Statistical Semantics with Dense Vectors

Word Representation Methods from Counting to Predicting

Navid Rekabsaz
rekabsaz@ifs.tuwien.ac.at

3rd KEYSTONE Training School
Keyword search in Big Linked Data
24/Aug/2017 Vienna, Austria

- Understanding the semantics in language is a fundamental topic in text/language processing and has roots in linguistics, psychology, and philosophy
- What is the meaning of a word? What does it convey?
- What is the conceptual/semantical relation of two words?
- Which words are similar to each other?

Semantics

- Two computational approaches to semantics:

Knowledge base

Statistical (Data-oriented) methods

word2vec Auto-encoder decoder
LSA GloVe
RNN LSTM

Statistical Semantics with Vectors

- A word is represented with a vector of d dimensions
- The vector aim to capture the semantics of the word
- Every dimension usually reflects a concept, but may or may not be interpretable

Statistical Semantics - From Corpus to Semantic Vectors

Semantic Vectors for Ontologies

cardiomyopathy
myocardial
hemorrhage
ischemic epilepsy
infarction
diabetes
hypertension

Semantic Vectors for Gender Bias Study

- The inclinations of 350 occupations to female/male factors as represented in Wikipedia

Semantic Vectors for Search

Gain of the evaluation results of document retrieval using semantic vectors expanding query terms

Semantic Vectors in Text Analysis

Historical meaning shift Kulkarni et al.[2015]

Semantic vectors are the building blocks of many applications:

- Sentiment Analysis
- Question answering
- Plagiarism detection
- ...

Terminology

Various names:

- Semantic vectors
- Vector representations of words
- Semantic word representation
- Distributional semantics
- Distributional representations of words
- Word embedding

Agenda

- Sparse vectors
- Word-context co-occurrence matrix with term frequency or Point Mutual Information (PMI)
- Dense Vectors
- Count-based: Singular Value Decomposition (SVD) in the case of Latent Semantic Analysis (LSA)
- Prediction-based: word2vec Skip-Gram, inspired from neural network methods

Intuition

"You shall know a word by the company it keeps!"

J. R. Firth, A synopsis of
linguistic theory 1930-1955 (1957)

Intuition

"In most cases, the meaning of a word is its use."

Ludwig Wittgenstein, Philosophical
Investigations (1953)

drink drunk alcohol

make
out of corn
fermented

Mexico

$$
b_{\text {ott/e of }}
$$

brew

pale Heineken

red star
bar

$$
a_{\text {rink }} \operatorname{sre}_{e_{n}} b_{o t t / e}
$$

alcohol

Tesgüino $\leftarrow \rightarrow$ Heineken

Algorithmic intuition:
Two words are related when they have similar context words

Sparse Vectors

Word-Document Matrix

- D is a set of documents (plays of Shakespeare)
- V is the set of words in the collection
- Words as rows and documents as columns
- Value is the count of word w in document d : $t c_{w, d}$
- Matrix size $|V| \times|D|$

	d_{1} As You Like It	d_{2} Twelfth Night	$\begin{gathered} d_{3} \\ \text { Julius Caesar } \end{gathered}$	$\begin{aligned} & d_{4} \\ & \text { Henry V } \end{aligned}$
battle	1	,	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0
...

- Other word weighting models: tf,tfidf, BM25

Word-Document Matrix

	d_{1} As You Like It	d_{2} Twelfth Night	$\begin{aligned} & \quad d_{3} \\ & \text { Julius Caesar } \end{aligned}$	d_{4} Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0

- Similarity between the vectors of two words:
$\operatorname{sim}($ soldier, clown $)=\cos \left(\vec{W}_{\text {soldier }}, \vec{W}_{\text {clown }}\right)=\frac{\vec{W}_{\text {soldier }} \cdot \vec{W}_{\text {clown }}}{\vec{W}_{\text {soldier }}| | \vec{W}_{\text {clown }} \mid}$

Context

- Context can be defined in different ways
- Document
- Paragraph, tweet
- Window of some words (2-10) on each side of the word
- Word-Context matrix
- We consider every word as a dimension
- Number of dimensions of the matrix: $|V|$
- Matrix size: $|V| \times|V|$

