Computer Physics Communications 10 (1975) 343367
© North-Holland Publishing Company

MINUIT — A SYSTEM FOR FUNCTION MINIMIZATION AND ANALYSIS
OF THE PARAMETER ERRORS AND CORRELATIONS

F.JAMES

Data Handling Division, European Organization for Nuclear Research,

CH-1211 Geneva 23, Switzerland
and

M. ROOS

Department of Nuclear Physics, University of Helsinki,
Sf-00170 Helsinki, Finland

Received 15 August 1975

PROGRAM SUMMARY

Title of program: MINUIT
Catalogue number: ACWH

Program obtainable from: CPC Program Library, Queen’s
University of Belfast, N. Ireland (see application form in this
issue)

Computer: CDC 7600; Installation: CERN, Geneva, Switzer-
land

Operating system: SCOPE 2.1.2 or 2.0

Programming language used: ANSI FORTRAN

High-speed storage required: 12000 words

Number of bits in a word: 60

QOverlay structure: None

Number of magnetic tapes required: None

Other peripherals used: Card reader, line printer, card punch
Number of cards in combined program and test deck: 2600
Card punching code: ANSI

Keywords: General purpose, minimization, fitting, error anal-
ysis, correlation, simplex method, variable metric method,
global minimum, contours.

Nature of physical problem

The final stages of the analysis of experimental data often
consists of determining (estimating) a certain number of
physical parameters and establishing the errors (confidence
regions) of these parameters. This in turn generally involves
one or more stages of function minimization to determine
the best parameter values and various techniques for investi-

gating the shape of the function near the minimum to deter-
mine the errors. In this essentially statistical problem the
function involved is usually a chisquare or negative log-likeli-
hood function, however many other physical problems of a
non-statistical nature, such as finding the minimum energy
configuration of a molecule, can be treated using the same
techniques.

Method of solution

We have chosen to offer the user a large number of different
techniques which can be conveniently inveked by the use of
command cards. For example, three different minimjzation
algorithms are available (a Monte Carlo search [1], the sim-
plex method of Nelder and Mead [2], and the variable metric
method of Fletcher [3]) and they may be “guided” by fixing
and restoring variable parameters in between minimization
commands, and by putting limits on the values allowed for
different parameters. Similarly, error analysis may be carried
out using the covariance matrix of the function, or by calcu-
lating exact MINOS confidence intervals, or by plotting func-
tion contours. If the function is suspected of having more
than one local minimum, a global minimization can be at-
tempted using a simplified version of the algorithm of Gold-
stein and Price [4].

Restriction of the complexity of the problem

The current version is dimensioned for a maximum of 30
function parameters, of which not more than 15 may be vari-
able.

Typical running time
In most cases nearly all thz actual running time is spent in the

344 F. James, M. Roos/MINUIT

user-supplied subroutine FCN which is the function being
analyzed by MINUIT. Typical applications usually require a
few hundred or a few thousand function evaluations, which
could in turn require much less than a second or many min-
utes on the CDC 7600 depending on the complexity of FCN.

Unusual features of the problem

MINUIT is not merely a minimization program, but is more
properly a system for analysis of functions in the sense that
its essential element is its structure rather than any of the
algorithms that are actually implemented. This structure al-
so allows in a very natural way the inclusion of global logic

LONG WRITE-UP
1. Introduction

A large class of problems in many different fields
of research can be reduced to the problem of finding
the smallest value taken on by a function of one or
more variable parameters. The classic example is the
estimation of unknown parameters in a scientific the-
ory by minimizing the difference (chi-square) be-
tween theory and experimental data, theory being
represented by a function F(X), where X are the un-
known parameters of the theory.

The function F(X) need not be known analytical-
ly, but it is specified by giving its value at any point
X in the space of the parameters. The space may be
limited by physical restrictions on the allowed values
of the parameters (constrained minimization). Some-
times additional information about the function may
be available, such as the numerical values of the deriv-
atives 9F/0X at any point X, or analytic expressions
to evaluate them. Minimization always proceeds by
evaluating F(X) repeatedly at different points X deter-
mined by the minimization algorithm(s) used, until
some minimum value is attained.

At that point the user often wants to have an idea
about how sensitive the solution is to variations in the
parameters: how steeply does F(X) increase away
from X, in X-space? Physicists call this informa-
tion the “errors of the parameters X*’, and we shall
term in error analysis.

Whenever the function may have more than one
local minimum, new problems arise in addition to the
problem of local minimization. The user must then
decide whether it is sufficient to know the location

connecting the different algorithms, for example switching
from one minimization method to another if the first does
not converge rapidly enough.

References

[1] F. James, Monte Carlo for Particle Physicists (Section 6.1)
in: Methods in Subnuclear Physics, Ed. M. Nikolic (Gor-
don and Breach Publ.) Vol. IV, Part 3.

[2] J.A. Nelder and R. Mead, Comput. J. 7 (1965) 308.

[3] R. Fletcher, Comput.J. 13 (1970) 317.

[4] A.A. Goldstein and J.F. Price, Math. Comp. 25 (1971)
569.

of any one local minimum, or whether knowledge of
the global minimum is required.

Such general considerations on function minimiza-
tion and descriptions of the most important algorithms
may be found in ref. [1].

MINUIT is a system of programs to solve the prob-
lems outlined above. As MINUIT is in principle designed
to handle any function F(X), it is quite general, and it
may suit the needs of quite different users. A user,
however, who spends much time minimizing a re-
stricted class of functions, may well be able to write
faster minimizing routines by making use of known
properties of his functions. For such a user MINUIT
may still offer a suitable organizational framework
in which to embed his own routines as subroutines.

1.1. Minimization to a local minimum

To the standard user MINUIT offers the possibili-
ty within one program of catering to different kinds
of functions since it incorporates three different min-
imization methods, each of which may be used alone
or in combination with the others depending on the
behaviour of the function and the requirements of the
user. The three minimizing subroutines, SEEK,
SIMPLX and MIGRAD, may be briefly characterized
as follows (for details of theory see section 2):

i) SEEK — a Monte Carlo searching subroutine. It
may be used at the beginning of a fit when no
reasonable starting point is known, or when it is
suspected that there are several minima. It must
not, however, be expected to converge in the usual
sense.

F., James, M. Roos/MINUIT 345

ii) SIMPLX — a minimizing subroutine using a sim-
plex method by Nelder and Mead [2] . It is very
“safe” and reasonably fast when far from mini-
mum, and may also be used to converge to the
exact minimum. It does not compute the covar-
iance matrix, but gives order-of-magnitude esti-
mates of its diagonal elements (the parameter er-
rors).

ili) MIGRAD — a minimization subroutine based on
a variable metric method by Fletcher [3] .1t is
extremely fast near a minimum or in any “‘nearly-
quadratic” region but slower if the function is
badly behaved. It uses the first derivatives of the
function, which may either be supplied by the
user or estimated by MINUIT.

Some “global” logic is built into the program. For
example, if MIGRAD fails, it automatically causes
SIMPLX to be called to make another attempt. In
addition, the minimization can be guided or separated
into steps by the use of FIX, RELEASE, and RE-
STORE commands which cause a variable to be
fixed at a constant value or restored to variable
status in between minimization steps. The program
can also be instructed to force the value of any vari-
able parameter(s) to stay within given limits during
the minimization(s).

1.2. Error analysis

MINUIT is usually used to minimize a ““chisquare”
function or a negative log likelihood function. The
error analyses assume that the function has such a
statistical meaning, so that the inverse of the second
derivative matrix can be associated (within a constant
factor) with what the scientist calls the “error ma-
trix”” of the parameters. More generally, it is assumed
that the point where the function takes on its lowest
value FMIN determines the most likely or best-fit
parameter values, and that the region over which the
function takes on values smaller than (FMIN + UP)
corresponds to a confidence interval or confidence
region for which the confidence level is determined
by the value of the positive constant UP. For exam-
ple, in the simplest case where the function is a *“chi-
square” function of one variable parameter, a value
of UP = 1.0 determines *“‘one-standard-deviation™ er-
rors corresponding to a confidence level of 68%.
MINUIT performs the following error analyses:

i) The covariance matrix (or error matrix) is a by-
product of the MIGRAD minimizer. It may how-
ever be calculated separately (and independently
using second derivatives) by subroutine HESSE.
Based on this matrix, the program prints both the
individual correlation coefficients and the global
correlation coefficient [4] for each variable pa-
rameter.

ii) Exact confidence intervals [4] for any parameter(s)
may be calculated by MINOS. These may differ
from the “parabolic” errors derived from the co-
variance matrix if the model being fitted is high-
ly non-linear.

iii) Function contours may be plotted in the space
of any two variables at a time. This gives the most
detailed description of the shape of the function,
but only when the number of variables is very few.

1.3. Global minimum search

The user in quest of the global minimum may not
be satisfied with the local minimum found, and he
may even be interested in finding all local minima.
The problem of global minimization is very complex,
and we do not know of any really satisfactory algo-
rithm to solve it. In view of the importance of the
problem MINUIT offers the following options:

i) The IMPROVE command invokes a very elegant
algorithm of Goldstein and Price [5] which, start-
ing from a known local minimum with known co-
variance matrix, “removes” this minimum by di-
viding out the quadratic part and looks for a min-
imum of the transformed function.

ii) Mapping the function by the command CONTOUR
may reveal the existence of further minima, ap-
pearing as bulges on the contours.

iiil) MINOS can be forced to take arbitrarily large
steps away from a local minimum, and since it
then minimizes in the subspace of the NPAR-1
remaining variables, it has the capacity of finding
new minima (if UP happens to be chosen right).
When this happens MINOS gives a signal and the
program automatically proceeds to evaluate the
properties of the new minimum.

