
By interconnecting high-volume, stan-
dard computers, system architects
can construct a high-performance,

modular, parallel system, called a cluster,1,2

at a much lower cost than a specialized sys-
tem. In addition, with a standard operating
system running on each computer, or node,
a cluster can cleanly survive the failure of an
individual computer, disk, network, or other
subsystem. A cluster can also survive many
types of software and system management
failures, which often dominate the failure
rate of modern computer systems.

Due to dramatic improvements in micro-
processor performance, clusters of symmetric
multiprocessors (SMPs) now equal or exceed
the performance of the largest mainframes
and special-purpose parallel systems. A con-
ventional network (Ethernet, FDDI, ATM,
Fiberchannel) would seem to be the natural
technology to interconnect these high-
powered SMP systems. Unfortunately, con-
ventional-network performance has not kept
pace with microprocessor performance. This
is particularly true of two key performance
attributes, message latency and overhead,
both of which have received much less atten-
tion than bandwidth in conventional network
design. (The old adage that thunder is impres-
sive, but lightning does the work is relevant
here. All too often bandwidth is impressive,
but overhead and latency do the work.) As a
result, interconnection performance often
limits a cluster’s parallel performance.

Digital Equipment Corporation has
designed a new network, Memory Channel
for PCI (MC for short), to address the unique
needs of clusters. MC implements cluster-
wide virtual shared memory. Real-world
measurements confirm that it reduces over-
head and latency by two to three orders of
magnitude, while clusters retain the ability
to survive any single failure. MC supports any
computer using the industry-standard PCI

(peripheral-component interconnect) bus,
and system builders can implement the net-
work at very low cost. Unlike standard net-
works, MC’s performance depends almost
totally on semiconductor technology, so it
should improve at a rate similar to that of
microprocessor hardware performance.

Standard-network performance
A standard network’s intersystem com-

munication overhead limits a cluster’s abili-
ty to achieve its full potential as a parallel
and available system. Figure 1 shows com-
munication performance across the memo-
ry hierarchy of a modern SMP system (the
AlphaServer 8400, also known as the
Turbolaser) connected to a conventional
network. The graph illustrates three key
aspects of communication performance for
each memory level:

• bandwidth: maximum sustained data
rate;

• latency: total elapsed time from initia-
tion of a communication operation until
it completes; and

• overhead: CPU time consumed by a
communication operation.

For all levels except the network, we mea-
sured performance for a read (load) opera-
tion. For the standard-network level, we
used a one-way, process-to-process message
operation, using the TCP/IP network proto-
col standard for Unix over an FDDI network.
The message size was 32 bytes. We mea-
sured one-way message latency by per-
forming a round-trip message test between
two nodes and then dividing the overhead
and latency results by two.

The graph shows the expected trade-offs
among size, distance, and speed. Increased
storage capacity comes at the expense of
lower bandwidth and higher latency and
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overhead. For example, bandwidth falls at a relatively con-
sistent rate from over 20,000 Mbytes per second in the reg-
ister file to 300 Mbytes/s in shared memory. This trend ends
when communication leaves the SMP domain and enters the
network. There, bandwidth falls by a factor of 30, or about
five times the largest drop in the higher levels.

Latency and overhead increase consistently from 3 ns and
1 ns, respectively, in the register file to about 250 ns in shared
memory. As it was for bandwidth, the jump from shared
memory to network is much larger. Sending a message over
a network requires more than 1,000 times the latency and
overhead of shared memory. This is the crux of the problem
with standard networks and clusters.

Although some real-world applications run well with lit-
tle communication between cluster nodes, many cannot. A
performance example presented later is a real-world appli-
cation that requires a large amount of communication. In
that application, a molecular-modeling program running
across two cluster nodes on a standard network uses 75 per-
cent of each node’s processor time for communication, leav-
ing only 25 percent for useful work. As a result, twice as
much hardware does half as much work.

Based on the rough trends established in the lower levels
of the hierarchy, cluster communication should have an
overhead and latency of about 10 times 250 ns, or 2.5 µs.
Cluster bandwidth should be about 100 Mbytes/s. The MC
project’s main goal was to approach this level of perfor-
mance. But before I explain how MC reduces overhead, let’s
briefly examine why standard networks have such high over-
head and latency.

