

Linking Product Configuration & Data Analytics at Siemens CT

Unrestricted © Siemens AG 2017

Andreas Falkner, August 2017

.

Shaping the future with a passion for research, technology and innovation: This is the mission of Corporate Technology (CT).

Source: CT - Central research and development unit in Austria, 2017 (siemens.com/innovation)

Our milestones – Over 170 years

٨

1816-1892 Company founder, visionary and inventor		1866 Dynamo		1959 SIMATIC co	ontroller	1983 Magner tomogr	tic resonance aph	201 Field world an of	2 I testing of the d's largest rotor at ffshore wind farm
Werner von Siemens	Sieme	ens innova	ations o	ver 170 y	/ears				
	1847		1925		1975		2010		2016
	Pointer te	legraph	Electrificat of Ireland hydropowe	tion with er	High-voltage of current (HVDO transmission	direct- C)	TIA Portal for automation		MindSphere introduced as the digitalization
						00			industries

Page 3 August 2017

Our innovative power in figures – Siemens as a whole and Corporate Technology

Expenditures for research and development

Inventions and patents – securing our future

33,000 R&D employees¹

University cooperation – our knowledge edge

Corporate Technology – Our competence center for innovation and business excellence³

4,800 software developers

400 patent experts

3 Employee figures: As of September 30, 2016

1 In fiscal 2016

2 Centers of Knowledge Interchange

Unrestricted © Siemens AG 2017

Page 4 August 2017

Our focal points – Corporate Technology at a glance

Research in Digitalization and Automation

Research and pre-development work covering all Siemens-relevant areas in digitalization and automation

Research in Energy and **Electronics**

Research and pre-development work covering all Siemens-relevant areas in energy/electrification, electronics, new materials and manufacturing methods

Technology and Innovation Management

- Siemens' and CT's technology and innovation agenda
- Standardization and technical compliance
- Provision of technical publications

Corporate Technology (CT) CTO – Roland Busch

University Relations

- Management of the research partner portfolio
- Engagement management with top research partner

Corporate Intellectual Property

- Protection and defense of intellectual property (IP)
- IP licensing & commercialization
- Trademark protection

Development and Digital Platforms

- Software, firmware, and hardware engineering
- Horizontal and vertical product and system integration

Business Excellence and Quality Management

- Siemens Operating Model: excellence in PLM, SCM, project business and service
- Quality management

Unrestricted © Siemens AG 2017

Page 5 August 2017

Our focal points: Digitalization and automation – Securing and extending technology leadership

- We connect the real and virtual worlds. We continuously improve our ability to translate signals from field sensors into meaningful data, to enhance these data with design information and to provide valuable information to system designers and operators.
- Such digital services offer our customers higher or even guaranteed availability, among other things
- Handling data in a secure and confidential manner is a major prerequisite for this
- A digital twin of a real-world system throughout its lifecycle allows us to simulate and optimize it before and after commissioning. This reduces the need for timeconsuming and costly prototype construction
- Autonomous systems solve complex tasks in uncertain environments and safely interact with humans
- The industrial Internet of Things spans all stages of industrial production. Products and systems generate data, communicate with each other, and acquire new functionalities even when already in use

Research Group "Configuration Technologies" Correct and efficient configuration solutions

Our tools and technologies help to configure big and complex systems across many domains: rail automation, metals, building technologies, smart factories, healthcare.

We offer deep expert know-how in modeling and handling all tasks related to product configuration along the product lifecycle (design and modeling, sales, engineering, modernization and service). Our expertise in advanced data analytics and our Smart ICT ecosystem enables Seestadt Aspern Vienna to gain new insights into the combination of building automation and smart grid domains.

We successfully combine data analytics and configuration know-how to enhance the quality and the performance of data exploration tasks and to improve the configuration process with new insights.