1.4. Internal and external parameters

In order to eliminate the problem of physical

346 F. James, M. Roos/MINUIT

boundaries on parameters, as well as to simplify the
organization of the program, two lists of parameters
have been created, called internal and external. The
external parameter list contains all parameters, fixed
and variable, arranged according to the way they are
referenced by the user in FCN. Those parameters
which are variable have corresponding entries in the
internal parameters list, to which they are connected
by transformations so that as the internal parameters
approach £ nm/2 the external values approach their
physical limits if bounded. The minimizing subrou-
tines SIMPLX and MIGRAD see only the internal val-
ues, which behave smoothly, even near the physical
limits. The function FCN sees only the external val-
ues, which remain always within the physical limits.

2. MINUIT organization
2.1. I}istory

MINUIT has been under continuous development
at CERN since 1967. During this time the program
has had enormous exposure to users at CERN and
elsewhere. Although MINUIT is a framework capable
in principle of offering any number of different algo-
rithms, practical considerations require us to limit
the number of possibilities. Over the years we have
incorporated several different methods into standard
MINUIT versions, and have withdrawn those which
compare less favourably in the light of experience.
Thus we have replaced the Rosenbrock (TAURQOS)
method [6] by Nelder and Mead’s simplex technique
[2] and we have replaced Davidon’s rank-one vari-
able-metric method (old MIGRAD) [7] by Fletcher’s
“switching’ variation [3] of the more stable Davidon—
Fletcher—Powell [8] variable-metric method (new
MIGRAD). This does not mean that functions cannot
be found for which our “rejected”” methods will per-
form better than the “accepted” ones, but merely
reflects our experience and theoretical understanding.

The present version of MINUIT is dimensioned
for a maximum number of free parameters NPAR =
15. Redimensioning for larger problems is straight-
forward, and indeed another standard version (known
as MINUITL) exists for 55 free parameters and re-
quires about twice as much storage.

2.2. General organization

Control of MINUIT resides in the two subroutines
MINNEW and COMAND. MINNEW takes care of
all the automatic initialization procedures, whereup-
on it calls COMAND, according to the flow scheme
in fig. 1. COMAND takes orders from the user in the
form of command cards and executes them.

Below we list the subroutines in alphabetical or-
der, spcifying briefly their function. In section 3 we
give more details under the description of command
cards.

2.3. Functions and subroutines

Subroutine BINSIZ (A1,A2,NAA, BL, BH, NB, SWID)
Subroutine to determine reasonable intervals given
absolute upper and lower bounds Al and A2 and de-
sired maximum number of bins NAA.

Function CALFCN (PVEC)

Called only from IMPROV. Transforms the function
FCN by dividing out the quadratic part in order to
find further minima. Calculates (F-FMIN)/(X-XMIN)
*Vx(X-XMIN).

Subroutine COMAND

Reads the command cards and takes appropriate ac-
tion, either directly by skipping to the correspond-

ing code in COMMAND, or by settingup a call to a
subroutine. For command cards, see section 3.2.

Subroutine CONTOU

Finds points lying on contours of a given FCN value,
as a function of two variable parameters specified by
the CONTOUR command. The contours are then
plotted by PLTCON,

Subroutine DERIVE (GG, GG2)

If first derivatives of the function are required (i.e. if
MIGRAD is used or called by MINOS) they are cal-
culated by subroutine DERIVE. If they are not sup-
plied by the user, a finite-difference approximation
is used, and we have chosen the symmetric formula:

a—F'L _FXy+d) - Xy - d)
0

aX 2d

which requires 2n function calls for n parameters, but

F. James, M. Roos/MINUIT

347

| MIDATA
MINUIT MINNEW read
or parameter
USER'S 5 cards —_—
MAIN DERIVE ‘
PROGRAM Command
= MIGRAD | INTOEX |
5| | COMAND MIGRAD PN |
reads 1
command
calls I
appropriate
subroutine R FIXPAR l
MINOS
K————— —
MIGRAD >1 INTOEX
FCN l
| -
. FIX | FIXPAR 4 | ! RESTOR ‘
K] i
RESTORE 7 i
RESTOR
, RELEASE j ESTOR |
o
and other commands similarly
EXIT A
—> STOP
END ™~
i : \\v//
-

Fig. 1. Simplified flow scheme of MINUIT.

for which the error is, to lowest order, independent
of the step-size d. An asymmetric formula requiring
only n+1 points would result in an error proportional
to d. The symmetric formula thus allows us to avoid
the difficult problem of choosing d optimally, and
makes MIGRAD behave well near the minimum
where the first derivatives approach zero. It also of-
fers an estimate of the error on the derivatives as a
by-product.

If the user calculates first derivatives inside FCN,
then DERIVE simply transforms these derivatives
(if necessary) from external to internal coordinates.

Subroutine EXTOIN (PINT)

Transforms the external parameter values X to inter-
nal values in the dense array PINT. Function PINTF
is used.

Subroutine FCN (NPAR, G, F, X,IFLAG)
User subroutine, see section 4.

Subroutine FIXPAR(I2, KODE, ILAX)

Removes parameter 12 from the internal (variable)
parameter list, and arranges the rest of the list to fill
the hole. If KODE =0, 12 is an external number,
otherwise internal. ILAX is returned as the external
number of the parameter.

Function FTIME (BIDON)
Gives the elapsed job time in floating-point minutes
by calling some installation-dependent subroutine.

Subroutine HESSE

Calculates the full second-derivative matrix of FCN
by taking finite differences. Includes some safeguards
against non-positive-definite matrices, and may set
off-diagonal elements to zero in attempt to force po-
sitivity.

Subroutine IMPROV
Attempts to improve on a good local minimum by
finding a better one. The quadratic part of FCN is

348 F. James, M. Roos/MINUIT

removed by CALFCN and this transformed function
is minimized using the SIMPLEX method from sever-
al random starting points [5].

Subroutine INTOEX (PINT)

Transforms from internal coordinates (PINT) to ex-
ternal parameters (U). The minimizing routines which
work in internal coordinates call this routine before
calling FCN.

Subroutine MATOUT (TRACE, KODE)

Prints the covariance matrix V. Calculates and prints
the individual correlation coefficients and global cor-
relations.

Subroutine MIDATA

Reads the data cards (title card and parameter cards)
and sets up the starting parameter lists. Control then
passes to COMAND for reading the command cards.

Subroutine MIGRAD

Performs a local function minimization using a gra-

dient supplied by the user (GRADIENT command)

or calculated by subroutine DERIVE.

The algorithm used is Fletcher’s “switching” varia-
tion [3] of the original Davidon—Fletcher—Powell
algorithm [8] . It belongs to the class of variable met-
ric methods which are characterized by the following
general approach:

a) Starting values are given for the parameters X1,
the first derivatives GS(I) and the covariance ma-
trix V(1,J). Although GS(I) is supposed to be a
very good approximation for the gradient at X(I),
the starting matrix V(I,J) may be only a diagonal
matrix or even the unit matrix.

b) A “Newton’s step” is taken to X' = X — V«GS
which would be the minimum if F were quadratic
and if V(I,7) were the true covariance matrix.
Since X'(I) is not generally the position of the
minimum it is usual to perform a linear search
along this direction, finding the a which minimizes
F(X axVxGS). Let this new point be called
X (l) and let the gradient calculated at X'(I) be
GS'(D).

¢) The matrix V(1,J) is “corrected” using an updat-
mg formula of the general form V' =V +f(V, X,
X', GS,GS"). Then GS is replaced by GS', X by
X',and V by V', and steps (a) and (b) are repeated

until some convergence criteria are satisfied.

The updating formula used in MIGRAD is either
the original Davidon formula [8] or Fletcher’s dual
formula [3], depending on Fletcher’s “switching”
criterion [3]. Recent theoretical studies have shown
that there is in fact little practical difference between
the two formulas (no difference at all in the limit
that the linear minimizations are exact), and both
formulas are in the Fletcher “convex class” of stable
formulas guaranteeing monotonic convergence of V
toward the true covariance matrix. (The Davidon
rank-one formula of 1968 [7] used in earlier version
of MINUIT, is not in the “convex class” and indeed
experience has shown it to be highly unstable.)

The linear minimization performed by MIGRAD
in the direction of the Newton step is a rather rough
one, using at most two points in addition to the New-
ton point. The gradient is of course required only at
the best of these points which becomes the starting
point for the next Newton step.

The convergence criteria are based on the “esti-
mated distance to minimum” (EDM), which is just

EDM = GST 4V «GS.

This would be exactly twice the vertical distance
(F-Fmin) if the function were exactly quadratic with
covariance matrix V. Since this estimate is only as
good as the estimate of V, an additional criterion is
applied, namely that the successive estimates of V be
not very different. The measure of difference used is
(VTEST = the average fractional change in the diago-
nal elements). These criteria may be set by the user
(see under the MIGRAD command). Default values
currently are

EDM < EPSI«UP = 0.1xUP
VTEST <0.01

both:

or
alone: EDM < 1073 «EPSI+UP = 10~6UP

where UP is the error definition constant (default val-
ue = 1.0). The convergence criteria used are printed
at the beginning of each MIGRAD minimization.

Subroutine MINNEW

This is the main program, disguised as a subroutine
for reasons of compatibility between systems. It ini-
tializes some constants in COMMON (including the

F., James, M. Roos/MINUIT 349

/ M(X;)

‘\l\
\

|
\ |

*\

r __r\\
|
|

AN

]
AT Kypy*ENEG;

Xi=Xyrn

XMIN+EPOSi

Fig. 2. Calculation of MINOS errors of parameter i. The (symmetric) dotted parabola FP is predicted from the covariance matrix,

but the nonlinearity of the problem results in the solid curve FM which gives the asymmetric errors EPOS and ENEG (see text).

logical I/O unit nos.) which would have to be in
block data for many compilers. Then verifies that
FCN gives the same value when called twice with

the same arguments, and passes control to COMAND.