Network communication overhead is only slightly small-
er than latency. This indicates that most latency is the direct
result of overhead, which is processor time spent on work
associated with communication. This conclusion is consis-
tent with performance studies showing that high-
performance network hardware directly contributes only a
small portion of total latency.3

So the problem is the processor time required for network
communication. The network is the first memory level in
which the application does not directly perform communi-
cation; instead, the application calls an operating system ser-
vice. The operating system service that provides network
communication is complex, with three primary layers: appli-
cation interface, network protocol, and network driver. Much
has been written about communication performance and
why network service path lengths are so high. Opinions have
polarized over which layer is to blame. In reality, all three
add significant overhead. In a typical implementation, over-
head spreads almost equally across the layers.

Two other observations increase the importance of reduc-
ing network communication overhead. First, historical data
show that performance of operating system services
improves less than application performance as micro-
processors speed up. This means communication overhead
is growing as a percentage of total execution time. With a
one-way message overhead of 250 µs, transmitting and
receiving a single 32-byte message often consumes the same
processor time as 150,000 application instructions.

Second, cluster traffic tends to be dominated by small mes-

sages—the worst traffic pattern for a communication sub-
system with very high overhead compared to bandwidth. To
see this issue in perspective, assume that messages smaller
than 200 bytes dominate typical cluster traffic. With one-way
message overhead of 250 µs and a 200-byte message size, a
dedicated processor can transmit 4,000 and receive 4,000
messages per second. This corresponds to a network band-
width of only 1.6 Mbytes/s, which two 10-Mbit/s Ethernets
could support.

Digital’s research4 shows that improved software imple-
mentations can push the overhead and latency of a one-way
message over a modern network (like ATM) to 65 µs. While
this would be a tremendous improvement, it is still more
than 20 times the desirable cluster communication latency
derived earlier. In addition, the fastest implementations still
have potential error recovery problems.

Requirements and design foundation
Many requirements of long-haul, heterogeneous networks

impede implementation of low-overhead interconnections.
Clusters are a constrained subset of networked systems. The
following key constraints differentiate clusters from general
networked systems:

• Clusters are homogeneous, with only one operating sys-
tem type.

• Cluster node count is small—typically two to eight
nodes (two to 96 processors).

• Cluster nodes are usually physically close and often
physically secure (in the same computer room or wiring
closet, for example).

• Since they are not limited to industry-standard proto-
cols such as TCP/IP, we can tailor cluster communica-
tions for optimized networks.

By exploiting these natural cluster constraints, we can
design a network with performance characteristics suited for
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clusters. But unless the performance gains are great, devel-
oping such a network would not be worth the effort after
the industry’s huge investment in standard networks.
Therefore, we had to define aggressive goals to justify our
own investment:

• Drop cluster communication latency and overhead by
factors of 100 and 1,000 respectively, thus achieving
one-way message latency of less than 5 µs and over-
head of less than 0.5 µs.

• Maintain the ability to repair hardware while the clus-
ter is running (hot-swap capability).

• Support full detection and recov-
ery (including fallback to a back-
up network) from network
communication errors (the SMP
“crash-on-error” model is unac-
ceptable).

• Connect to the industry-standard
PCI bus for compatibility with all
PCI-based Alpha and Intel com-
puters.

We could achieve these goals only
by radically changing the network
hardware-software interface. Clearly,
to support message latency of less
than 5 µs, the message software must
execute entirely at user level (a sys-
tem call alone can consume more
than 5 µs). Approaching this network
problem from the SMP world, we
looked for a way to modify the SMP
memory model to support the needs
of clusters. If we could map the net-
work into the virtual-address space
of the individual nodes, direct user
access would be straightforward.
Standard techniques for protecting
virtual-address space would isolate
and protect users from each other.

We chose Encore Computer
Corporation’s reflective memory
technology as the foundation for the
new network. (Encore has trade-
marked the name Memory Channel
for its implementation of a reflective
memory network. Digital has
acquired the right to use the name for
its PCI bus implementation of the net-
work.) In its simplest form, reflective
memory consists of interconnected
dual-port memory cards residing in
each node’s I/O space and compris-
ing a simple distributed-memory sys-
tem. When a node writes to its
network memory card’s local port, all
the other nodes’ network memory
cards store copies of the write.

