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Abstract—Workflows have become a popular means for
implementing experiments in computational sciences. They are
beneficial over other forms of implementation, as they require
a formalisation of the experiment process, they provide a stan-
dard set of functions to be used, and provide an abstraction of
the underlying system. Thus, they facilitate understandability
and repeatability of experimental research. Also, additional
meta data standards such as Research Objects, which allow to
add more meta-data about the research process, shall enable
better reproducibility of experiments. However, as several
studies have shown, merely implementing an experiment as
a workflow in a workflow engine is not sufficient to achieve
these goals, as still a number of challenges and pitfalls prevail.

In this paper, we want to quantify how many workflow
executions are easy to repeat. To this end, we automatically
obtain and analyse a set of almost 1,500 workflows available
in the myExperiment platform, focusing on the ones authored
in the Taverna workflow language. We provide statistics on
the types of processing steps used, and investigate what
vulnerabilities in regards to re-execution are faced. We then
try to automatically execute the workflows. Form these results,
we conclude which are the most common causes for failures,
and analyse how these can be countered, with existing or yet
to be developed approaches.

I. INTRODUCTION

Reproducibility is an important topic in scientific research,
as it enables the verification of the validity of the conclusions
and claims drawn from scientific experiments. While many
disciplines have, over sometimes long-time periods, estab-
lished a set of good practices for repeating their experiments
(e.g. by using experiment logbooks in disciplines such as
chemistry or physics, where the researchers record their ex-
periments), computational science often lacks behind. Many
eScience investigations are hardly reproducible – sometimes
not even by the original investigator. The reasons for this
are manifold, ranging from the immaturity and fast pace of
change in the technical solutions utilised, to an underdevel-
oped practice of strict requirements for experiments.

In this paper, we want to quantify technical reproducibility
of scientific workflows, i.e. experiments that are encoded in a
formal language defined by a workflow engine. Workflows
are an interesting object of study for several reasons. On
the one hand, they are gaining in popularity, especially in

certain eScience disciplines. This has also lead to an increase
in social platforms such as myExperiment, which allow
sharing of workflows. Therefore, an increasing number of
workflows is readily available to other researchers. Further,
through their formalisation and programming against a well
defined workflow engine, which provides the execution
environment, workflows are often conceived to be a step
towards reproducibility; sometimes it is even assumed that
they are ready to be re-executed by other researchers without
any significant additional effort, and that workflows are
“self-contained”, i.e. that sharing the workflow definition file
itself is sufficient.

However, while workflows surely add to reproducibility,
there are still difficulties with re-executing them easily. In
this paper, we examine workflows implemented for the Tav-
erna workflow engine, and published on the myExperiment
platform, a platform for exchanging research objects such
as research workflows. As these workflows are intentionally
and explicitly published by their authors, it is assumed
that they are in general of higher quality and thus more
prepared for repeatability than workflows that are primarily
used locally by a researcher, but never shared.

We gather a set of almost 1,500 workflows from the
platform. We then analyse which types of processing steps
are provided by the Taverna workflow engine, and how
frequently these are used in our dataset. We further try
to automatically execute the workflows using the workflow
execution environment, and provide statistics on how many
workflows are actually ready to be used. Expanding on
previous work, we then conclude on why these workflows
do not work, and discuss what additional information and
data needs to be made available to make them executable.

The remainder of this paper is structured as follows.
In Section II, we give an overview on related work on
reproducibility, workflows, and semantic description meth-
ods for experiments. In Section III, we characterise the
data set we are using for our investigation. In Section IV,
we then describe which kinds of processing steps can be
implemented in Taverna, and which threats of insufficient
documentation and packaging can originate from. We further
provide characteristics on how frequent these processing



types are in our data set. Section VI then describes the find-
ings from executing the workflows automatically. Finally,
Section VIII provides conclusions and an outlook on future
work.

II. RELATED WORK

Several studies have shown the problem of repeatability
and reproducibility in eScience investigations. An analysis
of the reasons of lack of repeatability and reproducibility is
given in [1], which defines the terms as follows: Repetition is
the ability to re-run the exact same experiment with the same
method on the same or similar system and obtain the same or
very similar result. Reproducibility concerns the independent
confirmation of a scientific hypothesis through reproduction
by an independent researcher/lab. Reproducibility is carried
out after a publication, based on the information in the paper
and other information, such as data sets.