Subroutine MINOS
Finds the true confidence intervals (errors) on the
parameters by examining the exact behaviour of the
(likelihood or chisquare) function over the interval
in question. Only the numerical method will be de-
scribed here; the theory that the intervals so defined
do indeed correspond to confidence intervals is given
in reference 4, pages 203—205. We point out here
that in the limit that the model being fitted is linear,
or in the limit of infinite data (asymptotic statistics),
the MINOS errors will be symmetric and equal to the
errors derived from the covariance matrix (so-called
“parabolic” errors).

The MINOS errors are defined in terms of the size
(probability content) of the confidence interval as
specified by the user through the ERROR DEF com-

mand which sets the value of UP (default value = 1.0).

MINOS then determines where the function FM(X;)
attains the value Fiy+ UP, where FM(X;) is the mini-
mum of F with respect to all parameters except the
ith parameter X;, and Fj, is the overall minimum val-
ue of F, The MINOS error are then given by these
crossing points as indicated in fig. 2 by EPOS; and
ENEG;.

The details of the procedure are as follows: first,
on the basis of the known covariance matrix of the
function, MINOS predicts that the crossing point will
be at A, and it also predicts the values of the other
parameters at the minimum FM(A). It then deter-
mines FM(A) by using FIXPAR to fix parameter i
at X; = A and using MIGRAD to minimize F with
respect to the remaining variable parameters (if any!).
If the case is not too pathological, the minimization
proceeds very quickly since MINOS supplies MIGRAD
with the reduced covariance matrix calculated from
the full covariance matrix with parameter i fixed. In
the case shown in fig. 2, the prediction A was not
very good, and another point B must be tried. This
time the starting values for the variable parameters

350 F. James, M. Roos/MINUIT

are chosen by extrapolating from their values at X, ;.
through A to B. Point B is chosen by a parabolic ex-
trapolation from A corrected to avoid the well-known
instability whereby A could predict B and B could
predict A, etc. The starting value for the covariance
matrix for MIGRAD at B is the one resulting from
the minimization at A. The procedure terminates
when one predicted point of FM is within a certain
tolerance of Fy +UP (currently this tolerance is
0.1xUP). When the program has difficulty converging
it plots the curve of fig. 2 as determined by all the
points attempted so that the user can get a feeling

for the nonlinearity of his problem.

Subroutine MPRINT (IKODE, FVAL)

Prints the values of the parameters at the time of the
call. Also prints other relevant information such as
function value, estimated distance to minimum, pa-
rameter errors, step sizes. According to the value of
IKODE, the printout is long format, short format,
or MINOS format (0, 1,2).

Subroutine MPUNCH

Punches current parameter values and step sizes onto
cards in format which can be reread by MINUIT for
restarting, The covariance matrix is also punched if
it exists.

Function PINTF (PEXIT, 1)

Calculates the internal parameter value PINTF cor-
responding to the external value PEXT for param-
eter I.

Subroutine PLTCON (NSPT, SPT)
Plots points in array SPT onto page with labelled axes
NSPT is the number of points to be plotted.

Subroutine RAZZIA (YNEW, PNEW)

Called only by SIMPLX (and IMPROV) to add a new
point and remove an old one from the current sim-
plex, and get the estimated distance to minimum.

Subroutine RESTOR (K)

Restores a fixed parameter to variable status by in-
serting it.into the internal parameter list at the ap-
propriate place.

Subroutine SEEK

The Monte Carlo technique [9] is used here in pref-
erence to the earlier methods of searching over a rec-
tangular grid because of its higher efficiency in many
variables. The function F(X) is evaluated by calling
FCN a given number of times (specified by the user).
For each call, all of the variable parameter values X;
are chosen randomly according to uniform distribu-
tion at the best previous values with widths equal to
the starting parameter errors o(X;). When finished,
the program prints out the best function value and
corresponding parameter values. Depending on the
PRINTOUT option chosen, every tenth new mini-
mum, or every minimum may also be printed during
the search.

Subroutine SIMPLX

In the minimization method of Nelder and Mead [2]
the information about the function F(X, 1» eoes Xpp) COD-
sists in 7 + 1 points, forming a simplex. (A simplex is
the smallest n-dimensional geometrical figure with
n+1 corners: a triangle for n = 2, a tetrahedron for

n =3, etc.). By reflecting one point in the hyperplane
of the other points, one continually forms new sim-
plices. The simplex adapts itself to the local function
landscape, elongating down long inclined planes,
changing direction on encountering a valley at an
angle, and contracting in the neighbourhood of a
minimum.

In SIMPLX the initial simplex is formed by coor-
dinate variation. From the starting point (read in
from cards), the program proceeds to find a local
minimum along each coordinate axis. These NPAR
local minima and the starting point define the initial
simplex. This procedure assures that the simplex has
a reasonable size in each direction. (If no minimum
is found, the search will not go beyond certain limits,
depending on the starting error read in from cards.)
Depending on how good F(P*) is, relative to the
known simplex points, the program either replaces
Py by P*, or evaluates F at a new point P** on the
line (Py, P). P** may be beyond P* or between Py
and P. Depending on how good F(P*) and F(P**)
are, relative to the known simplex points, the pro-

! i | ! !
s’k = s
Py P P P p**
Fig. 3.

F. James, M. Roos/MINUIT 351

are, relative to the known simplex points, the pro-

gram may now

— replace Py by P*,or

— replace Py by P** or

— replace Py by the point where a parabola through
Py, P* and P** has a minimum, or

— reduce the simplex linearly in every direction by
a factor 0.5, keeping only the best point P , or

— use the best point P| as a starting and evaluate a
new starting simplex, as described above.

The program always has a rough idea of the param-

eter errors, of the order of the size of the simplex,
and of the vertical distance to the minimum, EDM,
of the order of F(Py) — F(P). Convergence is con-
sidered to be attained when EDM = F(Py) — F(Py)
< EPSL.

In the last step, SIMPLX evaluates F(P), which
should be smaller than F(Py). The minimum value
of the function is then min F(Py), F(P), and the last
EDM printed is

EDM = F(P,;) — min [F(PL), F(P))].

If it then turns out that EDM > 2 EPSI, the minimiza-

tion recommences.

MIGRAD of course has the advantage of produc-
ing a full covariance matrix, whereas SIMPLX only
gives estimates (which may be poor) of the diagonal
elements. Thus the choice between MIGRAD and
SIMPLX depends on what information one requires.
On the other hand, a good estimate of the covariance
matrix can usually be obtained after SIMPLX simply
by the command MATOUT or HESSE.

SIMPLX does not use derivatives. The diagonal
érror matrix which results from SIMPLX is not con-
sidered sufficient for use in MINOS.

Subroutine STAND
Optional user-supplied subroutine is called whenever
the command “STANDARD”’ appears. See section 4.

Subroutine UCOPY (FROM, TO, N)
Copies N words from array FROM to array TO.

Subroutine VERMIN (A, L,M, N, IFAIL)

Inverts a symmetric matrix. The matrix is first scaled
to have all ones on the diagonal (equivalent to change
of units) but no pivoting is done since the matrix is
positive-definite.

2.4. Internal storage of parameters and errors

The user may find it convenient to have direct ac-
cess to some of the COMMON blocks used internally
by MINUIT to store lists of parameter values, errors,
etc. We therefore list below the contents of the
blocks most likely to be of use.

In MINUITS:

COMMON blocks

/PAREXT/ U(30), NAM(30), WERR(30), MAXEXT,
NU

/VARIAN/ V(15, 15)

/MINERR/ ERP(30), ERN(30)

contain:

U = value of external parameter I

NAM(I) = name (A10 format)

WERR(I) -= parabolic error

ERP(I) = positive MINOS error if >0

ERN(I) = negative MINOS error if <0

V({J,K) =internal covariance matrix element of in-
ternal parameters J and K

MAXEXT = 30

NU = highest external parameter used.

Warnings:

1. The contents of these COMMON blocks must not
be changed by the user.

2. The contents are constantly changing during min-
imizations and may at any time be undefined,
meaningless, or inconsistent. The safest time to
use them is when IFLAG = 3.

3. Data cards and command cards
3.1. Data cards

The order of data cards is as follows:

. Title card.

. Parameter definition cards, one card per parameter.
. Blank card.

. Cards read by FCN, if any.

. Command cards, controlling the actions taken by

MINUIT.

The above sequence of cards constitutes one data
block, and as many data blocks as desired may be
executed, one after the other (using the same func-
tion FCN). A more detailed description of these cards

wn oW -

352

F. James, M. Roos/MINUIT

TABLE 1

MINUIT COMMANDS

(D.V. = default value)

Parameters avaijlable to STAND tlhtough COMMO!;I block

COLUMNS 1-10 11 - 20 21 - 30 31 - 40 40 -
[PURPOSE COMMAND ARG 1 ARG 2 ARG 3 ARGS 4 - 7
Causes a call to FCN CALL.FCN | TFLAG
Read in covariance matrix | COVARIANCE | NPAR
from cards followed by Covariance matrix elements
Traces contours of con-— CONTOUR Param No. Param No. No.of con-
stant FCN value (X-AXIS) (Y-AXIS) tours (D.V.=2)
Signals end of data block | END (See text)
Signals end of data block.| END.RETURN | (see text)
Control returns to main
program
Sets value of UP, defin- | ERROR.DEF | UP(D.V.=1.0)
ing errors
Signals end of run EXIT (see text)
Makes a param.constant FI1X Extern.Param No.
Indicates derivatives GRADIENT (see text)
calculated by FCN
Estimates and prints HESSE Max.No.calls
covariance matrix (D.V.=1000)
If minimum is found, looks| IMPROVE Max.No.calls No.of tries
for another omne (D.V.=1000) (D.V.=NPAR+2)
Prints covariance matrix | MATOUT
Does a MIGRAD minimiza- MIGRAD Max.No.calls Tolerance VIEST
tion (D.V.=1000) (D.V.=0.1) (M.v.=0.1)
Minimize FCN (=SIMPLEX + | MINIMIZE Max,.No.calls (D.V.=0.1)
MIGRAD) (D.V.=1000)
Perform MINOS error MINOS Max.No.calls Param. No.
analysis (D.V.=1000) (see text)
Sets ISW(5) controlling PRINTOUT Printout level
printout (D.V.=1)
Causes parameters & error { PUNCH
matrix to be punched on
cards
Restores one or more RELEASE Extern.param.No. External External External ete
previously fixed para- param, No. param. No. |[param. No
meters to variable status
RESTORE = 0 for all
parameters
= 1 for last
| param. fixed
1
Does Monte Carlo mini-~ SEEK No.calls to FCN
mization
Does a SIMPLX minimization) SIMPLEX Max.No.calls Tolerance
(D.V.=1000) (D.v.=0.1)
Calls subroutine STAND STANDARD