After addressing the performance requirements, our next
design challenge was to ensure that we could layer a very
efficient, reliable, recoverable communication subsystem on
top of the very fast hardware. We accomplished this by giv-
ing MC’s adapter hardware a large part of the responsibility
for high-level communication functions such as error han-
dling and flow control. In particular, MC’s hardware provides

• automatic, hardware-based error detection on all mes-
sage writes;

• extremely low (essentially zero) transmission error rates;
• strict message-write ordering even under errors;
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• full hardware-based flow control;
• a simple, flexible hardware primitive to determine if a

message reached all destinations free of error;
• a fast hardware lock primitive;
• partition-proof communication behavior (Partitioning is

a communication network failure that splits the cluster
into two clusters, each convinced the other’s nodes have
failed. Standard networks are susceptible to partitioning.);

• single-level crossbar switch architecture;
• full hot-swap support;
• hardware-enforced cluster behavior (including heart-

beat time-out and flow control time-out); and
• complete support for broadcast, multicast, and point-

to-point circuits.

Moreover, the hardware imposes no special PCI bus
requirements.

Architecture and implementation
The MC architecture sits comfortably between SMP archi-

tectures on one side and standard networks on the other. It
uses shared memory to provide high-performance commu-
nication and extends the traditional responsibility of network
hardware to provide high availability. As described earlier,
reflective memory is the foundation of the MC network. The
commercial implementation modifies and extends the reflec-
tive-memory concept.

MC implements a form of distributed shared memory.
Figure 2 shows how MC connects the virtual-address spaces
of two cluster nodes. The basic network primitive is a mem-
ory-mapped circuit that provides a write-only connection
between a page of virtual-address space on a transmitting
node and a page of physical memory on a receiving node.
Through this connection, applications can send information
directly to other nodes, using standard store instructions with
no operating system intervention. These connections sup-
port any write operation on memory (including all forms of
byte masking). In the current implementation, they do not
directly support read operations.

Figure 2 shows two write-only MC connections. The first
connects a page of virtual-address space in node 1 (page A)
to a page of virtual-address space in node 2 (page E). To
establish this connection, the application calls a cluster ser-
vice, which allocates a page of MC address space (page C).
Each node then uses its MC adapter and local node DMA
maps to establish a mapping between that MC address space
and the corresponding local virtual-address space. In node
1, the virtual-to-physical map points to a page in node 1’s
MC transmit window (page B). The transmit window maps
directly to the MC network address space. Connecting pages
B and C requires enabling the corresponding page for trans-
mit in the MC adapter’s page control table (PCT). The PCT
contains a direct-mapped entry for every page in the MC net-
work address space. The following bits control the nature
of the memory-mapped circuit:

• enable for transmit;
• enable for receive;
• broadcast, multicast, or point-to-point;

• make local copy;
• autoacknowledge writes at all receivers (hardware-

based acknowledge); and
• interrupt host on write.

Node 2 establishes a connection between pages C and D
by enabling the corresponding PCT entry for receive and by
setting up the system I/O page table, which maps I/O from
PCI to host physical memory. Finally, node 2 establishes a
physical-to-virtual mapping between page D and page E.
Note that page D must be locked down by the operating sys-
tem; swapping out page D would effectively break the MC
connection.

After the cluster establishes this circuit, a node 1 process
with write privileges for page A can write the contents of
pages D and E directly to node 2. Node 1 has no physical-
memory storage associated with page A or B. The only stor-
age is in node 2 (physical page D). MC has essentially
“stretched” a write port to page D across the network and
attached it to page A in node 1. The cluster establishes the
second write-only connection in Figure 2, from page F in
node 2 to page J in node 1, in the same way.

MC has page-level connection granularity, which is 8
Kbytes for Alpha systems. The current hardware supports
64K connections across a 512-Mbyte MC address space (64K
× 8 Kbytes). Connections can be point-to-point, multicast,
or broadcast. Only a clusterwide service can establish con-
nections, ensuring protection and security and allowing each
node to control if, when, and where it exposes its local
address space to the MC address space. This isolation of local
address spaces is the basis for recovery from node failures;
a node failure affects only a portion of the node’s local
address space.