A study on the reproducibility of results presented in
various computer systems research investigations is pre-
sented in [2]. The authors processed 613 papers from eight
ACM conferences, out of which 515 papers used a software
developed by the authors themselves. The goal of the study
was to check whether this software can be used to reproduce
the experiments; due to constraints, reproducibility was
primarily indicated by the ability to compile and build the
software. For 231 of these papers, the authors were able to
obtain the source code, but for only 123 systems building
the software was actually achieved. The causes for this were
in many cases not having the correct environment available,
e.g. wrong versions of dependencies that were not explicitly
specified. We follow a similar approach in this work, but
focus more on the re-execution aspects, as availability of
the software is not an issue with publicly shared workflows.

[3] identifies general challenges in the use of scien-
tific workflows, of which reproducibility of results is one
prominent aspect. Specifically issues with understanding
the workflow, as well as keeping workflows usable despite
changes in technology are mentioned.

A study on reproducibility of workflows authored in the
Taverna workflow engine is presented in [4]. The authors
provide a case study of manually analysing and executing
four selected Taverna workflows. The authors identify that
even though workflows provide a formalisation of the data
processing and orchestration of the execution, still many
workflows break after a certain time, due to e.g. decaying
third-party dependencies, or insufficient information, such as
example input, being provided. The authors analyse common
problems on their sample of selected example workflows.
The authors further provide an approach to automatically
check whether workflows fulfil basic requirements for being
still runnable and reproducible, based on the concept of Re-
search Objects [5], which allows for a semantic description
and linking of other objects employed in the research inves-
tigation. This verification is grounded on the availability of

certain types of information, such as sample input and output
files, which are defined in a check-list style [6]. It constitutes
a necessary condition, but not sufficient as a check for the
actual reproducibility. In our work, we perform a similar
investigation, but in the form of a quantitative study, rather
than focusing on a few prototypical examples.

The Context Model, described in [7], [8], follows similar
goal as the Research Objects, but adds a specific focus on
the technical environment a workflow relies on, such as the
hardware and software needed to execute a workflow. This
includes the workflow engine itself, and its dependencies
to other software modules. In the case of Taverna, which
is implemented in the Java programming language, this
would include be the Java Runtime Environment, and in
turn the dependencies of that software. Also dependencies
of the workflow itself, i.e. to third-party libraries or external
services, can be documented and described.

Challenges in workflow reproducibility stemming from
the dependency to third-party services are discussed in [9],
[10]. In [11], the authors investigate the workflow decay not
in a specific moment in time, but over a period of time,
including the impact of workflow evolution.

III. WORKFLOW DATA SET

The platform myExperiment1 [12] is a social web plat-
form that allows researchers to share their research objects.
It is primarily used for sharing scientific workflows, im-
plemented predominantly for the Taverna workflow engine,
but also for a few other engines. The platform allows
researchers to upload workflows and accompanying files
to the repository, and provides a browsable and searchable
interface to other researcher to search and find workflows
made available by their peers. Most of the workflows are
publicly available and can be downloaded by any user; only
a few workflows are protected and can only be obtained with
a certain authorisation privilege (“private workflows”).

Utilising the myExperiment REST API2, we downloaded
the complete set of workflows available as of March 2015.
The total number of 2,697 indexed objects stems from the
period of time since 2007, an overview of the distribution per
year is provided in Figure 1. We can see that the most active
periods of workflows uploaded was in 2010 and 2011, with
almost 500 objects created each year. In overall, the number
of contributed workflows is relatively steady, though.

A total of 40 different workflow types can be observed,
though many of these types have just a couple of instances.
Most of the workflows are authored in the Taverna Workflow
engine [13], in either version 1 or version 2, which differs
primarily in the file format (SCUFL vs. t2flow format).
Together, they account for more than 75% of the workflows.
However, a number of workflows is also authored in other

1http://www.myexperiment.org/
2http://wiki.myexperiment.org/index.php/Developer:API



Figure 1. Workflows on myExperiment, grouped per creation year

Table I
OVERVIEW ON TYPES OF WORKFLOW RESEARCH OBJECTS IN THE

MYEXPERIMENT PLATFORM, MARCH 2015

Type Count Percentage
Others 132 4.9%

BioExtract Server 19 0.7%
GWorkflowDL 24 0.9%
LONI Pipeline 26 1%

KNIME 43 1.6%
Bioclipse Scripting Language 44 1.6%

Kepler 45 1.7%
Galaxy 54 2%

RapidMiner 271 10%
Taverna 1 565 20.9%
Taverna 2 1474 54.7%

Total 2697

systems, notable the Rapid Miner3 and KNIME4 data mining
applications, Galaxy5, Kepler6 or the LONI pipeline7 work-
flow engines. A detailed overview on the exact numbers is
given in Table I, including over 30 types of research objects
that have between one and twelve examples each, grouped as
“Others”, accounting for less than 5% of all research objects.