F. James, M. Roos/MINUIT 353

follows:

1. Title card — Any alphanumeric characters, serving
as the title for the printout.

2. Parameter cards are in the format:

Col. 1—-10 Parameter number as referenced in
FCN (< 30)

Col. 11-20 Alphanumeric name for the parameter

Col. 2130 Starting value

Col. 31—40 Approximate error or step size (if
zero, parameter is constant)

Col. 4150 Lower bound
on parameter | if botk blank, not

Col. 51-60 Upper bound { bounded.
on parameter

Remaining columns are not used. All numbers may

be punched either as right-adjusted integers or with

decimal point. Not more than 15 parameters may

be variable.

3. One blank card signals end of parameter cards.

4. Next come the cards read by FCN, if any. These
may be followed by one or more blank cards if
desired.

5. The COMMAND cards are all in the format A10,
7F10.0, that is, left-adjusted ten-letter command,
followed by several numeric arguments which may
be punched either as right-adjusted integers or as
floating point.

3.2. Command cards

Each of the commands recognized by MINUIT
is described in this section in some detail. Since most
commands correspond to MINUIT subroutines, ad-
ditional information on these commands may some-
times be found in section 2.2, and indeed the separa-
tion between commands and subroutines is necessari-
ly somewhat arbitrary.

Table 1 contains a summary of the recognized
commands and their formats.

Each command, as it is read, is stored temporarily,
with its arguments in COMMON/CARD/ as follows:

COMMON /CARD/ CWORD, CWORD2, CWORD3,
WORD7(7)

where
CWORD = the first four characters of the command
(A4)

CWORD?2 = the second four characters of the com-

mand (A4)
CWORD?3 = the last two characters of the command
(A2)
WORD7(I) = the Ith argument in floating point.
The contents of this COMMON block always refer
to the last command card read. (This COMMON block
is not normally of interest to the user.)

CALL FCN Command

This causes a call to FCN, with a given value of IFLAG
indicated as the first argument of the command.
Example

CALL FCN 3.

The above example causes FCN to be called with
IFLAG = 3. This is usually used to indicate to FCN
that it should print our final curves, tables, etc. If the
above command does not appear explicitly before
the end of a block of command cards, an automatic
call to FCN with IFLAG = 3 is made upon encoun-
tering the END or EXIT command (see description
of END and EXIT).

MINUIT uses only IFLAG = 1,2, 3, and 4 and re-
serves 5 for possible future use. Any other value of
IFLAG may be used to cause any special action de-
sired by the user in FCN. In order to permit the
greatest possible flexibility, it is allowed in FCN,
when IFLAG is greater than 5, to change any param-
eter values or internal constants (but not NPAR)
which affect the value of the function (such changes
are not normally permitted for obvious reasons). Thus
a command CALL FCN with IFLAG greater than 5,
causes MINUIT to “forget” where it was before, to
call FCN again with IFLAG = 4 in order to get the
new function value, and to arrange internal param-
eter lists to take account of any possible parameter
changes. (Note that the number of variable param-
eters (NPAR) can only be changed through RELEASE,
FIX and RESTORE commands.) Example of possible
use of CALL FCN command: Suppose it is desired
to fit a theoretical model to a mass spectrum between
600 and 800 MeV, then to use the resulting param-
eter values as starting values for a similar fit over the
range 500 to 900 MeV. A possible command sequence
is:

PRINTOUT 2
CALLFCN 8

354 F, James, M. Roos/MINUIT

MIGRAD
CALLFCN 3
CALLFCN 9
MIGRAD
CALLFCN 3
EXIT

Inside FCN, when IFLAG = 3, fitted curves would be
printed as usual. When IFLAG = 8, the mass range for
the fit would be set at 600—800 MeV, and when

IFLAG = 9, the range would be set to 500—900 MeV.

CONTOUR Command
The CONTOUR command has the following format:

CONTOUR i j k

where 7 and j are parameter numbers and k is the de-
sired number of contours. This command causes the
program to trace contours of constant value of FCN
as a function of the two parameters i and j (all others
being fixed at their value at that time). It is assumed
that FCN has already been minimized, and it is re-
quired that a covariance matrix exist, so that CON-
TOUR will normally be preceded by a MIGRAD com-
mand. Parameters 7 and j must be variable parameters
at the time of the command. If k£ <0, it is taken = 2.
If k> 5,itis taken = 5.

The first (innermost) contour corresponds to an
FCN value F = FMIN + UP, where FMIN is the cur-
rent value (assumed to be a local minimum) and UP
is the error definition previously specified (see B—230).
If more than one contour is requested, then Nth con-
tour corresponds to F = FMIN + UP*N**2, The result-
ing contours are plotted on one page using the line
printer, but the actual coordinates of the points are
printed only if the PRINTOUT level 2> 2, (See PRINT-
OUT command.)

COVARIANCE Command

This causes the program to read in a covariance ma-

trix from cards, to be used in MIGRAD minimization
or MINOS error analysis. The first argument gives the
number of parameters to which the matrix corresponds,
that is the square root of the number of matrix ele-
ments to be read. Example:

ICOVARIANCE

2
21.443 1 17.212 l 17.212] 46.281

The matrix elements are read in FORMAT (7 F10.0),
but normally one need not worry about the format
since one uses only cards which are punched by pre-
vious MINUIT runs, which are of course punched in
the proper format. Since the matrix musr be sym-
metric, it does not matter whether it is read by
rows or by columns. It is, however, important that
the matrix should correspond to the parameters
which are variable at the time that the matrix is
read in.

END Command

This command is the last command in a data block,
but it implies that there is at least one more data block
to follow. The end of the last data block should be
signalled by the command EXIT, without a command
END. When the END card is encountered, before going
to the next data block, the program asks whether a
command CALL FCN 3 3 has yet been made in this
data block. If not, an automatic call to FCN will be
suppressed if the first argument of the END command
is=1.

END.RETURN Command

This command causes control to return to the main
program, and should be used only when the main pro-
gram has been written by the user. This option allows
MINUIT to be used as a subroutine called by the user’s
main program (see fig. 1). Example:

CALL PRIVAT
CALL MINNEW
CALL MYCALC
CALL MINNEW
CALL MYCALC
STOP

END

Each call to MINNEW causes the processing of one
full data block which should be terminated by the END
RETURN command. The other calls in this example
perform private calculations.

EXIT Command
This is exactly the same as the END Command, ex-
cept that it signals the end of the last data block.

ERROR DEF Command
This card serves to define what the user means by the

F. James, M. Roos/MINUIT 355

errors on the parameters, The first argument of this
command specifies the quantity UP, which is the
change in the function value produced by changing
a parameter by one “error”’. Example:

ERROR DEF 0.5

The above card would be used for example, if the
FCN was the negative of a log likelihood function in
one parameter and the user wanted the 68% confi-
dence interval. For a chisquared function, the value
of UP would be twice as great.

If no ERROR DEF command appears, UP is taken
to be equal to one.

Since UP is used by SIMPLEX, MIGRAD, MINOS,
CONTOUR, IMPROVE, and PUNCH, the ERROR
DEF command should precede these commands if UP
is different from one.

The error definition may of course be changed dur-
ing a run to get MINOS errors or contours correspond-
ing to different numbers of standard deviations. For
example:

ERROR DEF 1.0
MIGRAD

MINOS

ERROR DEF 4.0
MINOS

EXIT

FIX Command
This command causes a parameter to be removed from
the variable list and its value to be fixed at the value it
has when the command is executed. The number of
variable parameters (NPAR) is reduced by one. If a
covariance matrix exists at the time of the execution
of the FIX command, it is properly reduced (in general
all elements are modified), but the new matrix is not
automatically printed (the MATOUT command may
of course be used). Although the parameter fixed may
later be restored to variable status by a RELEASE or
a RESTORE command, it is important to note that
the information in the covariance matrix concerning
this parameter is irretrievably lost.

The first argument of the FIX command is the (ex-

ternal) parameter number of the parameter to be fixed.

For example:

‘FIX | 4|

The above command causes parameter No. 4 to be
fixed. If this parameter is already constant or not defined,
the command is ignored and a short error message is prin-
ted.

If, at the time of execution of a FIX command, a co-
variance matrix exists which is not positive definite, the
matrix will be destroyed by the FIX command, and this
condition will be signalled to the rest of the program
through ISW(2)=0.

Not more than 15 parameters may be FIXed at any
one time.

GRADIENT Command

This command, which has one argument, indicates that
FCN is prepared to calculate its own derivatives. The
main program then assumes that when FCN is called
with IFLAG = 2, all the first partial derivatives of FCN
with respect to all variable parameters will be calcula-
ted by FCN and returned in the vector G which is the
second formal argument of the Subroutine FCN. In ad-
dition, of course, the function value must be calcula-
ted as for all FCN calls. When FCN is called with
IFLAG # 2, the gradient need not be calculated. Only
Subroutine MIGRAD uses the derivatives of FCN, and
the GRADIENT command therefore has no effect if
no MIGRAD or MINOS commands are present,

If the argument of the GRADIENT command is
zero or blank, the derivative calculation in FCN is com-
pared with a numerical calculation by finite differences,
and the results of the comparison are printed. If the val-
ues of the derivatives do not agree within the errors on
the numerical estimation, MINUIT does not accept the
derivatives from FCN.