Our focal points: Innovation strategy – Shaping Siemens' technology and innovation agenda

- We analyze trends and novel technologies, develop scenarios for our core markets and recommend adjustments to the Company's innovation and technology agenda
- We assess Siemens' innovative power and the impact of disruptive changes in the spirit of Joseph Schumpeter
- We elaborate and represent the Company's position in matters of research policy
- We coordinate Siemens' standardization activities across Divisions and regions, and ensure compliance with technical law
- We provide the R&D community at Siemens with technical publications

Our focal points: University relations – Overcoming groupthink and tapping potential

- We network with leading universities and non-university research institutes around the world
- With Open Innovation, we strengthen Siemens' innovative power and tap the potential of a networked, open company
- We link the industrial and academic worlds and thus promote intensive research and recruiting activities
- Our collaboration with nine top universities and the "Centers of Knowledge Interchange" (CKIs) that we set up there exemplify this effort

Research Group "Configuration Technologies" Selection of recently funded projects

- COSIMO: Collaborative Configuration Systems Integration and Modeling <u>http://cosimo.big.tuwien.ac.at/</u>
- HINT: Heuristic Intelligence
 <u>http://isbi.aau.at/hint/</u>
- OpenReq: Intelligent Recommendation & Decision Technologies for Community-Driven Requirements Engineering - <u>http://openreq.eu/</u>
- SCDA: Smart City Demo Aspern <u>http://www.ascr.at/foerderungen/scda/</u>
- SHAPE: Safety-critical Human- & Data-centric Process Management in Engineering Projects <u>https://ai.wu.ac.at/shape-project/index.html</u>
- Supersede: Data Analytics for Software Evolution and Adaption

https://www.supersede.eu/

Andreas Falkner Senior Key Expert Phone: +43 664 80117 35932 E-mail: andreas.a.falkner@siemens.com

Herwig Schreiner Head of Research Group Phone: +43 664 80117 35465 E-mail: herwig.schreiner@siemens.com

Unrestricted © Siemens AG 2017

With our innovations and technologies, we set standards for existing and future markets, so that Siemens can remain successful over the long term. Concrete examples show how Corporate Technology contributes to this.

Source: Volker Tresp, Towards Industrial AI, June 2017

Industrie 4.0: Cyber-physical systems, Internet-of-Things, Self-X

Based on: The Global Manufacturing Revolution; sources: Ford, beetleworld.net, bmw.de, dw.de.

Unrestricted © Siemens AG 2017

Page 12 August 2017

Industrie 4.0 is already being practiced today in Germany

INDUSTRIE4.0

>260 examples of Industrie 4.0 applications and products ...

... from large and small enterprises in a wide range of different industry sectors.

Number of employees of the enterprises More than 15,000 employees 5,000 - 15,000employees 1 - 250employees 15%250 - 5,000employees

Multiple choices possible

Source: Plattform Industrie 4.0 Unrestricted © Siemens AG 2017 Page 13 August 2017

Corporate Technology

Example: Siemens AG, Berlin Gas Turbine Factory – 3D printing of gas turbine components

Unrestricted © Siemens AG 2017 Page 14 August 2017 The laser sintering process can be used to produce small batches at a lower cost and much more quickly than using the costly casting process.

This process is used to make prototypes in order to integrate the testing of certain gas turbine components into the product development process. Now even aggressive component designs can be quickly evaluated and sent back to the design cycle. The result is greater efficiency increases.

"The innovative selective laser sintering process **shortens production times** compared to conventional production processes, so much so that function-critical components can already be **tested during the product development** stage."

Sebastian Piegert, Siemens AG.

Source: Platform Industrie 4.0, Siemens AG, Berlin Gas Turbine Factory.

Example: Data analytic supports optimization machines – e.g. improved efficiency of wind parks (Project ALICE^{*})

More than 200 GB of sensor data sensors from ≈ 7.800 wind parks

Early detection of divergent behavior

Autonomous learning with Neural Networks

Common research project: Siemens, IdaLab GmbH, TU Berlin

1-3% increase of annual energy

Example: Data analytic supports availability of systems – e.g. health check for CERN's Large Hadron Collider

99.99999991% the speed of light The biggest detectors ever 600 million collisions per sec Huge supervisory system and hundreds SIMATIC systems controlling the production

With rule and pattern mining methods increase operating hours

Source: CERN

Unrestricted © Siemens AG 2017 Page 16 August 2017

Siemens MindSphere – A Cloud-Based, Open IoT Operating System

MindApps

- -Use apps from Siemens, partners or develop own apps
- Gain asset transparency and analytical insights
- Subscription based pricing model

MindSphere

- Open interface for development of **customer specific apps**
- Various cloud infrastructures: offered as public, private or on-premise