Of the initially retrieved workflow index, 92 (3.4%) were
not accessible private workflows, distributed over the differ-
ent types roughly equivalent to the total numbers. Due to the
large majority of workflows being authored in Taverna, we
are focusing our investigation on this workflow type. This is
also further motivated by the readily available, open source
implementation of Taverna, which allows for automated
analysis and execution of workflows. As there are differences
in the semantics between the discontinued Taverna 1 and the
current Taverna 2 workflow capabilities, we further focus on
the latter. As 30 workflows of type Taverna 2 are marked
private, this leaves us with a dataset of 1,444 workflows that
are publicly available, out of which one workflow file was
not readable by the Taverna workflow engine.

3https://rapidminer.com/
4https://www.knime.org/
5http://galaxyproject.org/
6https://kepler-project.org/
7http://pipeline.bmap.ucla.edu/

IV. TYPES OF PROCESSING STEPS AND
VULNERABILITIES

Taverna, similar to other workflow engines, allows re-
searchers to build a workflow by defining several processors,
which represent a processing step. For each processor also
the input and output ports are defined. By defining the data
flow between these input and output ports, processors are
then connected to each other. An example of a Taverna
workflow is given in Figure 2.

Figure 2. Example Taverna workflow

Processors in Taverna can roughly be divided in two
categories. The first type of processors provide a pre-defined,
configurable functionality. For example, a processor provides
an implementation of a client for the call to an external Web
Service; the user provides the service interface definition,
and which method is going to be called, and provides the
parameter values for the remote method by connecting the
input ports of the web service client processor. Further, there
are also processors that allow writing customised code, and
thus allow implementation of almost any functionality. In the
case of Taverna, this code is to be written in the BeanShell
language, which is based on the Java programming language.
Taverna uses the term “activity” for implemented function-
ality that is provided to a processor; we use these terms
interchangeably in the rest of this paper. A more detailed
overview on the Taverna workflow language is given in [14].

In the remainder of this section, we analyse potential
vulnerabilities for re-execution of workflows. We thereby
find some commonalities to [4], but also detail on additional
vulnerabilities not identified in that work. Further, we want
to provide a clear association of vulnerabilities to the specific
type of Taverna processors they apply to. Each vulnerability
is denoted by a named identifier, for later reference.



A. Web Service Execution

Taverna provides two major processors for invoking re-
mote Web Services – WSDL and REST service processors.
Both processors require configuration, such as the remote
address and inputs for the parameters. Common threats with
these processors not functioning as expected are:

• WS1 The remote address is not reachable from the
current location, for example, it is a service that is
only reachable in the specific, not public network of
the original workflow author.

• WS2 The remote service (though it was originally in
principle reachable) is not available any more.

• WS3 The remote service requires some sort of au-
thentication, but that authentication is unknown to the
researcher, or the authentication data has changed /
became invalid (e.g. a changed password, or a deleted
user/agent).

• WS4 The remote method to be invoked is not available
any more, i.e. has been removed from the service
specification.

• WS5 The interface specification of the service has
changed, for example, a method now requires a differ-
ent number of parameters, or returns a different result
type.

Besides WSDL and REST, there is a third type of pro-
cessor for remote service execution provided in Taverna, the
Soaplab processor. Soaplab8 is a framework that allows run-
ning command line applications as a web service. Soaplab
is now mostly discontinued9. Newly published workflows
are therefore unlikely to use this functionality; however,
a small number of workflows in our dataset still exhibit
this functionality. The vulnerabilities are similar to the ones
identified for WSDL and REST.

B. Beanshell Processor

A Beanshell processor allows the researcher to define
custom processing logic using the expressiveness of the
Java Programming Language. The functionality of libraries
provided by the Java Programming Language is available
as in a regular Java program. Further, custom libraries, so-
called Java Archives (JARs) can be assigned to a Beanshell
script, and are subsequently available for use. Common
threats with this processor not functioning as expected are:

• B1 A different version of the Java runtime is used to
execute the processor, and thus some of the Java API
functions are not yet or not any more available, or
behave differently.