In order to suppress the above test (when derivatives
are known to be calculated correctly), use the com-
mand

GRADIENT 1.0

HESSE Command

The command causes the covariance matrix to be cal-
culated and printed. If a covariance matrix already ex-
ists from previous calculations, it is destroyed and re-
placed by the newly calculated matrix.

The calculation requires about § NPAR**2 calls to
FCN (it does not use derivatives from FCN) to deter-
mine all the mixed partial second derivatives, and then
inverts the resulting matrix. If a diagonal second deriva-

356 F. James, M. Roos/MINUIT

tive is negative, the calculation is stopped with an er-
ror message, since there is then no meaningful way to
force the matrix to be positive-definite. If the square
of an off-diagonal second derivative is bigger than the
product of the corresponding diagonal elements, the
off-diagonal element is set to zero and a message is
printed. Some other crude checks for positive definite-
ness are made, but there is no absolute guarantee that
the resulting covariance matrix is positive-definite.

See also MATOUT command.

IMPROVE Command
This command causes the program to try to jump out
of a good local minimum in order to find a better
(lower) minimum, It should be used only after con-
vergence to a local minimum with the covariance ma-
trix already determined (i.e., usually the IMPROVE
command will follow a MIGRAD command).

The method used is due to Goldstein and Price [5].
It consists essentially of transforming the function by
dividing it by its quadratic part (i.e. “removing” the
local minimum) and seeking a minimum of the trans-
formed function.

If IMPROVE fails to find a new minimum or finds
a local minimum not as good as the original, it tries
again starting with a new (random) search direction.
If it does not find an improved minimum, it continues
searching until it exceeds either the maximum no. of
FCN calls or the maximum no. of searches as specified
by the user on the command card. Example:

IMPROVE 1500. 8.

This causes IMPROVE to stop after1500. FCN calls or
8.searches. If these arguments are blank, standard val-
ues of 1000 and NPAR+2 are assumed.

The subroutine considers itself successful only if it
finds an improvement on the original minimum where
the new minimum is at least 0.1 standard deviations
away from the previous minimum in at least one vari-
able. In this case it prints the message “Improve has
found a truly new minimum”.

The message “Improve has returned to region of
original minimum” means that either (1) no minimum
was found, or (2) a new minimum was not as deep as
the original one, or (3) a new minimum was very close
to the original so is in fact just a better point in the
same hole. In case (2) and sometimes in case (1), a
printout will give the point where the program stopped

searching. If this point is far away from the original
minimum, it usually indicates the existence of a second-
ary minimum in the neighbourhood of the stopping
point.

MATOUT Command

This command causes the printing of the parameter
value and all the individual correlation coefficients
normalized off-diagonal elements of the covariance
matrix V;-]-/SQRT (Vi;*V;) and the global correlation
coefficients

P;% =1- [ka*(V_l)kk]_l-

In addition, if the printout level is greater than one,
the full (internal) covariance matrix is printed.

When the covariance matrix does not exist, or is
not meaningful, it is calculated by subroutine HESSE,
(See HESSE command.)

MIGRAD Command

This command causes the program to perform a mini-

mization using the MIGRAD technique, which is des-

cribed under subroutine MIGRAD. The command may
have three arguments controlling the convergence. They
are:

Arg 1: NFCNMX — Maximum number of calls to

FCN. The minimization will be stopped after

this number of calls, even if convergence is

not attained. If this argument is blank, zero,

or negative, NFCNMX is set equal to 1000.

The number of FCN calls is checked against

NFCMX only once per iteration; therefore

NFCNMX may be somewhat exceeded.

Arg. 2: EPSI — Tolerance on the minimum function
value. The program has the ability to predict
how far it is (vertically) from the true mini-
mum, based on the covariance matrix and the
first derivatives of FCN, When this predicted
distance p becomes smaller than EPSI for two
consecutive iterations, this convergence cri-
terion is satisfied. If argument is blank or zero,
EPSI is set equal to 0.1*UP. (See ERROR DEF
command.)

Arg. 3: VTEST — Tolerance on the stability of the
error matrix. The program calculates the aver-
age fractional change in the diagonal elements
of the covariance matrix from one iteration
to the next. When this quantity is smaller than

F. James, M. Roos/MINUIT

VTEST for two consecutive iterations, this

convergence criterion is satisfied. If argument

is blank or zero, VTEST is set equal to 0.01.
Convergence is attained when both the EPSI and
VTEST criteria are satisfied simultaneously, or when
p (defined above) becomes smaller than 10~ 3 *EPSI.

MINIMIZE Command
This command causes the program to attempt to mini-
mize FCN by calling first SIMPLX and then MIGRAD.
The arguments are the same as for SIMPLEX, namely:
First argument: maximum number of FCN calls
(default value 1000).
Second argument: tolerance on FCN value (default
value 0.1).
The limit on the number of FCN calls is applied global-
ly to SIMPLX and MIGRAD together.

MINQOS Command

This command causes a MINOS error analysis to be
performed on all or certain indicated parameters. For
details on the meaning of MINOS errors, see subroutine
MINOS. MINOS in turn calls either MIGRAD or
SIMPLX, depending on how good the initial error esti-
mate is. (MINOS cannot operate unless at least an ap-
proximate covariance matrix exists. When not, MINOS
writes a message. It is then advisable to precede the
MINOS command by a MIGRAD command.)

The first argument of the MINOS command gives
NFCNMX, the limit of the number of FCN calls which
may be made during the MINOS analysis of each param-
eter. When this limit is exceeded, MINOS goes on to the
next parameter even if it has not finished the analysis
for the current parameter. If this first argument is blank
or zero, it is taken as 1000.

Starting in column 21 of the MINOS command card,
a special format is used, for it is here that are punched
the parameter numbers of those parameters for which
a MINOS analysis is desired. If nothing is punched after
column 20, MINOS is performed for all parameters. The
special format is 3012, that is, a one-digit parameter
number should be punched in an even-numbered column,
and a two-digit number should start in an odd-numbered
column. All blanks and zeros are ignored. Example:

|MINOS] 300. [blb3bb22b4|

The above card would result in MINOS analysis for
parameters numbered 1, 3, 22 and 4 (in that order),

357

with a limit of 300 calls for the analysis of each param-
eter.

An ERROR DEF Command must appear before the
MINOS command if it is desired that UP+# 1.
If a new minimum is found during MINOS error analy-
sis, a new MIGRAD minimization (in the full variable
space) is attempted, with

NFCNMX = 4 * NFCNMX
VTEST = 0.5 * VTEST

After this step the MINOS error analysis recommences
from the beginning (with the original NFCNMX). If a
new minimum is found a second time, a final MIGRAD
minimization is attempted (without changes in
NFCNMX or VTEST).

PRINTOUT Command

This command by itself does not cause any printing,
but it sets the value of ISW(5) whicy is used internally
in other subroutines to indicate the amount of print-
out desired. This value is the first argument. Example:

|PRINTOUT | 3

ISW(5) can take on values between zero and five inclu-
sive, and in general the higher the value, the more print-
out is generated during the minimization.

Before this card appears, the printout level is taken
as=1,

General guidelines on printout levels are:

0 = absolute minimum, but usually enough
1 = normal printout
2 = extra printout, often useful for difficult cases
>2 = very voluminous, usually used only for debugging
MINUIT itself.

PUNCH Command

This command causes the current parameter names,
values, errors and limits to be punched on cards in the
same format as for input data. These cards can thenbe
used in future runs for restarting, continuing or modify-
ing the minimization procedure.

In addition, if a covariance matrix exists at the time
the PUNCH command is executed, this covariance ma-
trix is also punched in suitable format to be used in con-
tinuing or modifying the minimization procedure in fu-
ture runs.

358 F. James, M. Roos/MINUIT

RELEASE Command

This command causes a fixed parameter to become
variable again. It can only operate on parameters which
were originally variable and which have been fixed by a
FIX command. On the command card the user only has
to specify the external numbers of the fixed parameters
to be released. If the parameter requested is not fixed,

the command is ignored and an error message is printed.

If a covariance matrix exists at the time of execution of
a RELEASE command it is destroyed. (See also COM-
MAND RESTORE.)

RESTORE Command

This command is similar to RELEASE, except that the
user does not specify which parameter is to be released.
According to whether the argument of the RESTORE
command is zero or one, either all fixed parameters,

or the last one fixed, are restored to variable status.
Example:

FIX 3.

FIX .

FIX 11.

MIGRAD

RESTORE 1. (restores parameter 11)
MIGRAD

RESTORE 0. (restores parameters 7 and 3)
SEEK Command

This command causes a Monte Carlo search of FCN.
(For details on this procedure, see subroutine SEEK.)

The first argument is the number of FCN calls to be
made during the search. For each FCN call from SEEK,
all variable parameters are chosen randomly according
to uniform distributions centered at the best param-
eter values with widths equal to the previous step sizes
(or equal to the approximate errors given on the data
cards if no previous minimizations were done). At the
end of SEEK, the parameters are set equal to the best
values found.

SIMPLEX Command

This command causes the program to perform a mini-
mization using the technique described under subrou-
tine SIMPLX. The command may have two arguments
controlling the convergence. They are:

Arg. 1: NFCNMX — Maximum number of calls to
~ FCN. The minimization will be stopped after

this number of calls, even if convergence is
not attained. If this argument is blank, zero
or negative, NFCNMX is set equal to 1000.
EPSI — Tolerance on the minimum function
value. If blank or zero, it is set to 0.1*UP,
(See ERROR DEF command.)