Word-Context Matrix

- Window context of 7 words
sugar, a sliced lemon, a tablespoonful of apricot their enjoyment. Cautiously she sampled her first pineapple well suited to programming on the digital for the purpose of gathering data and
computer.
information
preserve or jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from necessary for the study authorized in the

	c_{1}	c_{2}	c	c_{3}	c_{4}	c_{5}	c_{6}
	aardvark	computer	data	pinch	result sugar		
w_{1} apricot	0	0	0	1	0	1	
w_{2} pineapple	0	0	0	1	0	1	
w_{3} digital	0	2	1	0	1	0	
w_{4} information	0	1	6	0	4	0	

Co-occurrence Relations

	$\begin{gathered} c_{1} \\ \text { aardvark } \end{gathered}$	c_{2} computer	c_{3} data	c_{4} pinch	$\begin{aligned} & C_{5} \\ & \text { result } \end{aligned}$	c_{6} sugar
w_{1} apricot	0	0	0	1	0	1
w_{2} pineapple	0	0	0	1	0	1
w_{3} digital	0	12	1	0	1	0
w_{4} information	0	1	6	0	4	0

- First-order co-occurrence relation
- Each cell of the word-context matrix
- Words that appear near each other in the language
- Like drink to beer or wine
- Second-order co-occurrence relation
- Cosine similarity between the semantic vectors
- Words that appear in similar contexts
- Like beer to wine, or knowledge to wisdom

Point Mutual Information

- Problem with raw counting methods
- Biased towards high frequent words ("and", "the") although they don't contain much of information
- We need a measure for the first-order relation to assess how informative the co-occurrences are
- Use the ideas in information theory
- Point Mutual Information (PMI)
- Probability of the co-occurrence of two events, divided by their independent occurrence probabilities

$$
P M I(X, Y)=\log _{2} \frac{P(X, Y)}{P(X) P(Y)}
$$

Point Mutual Information

$$
\begin{gathered}
P M I(w, c)=\log _{2} \frac{P(w, c)}{P(w) P(c)} \\
P(w, c)=\frac{\#(w, c)}{\sum_{i=1}^{|V|} \sum_{j=1}^{|V|} \#\left(w_{i}, c_{j}\right)=S} \\
P(w)=\frac{\sum_{j=1}^{|V|} \#\left(w, c_{j}\right)}{S} \quad P(c)=\frac{\sum_{i=1}^{|V|} \#\left(w_{i}, c\right)}{S}
\end{gathered}
$$

- Positive Point Mutual Information (PPMI)

$$
\operatorname{PPMI}(w, c)=\max (P M I, 0)
$$

Point Mutual Information

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
computer	data	pinch	result	sugar
0	0	1	0	1
0	0	1	0	1
2	1	0	1	0
1	6	0	4	0

$P(w=$ information,$c=$ data $)=6 / 19=.32$
$P(w=$ information $)=11 / 19=.58$
$P(c=$ data $)=7 / 19=.37$
$\operatorname{PPMI}(w=$ information, $c=$ data $)=\max \left(0, \frac{.32}{.58 * .37}\right)=.57$

Point Mutual Information

Co-occurrence raw count matrix

	c_{1}	c_{2}		c_{3}	
c_{4}	c_{5}				
	computer	data	pinch	result	sugar
w_{1}	apricot	0	0	1	0
w_{2}	pineapple	0	0	1	0
w_{3}	digital	2	1	0	1
w_{4}	information	1	6	0	4

PPMI matrix

w_{1} apricot	-	-	2.25	-	2.25
w_{2} pineapple	-	-	2.25	-	2.25
w_{3} digital	1.66	0.00	-	0.00	-
w_{4} information	0.00	0.57	-	0.47	-