• B2 A custom library required for a Beanshell is not
available.

8http://soaplab.sourceforge.net/
9For example, the European Bioinformatics Institute (EBI), one of the

principal provider of Soaplab functionality, has closed their services in
February 2013 and now only offers REST and WSDL based interfaces (cf.
http://www.ebi.ac.uk/soaplab)

• B3 A custom library required for a Beanshell is avail-
able in the wrong version, which could lead to a
different API, or a different behaviour of the requested
functionality, such as an older version still containing
a bug.

• B4 The Beanshell code accesses some functionality out-
side the Java runtime environment that is not available.
This can, for example, be a call to a web service using
the Java API instead of the explicit Taverna processor,
a call to a system process or library (e.g. via the Java
Native Interface (JNI) or the Process class in Java).
Besides executables, also the access to files, on the local
file system or from remote locations, can be a source
of re-executability problems.

A specific form of Beanshell processors are the so-called
local workers. These are pre-configured beanshell scripts
for performing common tasks, such as Base64 encoding
or obtaining the contents from a remote URL. There are
no specific additional vulnerabilities identified with these
processors, and not all of the above vulnerabilities apply
to them. However, while a user can utilise the local worker
as defined, she can also modify them, in which case these
processors become regular Beanshell scripts.

C. RShell Processor

The RShell processor allows the workflow creator to
write scripts using the R programming language10, which is
focused on statistical computing and graphics. Taverna does
not directly invoke R on the local system. Instead, it utilises
the RServe11 protocol to communicate with an R installation
that runs the RServe server program. Such an RServe server
can be also running locally, on the same system that executes
the workflow. The user configures the (remote) address of
the server, and optionally also a user name and password
for authentication. Given these characteristics, the RShell
processor is in principle vulnerable to similar threats as
identified for the Beanshell and the Web Service processors.

• R1 The remote address of the RServe instance is not
reachable from the current location (similar to Web
Service Processor vulnerability WS1).

• R2 The remote address is not available anymore (sim-
ilar to Web Service Processor vulnerability WS2).

• R3 The authentication data for the RServe instance is
unknown or invalid (similar to Web Service Processor
vulnerability WS3).

• R4 A different version of the R runtime than originally
used is now employed to execute the processor, and
thus some of the R API functions are not available, or
behave differently (similar to Beanshell vulnerability
B1).

10http://www.r-project.org/
11http://www.rforge.net/Rserve/



• R5 A custom R package required is not available at the
R instance (similar to Beanshell vulnerability B2).

• R6 A custom R package required is of the wrong
version, which can lead to a different API available,
or a different behaviour of the requested functionality,
such as an older version still containing a bug (similar
to Beanshell vulnerability B3).

• R7 The R code accesses some functionality outside the
R runtime that is not available (e.g. via the “system”
call, similar as in the Beanshell vulnerability B4).

D. Tool Processor

This processor allows the researcher to define an invo-
cation of a tool, which in general is any binary that can be
executed on a system. The command to invoke is defined by
its full path, which is appended by the parameters (if any)
that are going to be passed to the command. The parameters
can be connected to the input ports of the process step.

Further, it is also possible to specify a location where the
command shall be executed at. This location is by default
the local machine. However, Taverna can also connect to
a remote machine, primarily via the SSH (secure shell)
protocol. There is no information in the processor definition
or configuration that would indicate which is the expected
target platform of the command to be executed (for example
Windows, Mac or Linux). Neither does it include any other
requirements to that platform, such as a list of required
applications or packages, or requirements to the installation
destination (e.g. a specific folder in the file system).

As a consequence, this processor becomes vulnerable to
the following threats.

• T1 The location is not reachable from the current
location (similar to Web Service Processor vulnerability
WS1).

• T2 The location is not available anymore (similar to
Web Service Processor vulnerability WS2).

• T3 The authentication data for the (remote) location is
unknown or invalid (similar to Web Service Processor
vulnerability WS3).

• T4 The tool to be executed is not available on the sys-
tem, or cannot be identified due to a slightly different
installation. This can be the case if a tool is otherwise
installed in the system, but in a different folder than
expected, or not available in the default search path.