Convergence is attained when the function values at
the NPAR+1 simplex points differ by less than EPSI.

Arg. 2:

STANDARD Command

This command causes MINUIT to call Subroutine
STAND. This subroutine must be supplied by the user,
and it may be used to perform any desired actions.

A limited amount of information may be transmit-
ted to STAND using the arguments of the STANDARD
command. These arguments are automatically stored in
COMMON block /CARD/, which is accessible also to
STAND.

3.3. Using MINUIT —~ Some sample command sequences
In this section we give some idea of the possibilities

available with MINUIT by suggesting some command

sequences suitable for certain types of problems.

Example 1: A simple problem

The user has a chisquared function which is a fit to a
mass histogram. The variable parameters are masses,
widths and percentages of resonances, all of which can
roughly be estimated by eye, so that reasonable start-
ing values are known for the parameters. An estimate
of the parameter errors is desired, but it is suspected
that more fits will be done later, so that no time should
be wasted calculating exact errors with MINOS. The
command cards required are:

MINIMIZE
PUNCH
EXIT

With the above command, printout level one is assumed
(short printout) and errors are evaluated using UP=1.0
(function increment defining errors) since no ERROR
DEF command is present. The function will be mini-
mized using first SIMPLEX and then MIGRAD. Since
the call limit is not specified, a limit of 1000 FCN calls
will be placed on the minimization. The PUNCH com-
mand will punch the last parameter values found, even
if the minimizing failed to converge, so that it may be
restarted at a better point. When the EXIT card is en-

F. James, M. Roos/MINUIT 359

countered, FCN is called with IFLAG = 3 since no
CALL FCN 3 command has appeared.

Example 2: A simple but more difficult problem

The user has a log likelihood function which is a fit
over all of phase space. The variable parameters are
complex reaction amplitudes for which no reasonable
starting values can be estimated. As in example 1, only
minimization is desired, but in the present example,
this is expected to be more difficult. Suggested com-
mands are:

ERRORDEF 0.5
PRINTOUT 2.

SEEK 100.
SIMPLEX 300. 1.
PUNCH

MIGRAD

PUNCH

EXIT

The first command sets UP = 0.5 since this corresponds
to one standard deviation for likelihood. Since we wish
to follow the progress of the fit, but do not wish too
much printout, we set the printout level to two, which
reports every tenth new minimum in SIMPLEX and
MIGRAD and also gives some extra information in
SEEK. Then we ask for 100 Monte Carlo calls to get
a reasonable starting point. Then SIMPLEX is called
with weak convergence and a limit of 300 FCN calls,
to get us to the region of the minimum. At this point,
we punch the current parameter values just in case the
program is cut for time limit later on. Then MIGRAD
is called for full normal convergence and error matrix,
which are punched for further use, and FCN is auto-
matically called with IFLAG = 3 by EXIT.
Alternatively one may wish to have the IFLAG =3
printout already after SIMPLEX in case the program
is cut in MIGRAD for time limit. The command card
sequence then is

ERROR DEF 0.5
PRINTOUT 2.
SEEK 100.
SIMPLEX 300, 1.
CALL FCN 3
PUNCH

MIGRAD

CALL FCN 3

PUNCH
EXIT

The second call to FCN with IFLAG = 3 is now
necessary, because the EXIT command no longer calls
FCN automatically, since it already has been called
once.

Example 3: A continuing investigation

The user’s FCN has already been minimized in a pre-
vious run, but it gave a surprizingly high value for
parameter 3. It is desired to see if there is another mini-
mum with parameter 3 closer to its starting value, and
also to investigate the behaviour of parameter 3 by a
MINOS error analysis and by tracing FCN contours as
a function of parameters 3 and 5. A reasonable com-
mand sequence is:

FIX 3.

MINIMIZE

RELEASE 3,

MIGRAD

IMPROVE 200.

MINOS 500. 03
CONTOUR 3. 5. 2.
EXIT

4, User subroutines

The principal subroutine which must be supplied by
the user is FCN, since it is in FCN that the function to
be minimized (F) must be calculated.

In addition the user may supply (optional) subrou-
tine STAND which is meant to take the place of a se-
quence of COMMAND cards or to perform any opera-
tions which are not performed automatically by COM-
MAND cards. That is, it allows the possibility of direct-
ing MINUIT from a FORTRAN subroutine instead of
using COMMAND cards. Subroutine STAND is called
whenever the COMMAND card STANDARD appears.

4.1. Subroutine FCN(NPAR, G, F, X, IFLAG)

Subroutine FCN calculates the value of the function
to be minimized or studied. The arguments have the
following meaning (the actual names are of course dum-
mies and may be changed):

360
NPAR* The number of variable parameters (at
most 15),
G A vector into which the derivatives are to
be put.
F The function value calculated in FCN.,
X* A vector containing the external param-
eter values,
IFLAG* A marker whose meaning is described below.

The arguments marked with * above are input to FCN
and must not be changed by FCN (that is, they must
never appear on the left side of an equals sign). The
marker IFLAG instructs FCN on what it should do at
the particular call in question, according to the defini-
tions given in table 2.

Table 2

Value of . .

IFLAG Calculation or operation to be performed by FCN

1. Injtializing entry. Read in all necessary special
data to FCN, calculate constants, print input
tables if desired, etc.

2. Normal entry with gradient, Calculate the deriva-
tives in vector G and the function value in F at
the point X,

3. Terminating entry, Write out any special summa-
ries, output tables, etc. for the minimum point.

4, Normal entry without gradient. Calculate only
the function value F at point X.

5. Not used (reserved).

Other Follow any special procedure actording to the

user’s own private convention, (The parameter
values may be changed by the user whenever
IFLAG > 5 according to the convention given
under the CALL FCN command.)

Since most of the computing time is spent inside FCN,
it should be carefully optimized for calles when IFLAG
=4 (or = 2 if derivatives are calculated).

For an example of the structure of a typical FCN,
see below.

F, James, M. Roos/MINUIT

4,2. FCN structure

For the example below we suppose that F is a function

of 4

i) adjustable parameters contained in the vector X

ii) constants C

iii) constant vectors E(I), the use of which imply
loops over 1.

In order to make FCN as fast as possible, no con-
stants C or vectors E(I) must be computed more than
once. In particular one should avoid unnecessary loops
over I,

Note that the user may (but need not) calculate the
gradient G of the function F.

SUBROUTINE FCN (NPAR, G, F, X, FLAG)
DIMENSION G(15), X(15)
COMMON/DUMMY (see note below)
GO TO (10, 20, 30,40, 50,60)IFLAG
10 CONTINUE
[Read data cards.
Set the constants C.
Compute function of C,
Compute function of C and E(I).]
20 CONTINUE
[Compute function of X and C needed for G.
Compute functions of X, C and E(I) needed for G.
Compute G.]
40 CONTINUE
[Compute functions of X and C needed for F,
Compute functions of X, C and E(I) needed for F.
Compute F.]
RETURN
30 CONTINUE
[Execute all operations which require the parameter
values X at the minimum of F. For instance, print
out final tables, plot curves punch cards, etc.]
GO TO 40
50 [Do not use]
60 [Follow any special procedure according to own con-
ventions]
RETURN
END

Note that the constants C, E(I) and variables X must
not be changed under 20 or 40. The variables X are
changed in other parts of MINUIT, and any other
changes will hinder MINUIT to find the minimum.

4.3. Unphysical regions

The variable parameters may be assigned physical
limits outside of which they will not be allowed to

F, James, M. Roos/MINUIT 361

vary. (It is advised to allow for rounding errors of
~10-8 in setting physical limits.)

If the problems involve “non-rectangular” con-
straints (i.e. constraints which cannot be expressed
by imposing simple independent limits of the form
A < X() < B), the user must devise a way to “fool”
MINUIT into thinking it has an unconstrained prob-
lem, The recommended way to do this is by the pen-
alty function method as follows: .

Suppose we wish to minimize the function f(X)
subject to the condition that g(X) > 0. Then define
the FCN value F to be:

F=1(X) if gX)>0,
F=f(X) +ag?(X) if g(X)<0,

where ¢ is a constant, large compared with f. Note

that this method requires f(X) to be defined every-
where, and continuous at g(X) = 0, which may some-
times be difficult to arrange, but otherwise the method
is usually found to work well and is perfectly general

(i.e. independent of the method used for minimization).

5. Output formats

The printed output should be self-explanatory, but
a few comments may be in order.

5.1. Data card printout (subroutine MIDATA)

The starting values and step sizes for the parameters
are printed in FORMAT F15.6, so that in some cases,
perfectly good data may overflow or underflow this
format, but values between 103 and 109 will be prin-
ted in an easy-to-read format. In any case, the values
used by the program are those punched on the card,
while the values printed by the program may be differ-
ent due to truncation by the format.

Self-explanatory diagnostic messages are printed
whenever fatal or non-fatal errors are detected. If one
or more fatal errors occur, the program stops, but first
reads all the data cards if possible in order to find fur-
ther errors,

5.2. Command card printout (subroutine COMMAND)

All COMMAND cards are printed as soon as they are

read, before being acted upon. This printout can al-
ways be distinguished by three short rows of asterisks
at the extreme left-hand side of the page, followed at
the right by the Command and its arguments. The ar-
guments may be punched as floating-point numbers
or as right-adjusted integers, but they are immediately
transformed always to floating-point numbers and are
printed out in FORMAT F15.4. All arguments which
are not printed are blank or zero. If a COMMAND is
not recognized by MINUIT (i.e. if it is a comment or
if it is misspelled) it is ignored and the words COM-
MAND IGNORED are printed under the COMMAND.

If mistakes on the MINOS command card are found
(i.e. some specified parameter number is outside the
allowed range or corresponds to a fixed parameter) the
rest of the card is treated normally and a warning mes-
sage is printed indicating simply that there are some
mistakes.

