not return any results,
is expensive in terms of network communication and query processing cost. For ex-
ample, the predicate rdfs:label may occur in almost all data sources, whereas the triple
pattern (?x rdfs:label ”ID 1652”) may only be matched by one data source. Hence, for
triple patterns with bound variables which are not covered in the VOID statistics we
send a SPARQL ASK query including the triple pattern to all pre-selected data sources
and remove sources which fail the test. This pruning of data sources before the actual
join order optimization is more efficient than accepting no results for regular SPARQL
SELECT queries. Algorithm 1 shows in detail how the source selection is done.

Building Sub Queries. Triple patterns must be sent to all selected data sources inde-
pendently, even if a group of triple patterns shares exactly the same set of sources.
This ensures that results for individual triple patterns can be joined across data sources.
However, if a source is exclusively selected for a set of triple patterns all of them can be
combined into a single sub query. This is termed exclusive groups in FedX [17]. Another
option for pattern grouping exists for triple patterns with the predicate owl:sameAs and
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Part IV

Open Challenges
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Benchmarking

The Semantic Web community has developed several frameworks to
evaluate the performance and scalability of RDF Systems.

The Lehigh University Benchmark (LUBM)40

The SP2B benchmark41

The Berlin SPARQL Benchmark (BSBM)42

The DBpedia SPARQL Benchmark (DBPSB)

The Semantic Publishing Benchmark v2.0 (SPB)43

The Social Network Intelligence BenchMark44

The WatDiv Benchmark45

40http://swat.cse.lehigh.edu/projects/lubm/
41http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B
42http:

//wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
43http://ldbcouncil.org/developer/spb
44http://ldbcouncil.org/developer/snb
45http://dsg.uwaterloo.ca/watdiv/
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Benchmarking

Many RDF management systems present their own evaluation and comparison
with related systems; however, such evaluations are inherently biased and
difficult to generalize.

Several benchmarking studies have been conducted to provide an evaluation
of a subset of the existing RDF data management systems. The biggest data
collection was used in the report published by within BSBM benchmark project
(10M-150B triples). The largest tests on NoSQL systems were performed was
on up to 16 Amazon EC2 units.

In general, the set of selected systems benchmarked in each study has been
quite limited in comparison to the available spectrum of systems.

The set of selected systems and the benchmarking setup of the various studies
varied significantly, such that they do not allow to build neither a comparable
nor a comprehensive picture of the state of the art in this domain.

More comprehensive benchmarking efforts are singularly required in order to
allow users to clearly understand the strengths and weaknesses of the various
systems and design decisions.
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Efficient and Scalable Processing of Complex SPARQL
Features

SPARQL is an expressive language that supports different RDF querying fea-
tures such as such as the OPTIONAL operation (i.e, a triple pattern can
be optionally matched), filter expressions and string functions with regular
expressions.

The majority of scalable SPARQL querying techniques have been designed for
the evaluation of conjunctive BGP queries on RDF databases.

Designing scalable and efficient queering techniques/systems for the complex
features of SPARQL 1.1 requires more attention from the research community.

Support for other SPARQL 1.1. features

SPARQL 1.1 Update
SPARQL 1.1 Graph Store Protocol
SPARQL 1.1 Service Description
SPARQL 1.1 Federated Query
SPARQL 1.1 Query Results JSON, XML, CSV and TSV Format
...

S. Sakr (IEEE’17) Big Linked Data Processing Systems 72 / 78



Distributed and Scalable RDF Reasoning

Increasing amounts of RDF data is getting generated and consumed. This
type of massive structured RDF data along with its model and provenance
information is often referred to as a knowledge graph.
An important operation that can be performed over RDF triples is reasoning.
Existing reasoners cannot handle such large knowledge bases.
There is a crucial need to exploit modern big data processing systems on
building efficient and scalable RDF reasoning solution.
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Part V

Conclusions
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Conclusions

Scalable querying and reasoning of big RDF datasets involve various
unique challenges.

In the last few years, several distributed RDF data processing systems
have been introduced with various design decisions.

Open challenges include benchmarking, support complex SPARQL fea-
tures and building salable reasoners.
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The End
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