• T5 A different version of the tool than originally used is
now employed to execute the workflow, and thus some
of the functions are not available, or behave differently.

E. Other Vulnerabilities

One other potential Vulnerability to the successful work-
flow re-execution is in the workflow input ports. Similar
to input ports for processors, these workflow input ports
constitute parameters for the workflow execution, and thus
control some of the characteristics of the workflow runtime

behaviour. The exact values for these workflow input ports
are thus to be provided before a workflow is run.

The Taverna workflow definition does allow to specify
example values for the input ports, which can be seen
as default values for which the workflow should perform
correctly. However, not many workflows do actually provide
example values. In such a situation, the user then needs to
rely on other documentation, or if that is also missing, an
educated guess for potential values. Taverna does not provide
information on the types of input ports (for example whether
there is a number or a URL as type expected). Thus, the only
clue on allowed values for ports provided with the workflow
definition is hidden in the naming of the workflow ports.

The lack of appropriate workflow input port values is a
hard barrier preventing the execution outright.

F. Trivial Processors

There are a number of “trivial” processors available in
Taverna as well. The String Constant activity allows to
define a constant value that can be connected to another
processor input. Frequently, string constants are used instead
of workflow inputs to provide runtime behaviour control.
Other simple processors are the WSDL and XML splitter
and merger processors, which extract single values from an
XML document, or combine and wrap values to an XML
document. There are no specific vulnerabilities that can be
identified for these processors.

V. WORKFLOW CHARACTERISTICS

In this section we provide details of a static analysis of
the workflows, i.e. of analysing the workflow definition,
and not considering any execution aspects yet. We perform
this analysis by utilising the Taverna API and computing
statistics over various properties as detailed below. Analysis
of most workflows is a matter of a couple of seconds,
however, many workflows can take 20 minutes or more to be
properly opened by the Taverna API. This is due to Taverna
performing some validity checks, e.g. with remote services,
with rather long time-outs before giving up connecting to
remote locations.

In our analysis, we start at the beginning of the work-
flow execution, the workflow input ports. There are 345
workflows, equalling to approximately 24%, which have no
input ports, and 1,098 workflows that do use input ports. The
average number of input ports per workflow is 1.31. Of those
workflows with input ports, only 572 provide example values
for all input ports, while 97 provide example values for some
inputs, and 429 provide no example values at all. Thus, we
can conclude that at most 917, equalling to around 63.5%
of the workflows, can in principal be automatically executed
without any additional information on the workflow input
parameters – assuming that all example values are actually
valid data.



Table II
INPUT PORT STATISTICS

Total workflows 1443
Workflows with no input ports 345 23.91%
Workflows with input ports 1098 76.09%
Workflows with no example values 429 29.73%
Workflows with some example values 97 6.72%
Workflows with all example values 572 39.64%
Workflows that can be run 917 63.55%

In our data set, a total of 17,547 processors are used,
meaning each workflow uses in average 12.16 processors.
Regarding the processor types, Table III gives an overview
on the cumulative counts of different types being used, as
well as the relative frequencies. This table is simplified
by excluding the earlier mentioned trivial processors, for
example string constants, as well as XML splitter and XML
merger templates. In total, these account for 25% and 15%
of all the elements used in a workflow, respectively. Thus,
the first percentage given in Table III represents the relative
frequency of the processors among all instances, while the
second percentage depicts the relative frequency only among
the non-trivial processors.

Table III
TYPES OF TAVERNA PROCESSORS

Processor type Occurrences % of total % of non-trivial
LocalworkerActivity 3,226 18.38% 30.42%
BeanshellActivity 2,664 15.18% 25.12%
DataflowActivity 1,401 7.98% 13.21%
WSDLActivity 707 4.03% 6.67%
ExternalToolActivity 563 3.21% 5.31%
RESTActivity 339 1.93% 3.2%
RshellActivity 337 1.92% 3.18%
XPathActivity 313 1.78% 2.95%

We can see that from the non-trivial processors, a large
amount of processing is done by local workers (the pre-
defined Beanshell scripts), followed by custom Beanshell
scripts. WSDL, REST and other activities account for a
smaller share of total processors used. This can be explained
by the fact that many workflows use several other processors
to prepare input data to be sent to a service, and then again
subsequently to process the output from these services. The
more interesting characteristic is therefore not the absolute
number of processor usages, but how many workflows
use a specific type of processor. We will provide detailed
numbers to this below. A high number of processors are
actually representing nested or sub-workflows, denoted as
DataflowActivity. In our analysis, we resolve these nestings
and handle the sub-workflows as a part of the enclosing
workflow.