Dense Vectors

Sparse vs. Dense Vectors

- Sparse vectors
- Length between 20K to 500K
- Many words don't co-occur; ~98\% of the PPMI matrix is 0
- Dense vectors
- Length 50 to 1000
- Approximate the original data with lower dimensions -> lossy compression
- Why dense vectors?
- Easier to store and load (efficiency)
- Better for machine learning algorithms as features
- Generalize better by removing noise for unseen data
- Capture higher-order of relation and similarity: car and automobile might be merged into the same dimension and represent a topic

Dense Vectors

- Count based
- Singular Value Decomposition in the case of Latent Semantic Analysis/Indexing (LSA/LSI)
- Decompose the word-context matrix and truncate a part of it
- Prediction based
- word2vec Skip-Gram model generates word and context vectors by optimizing the probability of co-occurrence of words in sliding windows

Singular Value Decomposition

- Theorem: An $m \times n$ matrix C of rank r has a Singular Value Decomposition (SVD) of the form

$$
C=U \Sigma V^{\top}
$$

- U is an $m \times m$ unitary matrix $\left(U^{\top} U=U U^{\top}=I\right)$
- Σ is an $m \times n$ diagonal matrix, where the values (eigenvalues) are sorted, showing the importance of each dimension
- V^{\top} is an $n \times n$ unitary matrix

C

U
$=$
$=$

Singular Value Decomposition

- It is conventional to represent Σ as an $r \times r$ matrix
- Then the rightmost $m-r$ columns of U are omitted or the rightmost $n-r$ columns of V are omitted

$$
\underbrace{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{ccccc}
\star & \star & \star & \star & \star \\
\star & \star & \star & \star & \star \\
\star & \star & \star & \star & \star \\
\star & \star & \star & \star & \star \\
\star & \star & \star & \star & \star
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{lll}
\bullet & & \\
& \bullet & \\
& & \bullet \\
& &
\end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{ccc}
\star & \star & \star \\
\star & \star & \star \\
\star & \star & \star
\end{array}\right]}_{V^{T}}
$$

Applying SVD to Term-Context Matrix

- Start with a sparse PPMI matrix of the size $|V| \times|C|$ where $|V|>|C|$ (in practice $|V|=|C|$)
- Apply SVD

Applying SVD to Term-Context Matrix

- Keep only top d eigenvalues in Σ and set the rest to zero
- Truncate the U and V^{T} matrices based on the changes in Σ
- If we multiply the truncated matrices, we have a leastsquares approximation of the original matrix
- Our dense semantic vectors is the truncated U matrix

Prediction instead of Counting

- Instead of counting, we want to predict the probability of occurrence of a word, given another word
- The prediction approach has roots in language modeling:
- E.g.: I order a pizza with ... (mashroom: 0.1, lizard: 0.001)
- We want to calculate the probability of appearance of a context word c in a window context given the word w :

$P(c \mid w)$

- Based on this probability, we define an objective function
- We aim to learn word representations by optimizing the error of the objective function on a training corpus
- word2vec [6,7] introduces an efficient and also effective method
- We study the Skip-Gram architecture, CBOW is very similar

Skip-Gram

- The Neural Network is trained by feeding it word pairs found in the text within a context window
- Below is an example with a window size of 2

$w \in V$ and
$c \in V$ are a word and its context

A Neural Network Model for Prediction of Context Word

- The network predicts $P(c \mid w)$ i.e. w at input and c at output layer
- Two sets of vectors: word vectors W and context vector C

Input layer Projection layer

Output layer

$p(c \mid w)$ - probabilities of context words

Linear activation function

Softmax function The Prediction Results after Training

- After training, given the word fox, the network outputs the probability of appearance of every word in its window context

Input layer
Projection layer

Output layer

$p(c \mid w)$ - probabilities
of context words

What is Softmax at the Output Layer

- Given the pair of (w, c), the output value of the last layer in this network is in fact the dot product of the word vector to the context vector:

$$
W_{w} \cdot C_{c}
$$

- In order to turn this output into probability distribution, the outputs are normalised using the Softmax function:
$p(c \mid w)=\frac{\exp \left(W_{w} \cdot C_{c}\right)}{\sum_{l \subset V} \exp \left(W_{w} \cdot C_{l}\right)}$