Note that the printed Command arguments are
taken directly from the Command card before any de-
fault values have been assumed for these arguments.

5.3. Normal parameter printout (subroutine MPRINT)

For each printout, the current value of the function
is printed, as well as the total number of FCN calls since
the beginning of the data black, the total time in min-
utes since the beginning of the job, and the current
estimate of the vertical distance to the minimum (EDM)
if such an estimate exists.

For each parameter, the following quantities are
printed:

1. internal parameter number — only variable param-
eters have internal numbers.

2. external parameter number — as referenced by FCN.

. parameter name appearing on parameter data card.

4. external parameter value — this is the real value of
the parameter as used inside FCN,

5. external parameter error — this is the current best
estimate of the real parameter error, taking account
of UP (see ERROR DEF command). If a covariance
matrix exists, the error is calculated inside MPRINT
from the appropriate diagonal element.

6. internal parameter value — this is the value of the
parameter transformed for internal use (see section
4C). If the parameter is unbounded, it is the same
as the external value.

7. internal step size — at the beginning of the program,

w

362 F. James, M. Roos/MINUIT

this is the starting error read from data cards, trans-

formed into internal coordinates. During or after a

minimization, it is equal to the last step taken. In-

ternal values are always used since these are the val-
ues used directly by the minimizing routines. This
quantity is not defined in SEEK.

At the end of a MINOS error analysis, a block of
printout is produced in Subroutine MINOS, which as-
sembles all the principal results from the minimization
and error analysis in handy form. If a MINOS error is
zero, it means either that the MINOS error was not re-
quested, or that MINOS has failed to find the true er-
ror (usually because it lies outside the allowed region
or because too many FCN calls are required).

5.4, Covariance matrix and error correlation matrix
printout (subroutine MATOUT)

When the covariance matrix is printed, it is always
in internal coordinates (see 4C), which are the same as
the real external parameter values only if there are no
limits on the parameters. The matrix is always sym-
metric, so the elements above the diagonal are not
printed.

Unfortunately, the internal covariance matrix used
by MINUIT is not usually of direct interest to the user.
For this reason, the following interesting numbers which
can be derived from the covariance matrix are printed
separately:

1. The square roots of the diagonal elements, trans-
formed to external coordinates if the parameters
are bounded, and scaled by the error definition
UP, are the parameter errors appearing in the param-
eter printout.

2. The off-diagonal elements give the correlation coef-
ficients p between parameters from
pij = VN ViV
where V is the covariance matrix in internal or ex-
ternal coordinates, If V is positive-definite, |p] </
for all elements. If p = 0, the two parameters are
uncorrelated, and if {p| = 1, the two parameters
are completely correlated.

3. The global correlation coefficient [4] for a given
parameter is the correlation between it and that
linear combination of the other parameters most

highly correlated with it. All such coefficients.
should be between zero and one for a positive-
definite covariance matrix.

3.5. CONTOUR printout

Before each contour is calculated, the specifications
of the contour are printed. After the contour is finished,
a message is printed stating that the calculation was suc-
cessful (and giving the number of points determined on
the contour) or giving the reason for failure if unseccess-
ful.

If the printout level is 2 2 (see PRINTOUT com-
mand), one line additional information is printed for
each contour point determined (usually between 3 and
1 page per contour). This line gives the actual coordi-
nates of the point (both absolute and relative to the
minimum), an indication of the possible error (differ-
ence between FCN value on contour and FCN value at
closest point where FCN was actually evaluated to de-
termine contour point), the separation between the
last two points, the slope of the line joining the last
two points (theta in degrees) and the total number of
FCN calls at that point.

After all contours of a given set are calculated, they
are automatically plotted on one page. The scaling of
the plot is chosen so that intervals are round numbers
(subroutine BINSIZ), which usually results in different
scaling for X- and Y-axes.

References

[1] F. James, Function Minimization in Proc. of the 1972
CERN Computing and Data Processing School, CERN
72—21 (1972). (Separate reprints of the minimization
lectures alone are also available from the author),

[2] J.A. Nelder and R. Mead, Comput. J. 7 (1965) 308.

[3] R. Fletcher, Comput. J. 13 .(1970) 317.

[4] W.T. Eadie, D. Drijard, F.E. James, M, Roos, and
B. Sadoulet, Statistical Methods in Experimental Physics
(North-Holland Publ. Co., Amsterdam, 1971),

[5] A.A. Goldstein and LF. Price, Math, Comp. 25 (1971)
569.

[6] H.H. Rosenbrock, Comput, J. 3 (1960) 175.

{7] W.C. Davidon, Comput. J. 10 (1968) 406,

[8] R. Fletcher and M.J.D. Powell, Comput. J. 6 (1963) 163.

[9] F. James, Monte Carlo for Particle Physicists (Section
6.1) in: Methods in Subnuclear Physics, Ed. M. Nikolic,
(Gordon and Breach Publ,) Vol, IV, Part 3.

363

ocyeto’

099 ¢
T ‘iINT
SINITOT 44300 NOTLvI3HH00

F. James, M. Roos/MINUIT

XITHLIVH JINVINYACD TVNU3ILNI
0000°'T 4O JONVHO NOT4ONM4 0L ANOJS3IHH0D Syody3
poe30089%"° W Vvil3d v
o T0+300007" LOVAWYON €
pr-3ppLel’ T0=3Tp¥06° p0e396bT2° 10=3TPp06° vi3 9vWwl ¢ 4
yo=3gre0g* 20=3g908¢* 00+392702" Z0%3860ab" vig v3e T T 90+382" eIt L2 T0+3268L2P8L"
3Z1S d3.1S°AIND 3NTYA'NHILNI HO¥Y3 InvaA Y3L3WYNVD ‘L1X3'UNI Wa3 ETH $1vD ANTVA NO4
a3543AN03 SYH NUILVZIWINIW UVHDIW
2e=3cng0d? g p0e320TSYt ‘o vizgvwl 2 2 :
2n-300002" *0 00+3606%1"° ' vi3 vy 3 T 00+328° eTT’ L T0+385T8Y9L®
3716 d346* INT ~INTYANYIEINT yoyy3 In"tyA YILIRYHYE T IXIVIND Wa3 BHTL STvD “IANTYA NI
T9-307° 41 XTULVA-FONVIHVA NI FONYHO TYNOTLIOVNA ONY 00+30T* 411" WA ¥0
G0-30T° “17* (WA3) WAWINIH 0L 3DNYLISIQ d3LVWlisa == VIH3LIND JONIOHIANGD ‘NOILVYZIWINIW (VHOIW LUYLS
.. :))) - o h BEGHEEBEES S
AVHO [nevnal sas
BURREERRES
BUBBBNIBINY
00000°¢ X14¥5asZ wes
X XYY ST LR)
..... - T [TYYT YR Y ¥
ssnal LY XY
i i XYY SN T YY)
00e30009Y° W vYi13d ¢
g re3UnGoTe 104300007 60+300007° T0+300007" LOVARHON ¢
00e3Lr 0T ‘0 00+30000%° ‘0 vi3 ovywl g 2
..... 40«30 ro0T? >0 c0+30000%"° i ver US| £ 1 S ‘0 eTT T T0+IBSTRPOL®
3Z1S d34STANI INTYA'NHIUINI ELERES In"vA d43l3anvyvd '1X3'LNI Wil INtd S0 INIVA NOJ

NOJ OL AMIN3 1SHl4

e P T T Y PY TP YT Y S Y YV S R T X YRR Y L XY

’hkiCC'!CCCQGCICCICQI.C”CI#Cl#’id’.l.’!t

00009%* W Yl13d v
s toa 09000%* g00000°T LOVIRNON T g
‘0~ ‘os 0e000%* 000000°%0 Vi3 OVAI 4
o hd tge LLLA 000000* 0 vI3 vay oY

c#ihctcccccccu;’ioaciuccucccﬁcccacccuatvcc’c;cctc’cc-ccucaccqoccaiu..c’uc-aua;&c&cac&uuvct;#.uc;
kiii&ktat&cccc&&&dl-accttct’taUCQClG;tllc;tcotiuittlcctQGCCOI’Okcc&cccctcttlﬁttliiaicncmcactliiu
£TT* 3HIL) SAVD3G OINULd3T 0Y¥3IZY 40 Y¥iSI1a=3Wil ol Ll1d
c#c««hdcccccr!«::.#ccutcuatotca’-’c’.caaacucttncatc-ccccc'ctiitcau«caca’uc’ivl&ctacytcccofuldoct

» T 'ON %0078 vivd »

» SLYY NOISHIA s

s SLINNIW 9060 »

PREAIERERINIIR I AN

INdLNO NN¥ LSAL

F. James, M. Roos/MINUIT

364

HiIM Q3134w

9032040, %=
9=ILP9TL =
$1-3CGH0T*

3Z1S d3L1S*LNI

en=3Crg02*
7-3L%651"

9r-377909"*

3Z1S d31S*1INl

TO=JeT* " 1*
§0-30T°* ‘19

SIN1Od 6y 00 St 2 ¥noLNOD
000000°c » NIW3 = 4 2 YNOLINOD 2 ONVY % ‘ON SY3ILIWNYHVd
. SINIOd G HLIM (3437dWOD SI T HNOLNOD
800000°Y » NIWd = 4 T HNGLNOD 2 ONY T ‘ON SHILIWVHYY
LI PT T XY Y ¥y
sgoo0*e 00000%1 GNOLNDDS# %59 "s&y
LE T ER Y Y Y Y ¥
LAY &L N LIVINYGON £
12950 vid 9YNI 2
,,,,,, OIS vIZWIE S
IN313144300 4313HYHYd
NOTLYT4N¥0D IYE0Ty
2ETTTETHYE
¥eLt 2

L3 TINT

<
SIN31D144300 NCILVI3NY0)