When a Workflow is opened in Taverna, also a basic
check for the availability of each of the service processors is
performed, mainly on WSDL and Soaplab processors. This

is composed of a basic check on whether the given URL
is reachable. If this is not the case, the activity becomes
disabled. These account for the remaining approximately
six percent of activities not listed in Table III. We can
observe from Table IV that a total of 288 workflows, i.e.
approximately every fifth workflow, has such a disabled
activity. The majority of 87% of these disabled activities are
unreachable WSDL services, the remaining 13% are Soaplab
processors.

Table IV
DISABLED PROCESSORS

Workflows with disabled activities 288 19.96%
Count of disabled WSDLActivity 976 86.99%
Count of disabled SoaplabActivity 146 13.01%

Regarding remote services, we can see in Table V that web
services using WSDL as an interface language are used in
around 30% of all the workflows analysed. It is thus by far
the more popular mechanism compared to REST, which is
used in approximately 12.5% of all workflows, and Soaplab,
which features in just below 3% of all workflows. Together,
either one of the web services mechanism is used in 43.79%,
close to almost half of all workflows. Regarding the hosts
where these services run, we can observe that only 10 of
them are on non-globally reachable IPs, that is either the
localhost, or within a private IP range (such as 192.168.x.x),
denoting e.g. a company or home network.

Table V
WEB SERVICE PROCESSORS

Workflows using WSDL services 411 30.04%
Workflows using REST services 172 12.57%
Workflows using Soaplab services 38 2.78%
Workflows using any web service 599 43.79%
WSDL with non-global IPs 10.0 1443

In Table VI, we give an overview on Beanshell processors.
Note that this number does not include the above mentioned
“local worker” activities, which are pre-defined Beanshell
scripts. A total of 717 workflows, equalling almost 50%
of the workflows, use a Beanshell processor to execute a
script. Out of the total of 2,664 beanshell processors, 76
have dependencies to external Jar libraries defined. As a
processor can define dependencies to multiple libraries, the
total number of required JAR files is 90. These dependencies
affect in total 33 workflows.

Analysing the libraries that are used by workflow au-
thors, the majority of library names suggest customised
implementations being used. However, there is a significant
amount of dependencies to “well-known” libraries. Notable
examples are database access drivers for the Java Database
Connectivity (JDBC) API, e.g. for MySQL and SQLite, as
well as frequently used libraries from Apache Commons12,

12http://commons.apache.org/



or for the manipulation of data in the JSON format.

Table VI
BEANSHELL PROCESSORS

Beanshell processors 2664
Workflows with beanshell processors 717 49.69%
Beanshell processors with dependencies 76 2.85%
Total Beanshell dependencies 90 3.38%
Workflows with beanshell dependencies 33 1.24%

Details on the tool processors are given in Table VII and
Table VIII for local and remote instances, respectively. We
can observe that the majority of processors are local tools,
i.e. executed on the same machine as the workflow.

240 workflows, equalling to almost 17%, use a local tool
invocation. We can observer that most local tool invocations
are rather short (at most 3 lines, including comments and
interpreter directives), and are thus rather invocations of one
command, with potential minimal post-processing. On the
other hand, there are also a number of rather lengthy shell
scripts executed.

Regarding the script contents, we did a coarse analysis on
major trends. We can observe that there is a high number
of 55 tool invocations that use the Python language for
processing, while only three make use of the Perl scripting
language. Interestingly, there is also 22 scripts that call a
Java application, even though that could be much easier,
and more explicitly, achieved using the Taverna Beanshell
processor.

Several processors also utilise rather large software appli-
cations, such as the Hadoop server for distributed computing.
Sometimes the local tool processor is used to ensure that
such a server application is started and running in the back-
ground, before it is utilised by other, subsequent processing
steps.