MindConnect

- Open standards for connectivity, e.g., OPC UA
- **Plug & play connection** of Siemens and 3rd party products
- Secure and encrypted data communication

Data analytics examples of Corporate Technology Research Group Configuration Technologies in Vienna

Source: Gerhard Engelbrecht, Urban Data Analytics in Vienna's Smart City Showcase Seestadt Aspern, April 2017

Smart City System Blueprint

Building Data Exploration using Navigator

analysis

Student Dorm

Total Energy for Heating

- Start of heating period
- Dependency between outside temperature Benefit: Detailed Data
- Weekend lowering

Energy consumption and generation

- Energy consumption stable
- ~70% is renewable energy

Corporate Technology

11.16

Data-driven Building Analysis

Air temp in student rooms correlation matrix

Business Intelligence & Data Discovery

Corporate Technology

Data-driven Building Configuration

Product Configuration at Corporate Technology Research Group Configuration Technologies

Mass customization = mass production + customization

Mass Production (high efficiency)

"One-of-a-kind" engineering (high cost)

variants)

variants)

Production paradigms

- BTS = build-to-stock: product is built before final purchaser has been identified
- BTO = build-to-order: product is scheduled and built in response to a confirmed order
- PTO = pick-to-order: select variant or individual components without dependencies
- CTO = configure-to-order: dependencies between predefined components and their properties
- ETO = engineer-to-order: design some parts only after order (e.g. CAD drawing)

Benefits of configure-to-order vs. engineer-to-order

Increased **quality** of offers and orders

- Single point of truth
- Correct results are guaranteed

Reduced lead time / time to market

- Well defined products
- Smooth and integrated processes

Less cost

- Standardization and automation
- Reduced product complexity

Increased customer loyalty

- Less mass confusion
- Increased trust

Configuration of Railroad Interlockings

Unrestricted © Siemens AG 2017

Page 26 August 2017

Artificial Intelligence – Railway Interlocking Configurators

Challenge

Multiple possible configurations (>10⁹⁰) and complex constraints of railway control equipment

Solution

Deductive logic (e.g. generative constraint satisfaction) for determining configurations, optimization to find the best configuration

Outcome

Configurators secure correct interlockings and highest level of train control

Unrestricted © Siemens AG 2017 Page 27 August 2017

The Power of SAT Solvers

From: Sabharwal, IBM Watson Research Center, 2011

SAT encoding for bounded model checking problem from SATLIB

p cnf 51639 368352						
(-170)						
-160	i.e., $((not x_1) or x_7)$					
-150	$((not x_1) or x_2)$					
-1 -4 0	etc					
-130	010.					
-120	v v v oto oro our Pooloon verichles					
-1 -8 0	x_1, x_2, x_3 , etc. are our boolean variables					
-9 15 0	(to be set to true of raise)					
-9 14 0						
-9 13 0	Chauldy, he eat to False 22					
-9 -12 0	Should X ₁ be set to False??					
-9 11 0						
-9 10 0						
-9-160						
-17 23 0						
-17 22 0						

Unrestricted © Siemens AG 2017

Page 28 August 2017

The Power of SAT Solvers

• 10 pages later:

Note x₁ ...

The Power of SAT Solvers

• Finally, 15.000 pages later

-7 260 0
7 - 260 0
1072 1070 0
-15 -14 -13 -12 -11 -10 0
-15 -14 -13 -12 -11 10 0
-15 -14 -13 -12 11 -10 0
-15 -14 -13 -12 11 10 0
-7 -6 -5 -4 -3 -2 0
-7 -6 -5 -4 -3 2 0
-7 -6 -5 -4 3 -2 0
-7 -6 -5 -4 3 2 0
185 0

Search space of truth assignments: $2^{50000} \approx 3.160699437 \cdot 10^{15051}$

Current SAT solvers solve this instance in just a few seconds!