629200 SYMIONVHI TYNOTIOVEA ISV XTHIVR IONYTHVAQD “TYNYIINT
00C0*T 40 JINVHINOTIONNS 0L ONUJSIHHOD SHONYT
o oos30099%* W VLY30%
00369994 T0«23869¢L" 00369996 LOVAHYON ¢ £

T0<3TLOZT s 00%3Zg2es* TOs3TE02T % VLT BHYNT T2 . T —

T0=3pLpGe’e 00+36Lpp2°* TGs3popge'a vl3 ¥3¥ 1 1 60«312" eIt sl T0+3/0GL8TL"

INTIYANEILINT yo¥y3 TTUINVA YJLIWVEVE Y IXIYINT WC3 INTL STvD INTIVA NI
’ ’ ’ ’ o QIVYIANOD SYH NOTIVZIWINTW UVHIIH

T0+30000%° T0-3(606p* Toe30000T° LIVIWHON ¢ ¢
T0«3TP¥08" 00+329T9T" TOs3THH06" VITHVRT 2 [i i
20-33908y° 00+3/p2gT" 20%3800G¢" Vi3 vy3y 1 T CO*36T" eTT* £e T0+3/822p8,°
SNTVANYIINT T YoNYS IRIVA YILIAWVYYE *LIXT INT Hg3 INTL STIYD INIVA NIY
XTYLYW IONVIUVA NI-JONVED TYNOTLOVHA “ONY 08*I0T* *L1T* Hg3 HU ’
(WA3) WAWINIKW Ol 3ONYiSIQ Q3LYWILSH s VIYILIHD JINIOHIANOD .zo~h<u~1~z~r VYO IW LuYIS
b B . R Y YT Y YYY ¥
AYYD IWs2axG sas
S350 580885
'3TAYIHYA 0L QIN0LSIH LOVIWHON ‘g Y313WVYYd .

..... I X EX XYY Y ¥Y
AHOLSIYsvsnbd saa
EIF YT YT Y Yy

NOTIVII¥HOH TYED1D

6£6CH"
686CH"
IN3I314430D

i3 Ovil
VI TIVIN

T
Y3i3Wvuvd

[

365

F. James, M. Roos/MINUIT

00gooTO* & NWNY09 3INT *T T HILINYHEY
Graoose* 688580 0000045~
-oon-..-...-.-..o..o.-o.-.-..-Q.M.-o—-..-w.-.aoo..w ou-.o-n-.-c-N .N-...-...-..M.“- OQOOOV'.
e 4 27e e TEYETE0002e -
. " 2 zz !
.. : 2z S ARARE 1 1 T
. M NN.
- P2 4t oooeovet-
o 3 teegp0000g” -
. . [
Y N .-. -.-:OQOQ.OCN&F
) ‘ 134 g
. ‘ Tt TV At ggoo022t -
) " ﬂ L3
. 2 s $4e 0000087 -
. ﬂ H 1}
. : g et poo0ObTt .
-] 2 J
‘ 2 T : . t* goooooTt-
. ¥ : 1 Y4t 00000907
. ' s
rA R e R 1 -o&ooo.n.ooq---.-.o.-.‘..-nhna.v‘.-n..to.--....o-i.nnq,n.-nla.Q.--....-uao.ﬂo... OQQGQNQQI
. ﬂ B) ” * N - -
. o B YO REE00ZET
. L] L]
¢ T m Y u.. 0000090
. : vev gUDo00T
- [’
! 1 =] Yev 0po0ObT
. 1 T L :
. Tt T - e 111
: TITIT T T s !
_—y - w LR QGGOQNN-
‘ [N .
2 * eae0092"
. 1 []
2 s TG00 0008T
[n N (]
e Y verggonove”
. 2 .—. L}
ooy s WA 1 LT A
* & 2 ' '
b 22 r A 1 . T
: 22z 2.2 : ’
o’cQOOOO'o.v-oc-.b...ooocooooooﬁo..-9.0-.-0-000 * & ¥ + ¢ » LS * o8 @ h ¢ cccﬂaﬂ'-
2 43i3uvivd
00000°T * NIWd = T HnDLINOD 13 mmwﬁwtxmxn.aou meOpzoo NOTLONNS

366 F. James, M. Roos/MINUIT

FCN_ VALUE CALLS TIME EDM INT,EXT, PARAMEYTER VALUE ERROR INTERN,VALUE INT,STEP SIZE
«7137547E+02 239 115 +21E=09 1 1 REAL ETA «,37434E=01 +24439E+00 «.35434Ew02 «10453E-55
2 2 IMAG ETA *,12831€E001 «J2232E+00 = 12031E-01 =~ 72647E-06
3 3. NORMFACT 966069E+00 2 J4693E-01 +96669E«0D =70402E-16
4 DELTA M JA60VU0EDQ
ERRORS CORRESPOMD TO FUNCYION CHANGE OfF 1,0000
LA X2 222222

*ee TetevPRINTOUT
LIS
LT PN

*wa BeaseMINQS =0,00000

RAXARRNNT S,

MINGS ERRORS REQUESTED FOR PARAMETERS 1 2 3

DETERMINATION OF POSITIVE MINOS ERROR FOR PARAMETER . 1 REAL ETA

PARAMETER 1 SET YD =,354E«01 « 1244E+00 = 12096400
MIGRAD MINIMIZATION HAS CONVERGED

PARAMETER 1 SET To ~,354E-01 + 1208E«00 = 1173E+00
MIGRAD MINIMIZATION HAS CONVERGED

THE POSITIVE MINOS ERROR. QF PARAMETER 1, REAL ETA ., IS «2128E+00

LR A R A L L e T L L LS L L L L T e S
DETERMINATION OF NEGATIVE MINOS ERROR FOR PARAMETER 1 REAL ETA

PARAMETER 1 SET T0 =,354E-01 + =,244E+00 = -,280E+00
MIGRAD MINIMIZATION HAS CONVERGED

PARAMETER. 1 SET Y0 .»,354E=01 + =,290E+00 & »,325E+00
MIGRAD MINIMIZATION HAS CONVERGED

THE NEGATIVE MINOS ERROR UF PARAMETER 1, REAL ETA , IS <«,2791E6+0"
hEASRARARE SRR AR A A R L A L L L I T Sy

DETERMINATION OF POSITIVE MINOS ERROR FOR PARAMETER 2 IMAG ETA

PARAMEYER 2 SET TO. «,120Ew0%. + +322E+00 = +310E+00
MIGRAD MINIMIZATION HAS CONVERGED

PARAMETER 2 SET To ~,120E-01 + +307E«00 = «295E+00
MIGRAD. MINIMIZATION HAS CONVERGED

THE POSITIVE MINOS ERROR OF PARAMETER. -2, . [NAG ETA ., .IS «3076E+00

LA Ad R A R Tt T T T PP PN D TP
DETERMINATION OF NEGATIVE MINOS ERROR FOR PARAMETER 2 IMAG ETA

PARAMETER .2 SET 10 =,120F-01 + =-,322E¢00 & -+, 334E+00
MIGRAD MINIMIZATION. HAS' CONVERGED

PARAMETER 2 SET TO w»,120E=01 + <~,340E«00 = =,352E+00
MIGRAD MINIMIZATION HAS CONVERGED

THE NEGATIVE MINOS ERROR OF PARAMETER 2, [IMAG ETA s 1S =, 3413E+00
AL AS AL AR AA A SRR R A At At L dd L L I e P P U PN

DETERMINATION. OF POSITIVE MINOS ERROR FOR PARAMETER 3 NORMFACT

PARAMETER 3..SET TO +967E400 « +747E01 = 1104E+01
MIGRAD MINIMIZATION HAS CONVERGED

THE POSITIVE MINOS ERROR QF PAKAMETER 3, NORMFACT , 1S «7783Ew04

L A A R el R R L R L L L L L L D e,
DETERMINATION OF NEGATIVE HINOS ERROR FOR PARAMETER 3 NORMFACT

PARAMETER 3 SET Tp 1967E+00 + <«,747E#01 = 1B92E+00
MIGRAD MINIMIZATION HAS CONVERGED

THE NEGATIVE MINOS ERROR Ot PAKAMETER 3, NORMFACT , IS «,7591Ew01
LR A A A A R L L e N L L R g R Lt L T L Ty oy

367

F. James, M. Roos/MINUIT

£ = 9V HLIIM NO4 01 TVD

L E T LYY L2

lI1XJanuey waas

X TR EX XYY

91/.96* LIV 3HHON £

LeaatLt Vi3 UVAHI 4

$00L6° vi3 v3d 1
INIIOT 44300 Y313HvYvd

NOTLVI3IHY0D 4<m04ﬂ

284" 6Ty ¢
pELY
[4 T .»z~

0000°'T

T0s32T654 "= To«3z282L”
0G+382THg "~ 00+3p9L0¢°
CTe3LM66C" = 00+3£92T2"
3AILVOIN JAlLIS0d
LR B) waommu mczﬂx sassba

10<3¢69%2°
00+32¢22¢°
00s+36CpH2"
youy3
21%08vHvd

40 3IINVYHD NOTAONNA OL ANOdSINYOD SHO¥Y3

: SINIIOT44300 NOT1VI3HH0D
XTHLIVH SONVIYVAOD TYNHILINT

00e30n09¥* W V130 ¢

00+364¢996° IOVIWEON € §

104370027 vi3 svuwl ¢ 2

ToaIbeperts Vig vy T T 604312 U9IT 94 TO+9/pGLETL®
InvA Y3L3INVYYd *1X3*LNI Wa3 IntL S1vd INTIVA NOJ

SAVIIW DINDLI4IT O¥IZH J0 WISTU=INTL 0L (T4

(YT TP VRSP Y YRV S Y PV S A YT VRS TS T Y ¥ 20

SISATYNY ¥0ud3 SONIW 1In4 do SLINSIAY