How to Train the Neural Network Model

1. The W and C vectors are randomly initialized
2. Slide the window over the corpus:
$(w, c)=$ (fox, forest)
3. Input w with a one-hot vector
4. Calculate output layer for the context word:

$$
p(\mathrm{c} \mid w)=p(\text { forest } \mid \text { fox })=\frac{\exp \left(W_{\mathrm{fox}} \cdot C_{\text {forest }}\right)}{\sum_{l c V} \exp \left(W_{\mathrm{fox}} \cdot C_{l}\right)}
$$

How to Train the Neural Network Model

4. Calculate the cross entropy cost function for each batch with T instances:

$$
J=-\frac{1}{T} \sum_{1}^{T} \log p(c \mid w)
$$

5. Minimize the cost function:

- Need to increase $W_{\text {fox }} \cdot C_{\text {forest }}$
- Update both $W_{\text {fox }}$ and $C_{\text {forest }}$ vectors by adding a portion of $W_{\text {fox }}$ to $C_{\text {forest }}$ and other way around

6. Continue training on the next (w, c) pairs:
(w, c) $=$ (wolf, forest)
(w, c) $=$ (resistor, circuit)
$(w, c)=($ wolf, tree $)$
$(w, c)=($ fox, tree $)$

- Vectors associated with words that occur in the same context become more similar to each other

ifs

The Neural Network Prediction Model -

 Summary- Prediction probability

$$
p(c \mid w)=\frac{\exp \left(W_{w} \cdot C_{c}\right)}{\sum_{l \subset V} \exp \left(W_{w} \cdot C_{l}\right)}
$$

- Cross entropy cost function

$$
J=-\frac{1}{T} \sum_{1}^{T} \log p(c \mid w)
$$

- Problem: the calculation of the denominator in the prediction probability is very expensive!
- One approach to tackle the efficiency problem is using Negative Sampling, introduced in the word2vec toolbox word2vec: Probability of a Genuine Co-occurrence
- Let's introduce a binary variable y, measuring how genuine the probability of co-occurrence of w and c is:

$$
p(y=1 \mid w, c)
$$

- This probability is estimated by the sigmoid function of the dot product of the word vector and context vector:

$$
p(y=1 \mid w, c)=\frac{1}{1+\exp \left(-W_{w} \cdot C_{c}\right)}=\sigma\left(W_{w} \cdot C_{c}\right)
$$

- For example, we expect to have:
- $p(y=1 \mid$ fox, forest $)=0.98$
- $p(y=0 \mid$ fox, forest $)=1-0.98=0.02$
- $p(y=1 \mid$ fox, tree $)=0.96$
- $p(y=1$ |fox, chair $)=0.01$

- $p(y=1 \mid$ fox, circuit $)=0.001$
- If we only use $p(y=1 \mid w, c)$, we lack comparison or normalization over other words!!
- Instead of a complete normalization, we use Negative Sampling
- Negative Sampling intuition:

The word w should attracts the context c when they appear in the same context and repeals some other context words č that do not co-occur with w i.e. negative samples

- Since many words don't co-occur, any sampled word can be assumed as a negative sample
- We randomly sample k (2-20) words from the collection distribution
- We aim to increase $p(y=1 \mid w, c)$ and decrease $p(y=1 \mid w, \check{c})$
word2vec: Negative Sampling
- For example with $k=2$
(w, c) $=$ (fox, forest)
negative samples: [bluff, guitar]
$p(y=1$ |fox, forest $) \uparrow$
$p(y=1 \mid$ fox, bluff $) \downarrow \Rightarrow p(y=0 \mid$ fox, bluff $) \uparrow$
$p(y=1 \mid$ fox, guitar $) \downarrow \Rightarrow p(y=0 \mid$ fox, guitar $) \uparrow$
$(w, c)=$ (wolf, forest)
negative samples: [blooper, film]

$$
\begin{aligned}
& p(y=1 \mid \text { wolf, forest }) \uparrow \\
& p(y=0 \mid \text { wolf, blooper }) \uparrow \\
& p(y=0 \mid \text { wolf, film }) \uparrow
\end{aligned}
$$

word2vec with Negative Sampling

- Genuine co-occurrence probability

$$
p(y=1 \mid w, c)=\sigma\left(W_{w} \cdot C_{c}\right)
$$

- Negative sampling of k context words \check{c}

$$
p(y=0 \mid w, \check{c})
$$

- Cost function

$$
J=-\frac{1}{T} \sum_{1}^{T}\left[\log p(y=1 \mid w, c)+\sum_{i=1}^{k} \log p(y=0 \mid w, \check{c})\right]
$$