Feature Modelling

- Simple, tree-like representation of a product family
- Cross-tree constraints (requires = implies, excludes = incompatible)
- Often used in product line engineering (PLE) for variability modeling
- Metrics of model properties
 - Complexity
 - Dead features

Source: http://en.wikipedia.org/wiki/Feature_model

Unrestricted © Siemens AG 2017

Page 31 August 2017

Exercise:

Feature Modeling of hardware modules

Configuration problem:

- A hardware rack has 4 slots (A, B, C, D) where modules can be mounted (at most one in each slot)
- There are 3 modules (1, 2, 3) which must be mounted on exactly one slot
- Module 2 is double-sized and occupies the next slot, too (A->B, B->C, C->D)

Model this in http://www.splot-research.org/:

- Open "Feature Model Editor"
- "Create a New Model"
- Edit "Feature Diagram"
 - what are mandatory features? what alternatives?
- Add the necessary "Cross-Tree Constraints"
- "Run analysis"
 - how many valid configurations?
- Click "Configure" to test
- You need **not** "Save to Repository" Unrestricted © Siemens AG 2017

See example solution "SlotsForModules" in repository

Corporate Technology

Declarative Problem Solving

Algorithm = Logic + Control (Kowalski, 1979, CACM):

- What is the problem? Clear specification!
- How to solve? Powerful generic solver(s)!

Constraint Satisfaction Problem (CSP)

A **CSP** is a triple <V, D, C>:

- V is a finite set (or sequence) of variables V₁, V₂, ..., V_n
- D is the corresponding set of domains D_i of values
- C is a finite set of constraints C₁, C₂, ..., C_m

Each **constraint** $C_i(V_k, ..., V_l)$ limits the values of the vars

- unary, binary, non-binary (arity>2), global constraints
- defined intensionally by a formula (possibly infinite)
- or extensionally by a list of allowed combinations

A **solution** is a valid instantiation (model), i.e. an

- assignment of values to all variables such that no constraint is violated
- the CSP is satisfiable if at least one solutions exits

Tools: Choco, Gecode, JaCoP, Minion, MiniZinc, etc.

Constraints are undirected, logical expressions describing conditions for correctness of a solution to a configuration problem (declarative)

e.g.: 2 * A = B (the value of variable B is the double of A)

and can be used for multiple purposes:

- Checking consistency (if A and B are both set)
- Filtering out invalid or impossible options (e.g. if A=3, B can only be 6)
- Repairing inconsistencies or completing configurations in any direction (e.g. if A is set then set B correctly, or if B is set then set A correctly)
- Explaining what is inconsistent and how it can be repaired

Solvers use heuristics to speed-up search

Search steps (exploration) alternate with deterministic constraint propagation (exploitation)

Constraint propagation

- is used to filter out as many inconsistent assignments as possible
- this does not restrict the found solution(s)
- for small problems, pre-compile alternatives completely, e.g. BDD or MDD
- otherwise use K-consistency
 - practically, only arc-consistency is sufficiently performing (cubic complexity)
 - stronger consistency is too expensive
- it cannot filter away all inconsistent values
- for that, search needed
- what are good search strategies?
 - backtracking? complete?
 - local search? hill-climbing?

Heuristics for search

Minimal remaining values (MRV):

- choose the variables with fewest allowed values
 Largest degree (DEG):
- then select the variable that is involved in the largest number of constraints on other unassigned variables

Least constraining value (LCV):

- given a variable, choose least constraining value
- i.e. the one that leaves the maximum flexibility for subsequent variable assignments

Decomposition into independent sub-problems:

• if possible

Improve the quality of product models

Unrestricted © Siemens AG 2017

Page 36 August 2017

Corporate Technology

How to deal with an arbitrary number of variables

Problem: How to handle optional values (e.g. in an arbitrary-sized set) Solution: Dynamically set variables active

Conditional CSP (originally called Dynamic CSP) = $\langle V, V_i, C_C, C_A \rangle$

- V are the variables (with a given domain)
- V_i are the variables initially active (subset of V)
- C_c are compatibility constraints like in CSP but only active when all their variables are
- C_A are activation constraints which activate/deactivate variables
- Solution: All active variables are assigned a valid value

It was shown that Conditional CSP are equally expressive as CSP

 Polynomial transformation: map activation constraints to newly created Boolean variables containing the activation information (one for each original variable)

Find upper bounds to increase solving performance

Page 38 August 2017 Corporate Technology

Be aware of pitfalls!

from Habilitation talk of Feinerer, 2014 **Missing constraint: u = v + w**

Unrestricted © Siemens AG 2017

Linking Configuration Technologies and Data Analytics

Combining configuration knowledge with runtime data analytics **SI** enables better and faster results in product engineering & diagnosis

SIEMENS Ingenuity for life