Once connections are established, system or user process-
es authorized to access the required virtual pages can use
them. The overhead of establishing a connection is much
higher than the overhead of using the connection. This page-
level connection approach is similar to the circuit-switching
technology used in the telephone system. It is this approach
that makes MC so much faster than a conventional network.
Conventional networks lack sufficient stored information to
map connections directly into the virtual-address space of a
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user process and therefore must perform checks on every
message transmission. MC performs these checks only at cir-
cuit setup time, thus amortizing the checking overhead across
every message sent over a connection.

Through creative use of the PCT, a cluster establishes var-
ious connections. Figure 3 shows the following examples:

• connection 1—unidirectional (written by node 1), point-
to-point (received by node 3) with interrupt when written;

• connection 2—unidirectional (written by node 3),
broadcast (received by all nodes); and

• connection 3—bidirectional (written by nodes 2 and 4),
multicast (received by nodes 2 and 4).

Focusing on hardware, Figure 4 shows the interconnec-
tions of processors, memories, I/O devices, and MC. The MC
adapter is a single-slot PCI option. On the PCI bus, the
adapter’s transmit path appears as a naturally aligned, 512-
Mbyte, write-only memory region (which can be positioned
anywhere in the 4-Gbyte PCI address space). Its receive path
maps to a separate 512-Mbyte region on the PCI.

Figure 4 shows a path from a processor in node 1 to mem-
ory in node 2. Let’s examine how a 32-byte write makes its
way down this path. Assuming an Alpha processor, the pro-
gram will perform consecutive write (store) instructions to
the desired offset in the MC transmit window (Figure 2). The
MC transmit window is in I/O space and therefore bypass-
es all caches, but the writes merge in one of Alpha’s 32-byte
write buffers.

When the processor flushes the write buffer, a full 32-byte
write crosses the system bus and transfers to the PCI bus.
This write selects the MC adapter, which uses information
from the PCT to encapsulate the PCI write into an MC pack-
et. The MC packet consists of the PCI write with a header
identifying the destination and a trailer containing a 32-bit
CRC (cyclic redundancy code). The adapter on node 2
receives this write, strips off the MC header and trailer, and
sends it to the PCI bus. Node 2’s I/O bridge maps the write
to the proper physical-memory page, just as it would for any
normal I/O operation. A process on node 2 can fully cache
the contents of pages written by MC because Alpha and Intel
systems both support full processor cache coherency for all
I/O operations.

Figure 4 also shows a path from an I/O device on node 2
to memory on node 1. One of the MC architecture’s power-
ful capabilities is that standard I/O devices can directly use
MC connections just as processors can. This capability is par-
ticularly useful because MC supports the PCI’s full byte-mask
capabilities; thus, I/O devices can perform transfers exactly
as if the memory were local. This capability allows a high-
performance implementation of I/O shipping. I/O shipping,
part of a Digital Unix service called distributed raw disk,
gives clusterwide disk access even to devices connected to
only one node. Using direct I/O to MC, the serving node
does not touch the data from disk; instead, the data go direct-
ly to their final destination in the requesting node.

Performance results
We compared MC’s performance with that of a conven-

tional network (FDDI) and with direct interprocessor com-
munication in an SMP system. We quantified performance
for process-to-process message passing, a streamlined write-
and-run message protocol especially suitable for MC, and a
real-world application.

Process-to-process message passing. Figure 5 shows
the message-passing performance of three hardware inter-
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connects (FDDI, MC, and SMP) using three programming
interfaces:

• PVM: message passing using a complete implementa-
tion of the industry-standard Parallel Virtual Machine
application programming interface from Oak Ridge
National Laboratories;

• HPF: message passing automatically generated by
Digital’s High-Performance Fortran compiler, using the
HPF directives for parallel applications; and

• direct: explicit, user-written message passing.

In all cases, the test programs implemented a simple
round-trip message loop (message size was 32 bytes), which
was repeated to ensure an accurate measurement. We cal-
culated the one-way message latency numbers by dividing
the round-trip time by two.

The hardware environment was a two-node AlphaServer
2100 4/200 cluster, connected with the highest performance
PCI-FDDI adapter and an MC connection. The FDDI tests all
used the TCP/IP network protocol. The MC and SMP tests
used optimized communication libraries.