$(w, c)=($ fox, forest $)$
negative samples: [bluff, guitar]

$$
\begin{aligned}
& p(y=1 \mid \text { fox }, \text { forest }) \uparrow \\
& p(y=0 \mid \text { fox, bluff }) \uparrow \\
& p(y=0 \mid \text { fox, guitar }) \uparrow
\end{aligned}
$$

$(w, c)=$ (wolf, forest)
negative samples: [blooper, film]

$$
\begin{aligned}
& p(y=1 \mid \text { wolf, forest }) \uparrow \\
& p(y=0 \mid \text { wolf, blooper }) \uparrow \\
& p(y=0 \mid \text { wolf, film }) \uparrow
\end{aligned}
$$

word2vec with Negative Sampling

$$
(w, c)=(\text { fox, forest })
$$

negative samples: [bluff, guitar]

$$
\begin{array}{ll}
p(y=1 \mid \text { fox, forest }) \uparrow & W_{\text {fox }} \text { attracts } C_{\text {forest }} \\
p(y=0 \mid \text { fox } \text { bluff }) \uparrow & W_{\text {fox }} \text { repeals } C_{\text {bluff }} \\
p(y=0 \mid \text { fox, guitar }) \uparrow & W_{\text {fox }} \text { repeals } C_{\text {guitar }}
\end{array}
$$

$(w, c)=$ (wolf, forest)
negative samples: [blooper, film]

$$
\begin{array}{ll}
p(y=1 \mid \text { wolf, forest }) \uparrow & W_{\text {wolf }} \text { attracts } C_{\text {forest }} \\
p(y=0 \mid \text { wolf, blooper }) \uparrow & W_{\text {wolf }} \text { repeals } C_{\text {bloopers }} \\
p(y=0 \mid \text { wolf, film }) \uparrow & W_{\text {wolf }} \text { repeals } C_{\text {film }}
\end{array}
$$

Embedding Space

- Eventually words with similar contexts (like fox and wolf or apple and apricot) become more similar to each other and different from the rest

fox

- Very frequent words dominant the model and influence the performance of the vectors. Solutions:
- Subsampling
- When creating the window, remove the words with frequency f higher than t with the following probability

$$
p=1-\sqrt{\frac{t}{f}}
$$

- Context Distribution Smoothing
- Dampens the values of the collection distribution for negative sampling with $f^{3 / 4} \quad f=10000 \rightarrow f^{3 / 4}=1000$
- Prevents domination of very frequent words in sampling

References

[1] Jurafsky, Dan, and James H. Martin. Speech and language processing. Vol. 3. London: Pearson, 2014.
[2] Exploration of a Threshold for Similarity based on Uncertainty in Word Embedding.
Navid Rekabsaz, Mihai Lupu, Allan Hanbury, Guido Zuccon In Proceedings of the European Conference on Information Retrieval Research
[3] Navigating the semantic horizon using relative neighborhood graph. Amaru Cuba Gyllensten and Magnus Sahlgren. In Proceedings of EMNLP 2015.
[4] Generalizing Translation Models in the Probabilistic Relevance Framework Navid Rekabsaz, Mihai Lupu, Allan Hanbury, Guido Zuccon Proceedings of ACM International Conference on Information and Knowledge Management (CIKM 2016)
[5] Kulkarni, Vivek, et al. "Statistically significant detection of linguistic change." Proceedings of the 24th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2015.
[6] Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems. 2013.
[7] Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).

Thanks!

Questions?

@NRekabsaz