Compared to the FDDI network, MC reduced message-
passing latency for the standard interfaces (PVM and HPF)
by a factor of about 25. The direct interface took better
advantage of MC and reduced latency by a factor of 83.
Compared to MC, the SMP system reduced latency by addi-
tional factors of about 2.5 for the standard interfaces and 5
for the direct interface. For the direct interface, most of the
SMP’s latency advantage over MC is due to a decrease of
about 3 µs in write latency in its bus hardware.

We obtained the PVM and HPF results using a service that
supports complete recovery from transmission errors with-
out application involvement. By dropping transparent recov-
ery, we could still implement a fully protected messaging
system (that is, the receiver would never act on a bad mes-
sage), but we would have to handle errors at another appli-
cation level. Since the MC error rate is essentially zero,
dropping transparent recovery may be a practical solution
for all implementations except core-cluster services, which
transparently switch to another MC network on a hardware
failure. Without transparent recovery, PVM and HPF latency
should drop from 20 µs to 15 µs (the difference is the cost
of MC’s remote-acknowledge operation). Overhead should
decrease much more, since messages can then be write-and-
run operations. In a write-and-run operation, the transmitter
performs the write into a fast write buffer; the processor is
immediately free to perform other work. Meanwhile, the
buffer initiates the transfer to the MC network. The next sec-
tion quantifies the performance benefit of this type of mes-
sage write.

Write-and-run message overhead. For a standard net-
work, we have shown that overhead is a large percentage of
latency. MC naturally supports the ability to perform write-
and-run messaging, in which message overhead can be much
smaller than message latency. To measure message over-
head, we ran a simple program that generates a fixed num-
ber of MC messages at a specified rate. We calculated
overhead by measuring the runtime reduction when the

same program ran with the actual MC message writes
removed. We also measured the effectiveness of deferred
write buffering at various message-sending rates.

For small messages, sent at data rates significantly less than
the network’s maximum rate, MC’s measured overhead was
approximately 150 ns—2,500 times lower than FDDI’s over-
head. This result shows that MC and similar networks can
provide overheads much smaller than latency (the ratio in
this case was 30:1). As we expected, as the data rate
increased, the overhead approached the value calculated by
dividing message size by the maximum sustained data rate.

Application performance. We have shown that MC
speeds up communication by factors of 25 to 83. Figure 6
shows the resulting performance improvement of an unmod-
ified real-world application, a parallel molecular-modeling
program that uses PVM. The figure shows the application’s
end-to-end runtime and total processor time for various clus-
ter configurations.

The application ran for 122 seconds, consuming a total of
244 processor seconds, on a two-processor, single-node (2×1)
SMP configuration. High communication overhead resulted in
much lower performance on a FDDI-connected 2×2 cluster,
where runtime increased by a factor of two, and total proces-
sor time jumped by a factor of four. Replacing the network
with MC dropped total processor time almost to the single-
node value. With much lower communication overhead, the
four processors almost halved the original runtime to 65 sec-
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onds. We obtained essentially the same results with four
processors connected on a single SMP bus. This indicates that
the increased memory bandwidth of two nodes (compared
to one) balances MC’s greater overhead (compared to SMP).
The final configuration had four processors in each of two
nodes, and runtime dropped by another 42 percent.

THE MEMORY CHANNEL FOR PCI’S performance
gains are the result of a system design approach that exploits
natural cluster constraints to define a memory-based net-
work. MC implements a form of virtual shared memory that
permits applications to completely bypass the operating sys-
tem and perform cluster communication directly from the
user level. The hardware’s simple and powerful communi-
cation model supports error handling at almost no cost or
complexity to the application; guaranteed ordering under
errors is the key innovation. The end result: Real-world clus-
ter communication latency dropped by up to two orders of
magnitude, and overhead by up to three orders of magni-
tude. These improvements elevate a “lowly” set of standard
PCI computers running Unix into an impressive, highly avail-
able, parallel computing system. (Pfister2 affectionately refers
to clusters as “lowly parallel computing” because they rep-
resent a parallel-system technology based on components
from the low end of the computer market.)

The first-generation Memory Channel for PCI began ship-
ping early this year. Our future plans include bandwidth
increases through an optimized crossbar switch and PCI
adapter cards. We will increase cable length and bandwidth
by moving to low-voltage differential signaling and an opti-
cal technology. These changes will significantly decrease
process-to-process latency and overhead. Finally, to support
continuing research on software-assisted coherent shared
memory in MC clusters, we will add a read operation to the
network.
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