Table VII
LOCAL TOOL PROCESSORS

Local tool processors 543
Workflows with local tool processors 240 16.63%
Short tool invocations 442 81.4%
Script-style tool invocations 101 18.6%
Python 55 10.13%
Java 22 4.05%
Perl 3 0.55%
Hadoop 37 6.81%

Regarding the remote tools, twelve workflows use this
type of remote invocation, in a total of 20 processor steps.
The functionality of the tools varies greatly, in a similar fash-
ion as for the local tool processors. Some tools invocations
execute a number of commands in shell scripts, while others
execute scripts in Python or Perl. As a processor can access
multiple remote hosts for distributed computing, a total of
34 host connections are defined. A number of processors use
the same hosts, thus there are 20 uniquely defined remote

hosts utilised. Out of those 20 unique hosts, only 7 are
actually reachable. Specifically of impact for the number of
re-executable workflows is that none of the hosts that is used
by multiple processors in different workflows are reachable.
As a consequence, only two of the workflows have all of
their remote hosts reachable and are thus technically still
repeatable – if the required user name and password are
known.

Table VIII
REMOTE TOOL PROCESSORS

Remote tool processors 20
Workflows with remote tool processors 12 0.83%
Total remote hosts 34
Unique remote hosts 20
Reachable remote hosts 7 20.59%
Reachable unique hosts 7 35%
Workflows with reachable hosts 2 16.67%

Table IX
RSHELL PROCESSORS

Workflows with RShell processors 90 6.24%
Total remote hosts 337
Hosts with local address 335
Unique remote hosts 2
Reachable hosts 0 0%
Workflows with reachable hosts 0 0%

RShell processors are used in 90 workflows, which
amounts to a bit more than 6% of all workflows, as detailed
in Table IX. In contrast to the remote tool invocation, the
number of hosts defined for the RServe instances equals
the number of RShell processors, as there is only one host
definition allowed. One interesting fact is that in almost all
cases, the host that a connection should be established to is
the localhost, on the default port. Only one workflow makes,
with two RShell processors, use of an external RServe
instance, which is however also not reachable. Thus, without
the local RServe instance, none of the 90 workflow using
RShell is executable.

VI. WORKFLOW RE-EXECUTION

In this section we describe the results from re-executing
the workflows in our collection. Table X details the data set
that we are finally able to execute in our environment.

Table X
EXECUTABLE DATA SET

Initial data set 1443
Removed – missing input values 526
Removed – disabled processors 180
Removed – not executable in test environment 6
Executable workflows 731

We start by first removing all workflows that can not be
run because we are missing some or all values for the input



ports. As discussed in Section V, this leaves 917 workflows.
From this set, we then remove all workflows that have
disabled processors, and can thus not be run by Taverna.
This removes another 180 workflows not already eliminated
for missing example values, finally leaving a pool of 737
workflows that we are able to run.

Figure 3. Histogram of execution times of the Taverna workflows, in
seconds

Execution times of most workflows are rather short, in
a matter of tens of seconds; however, there are several
workflows that can take 30 minutes or longer to compute, on
a dedicated server infrastructure where processing, RAM or
network connections are not the limiting factor. An overview
on the execution time is given in Figure 3. Causes for these
are often looping executions of services that will eventually
fail e.g. with a connection timeout, similar to the observation
from performing the static analysis of the workflows as
described in Section V.

Table XI
WORKFLOW EXECUTION RESULTS

Execution successful 341
Execution failed 364
REST service not reachable 4
REST service not authenticated 4
Other missing authentication (WSDL, RShell, ...) 30
Resource/File not available (local or remote) 13
Tool command not available 15

Details on the execution results are given in Table XI.
From the the 737 workflows, 364 workflows produced errors
during the execution, while another six workflows did not
terminate execution after more than 48 hours of runtime.
This means that only 341 workflows were executed without
any errors, amounting to only 29.2% of the original data set
of 1,443 objects.

The workflows that could no be executed failed, among
others, for the following reasons. Nine workflows failed with
issues with a REST service, for four of which the failure was
caused by the service not being reachable. The other five
workflows failed due to no proper authentication information
being found in the connection details. Another 40 workflows

failed for missing authentication data. This applies to work-
flows with processors where the authentication is explicitly
configured to be required, but not obtainable from the local
Taverna instance, and includes processors such as WSDL,
RShell or the remote Tool Invocation.

14 workflows failed because they wanted to open a
resource, for example a file, locally or on the web, that is not
available anymore. Another 19 workflows failed because the
local tool commands that the workflow wanted to execute
was not available. Example commands are for media format
conversions via “ffmpeg”, “convert”, or “dcraw”, optical
character recognition (“tesseract“), or the ”hadoop” and
“hive” commands.

Other workflows failed because the example input data
was not pure, e.g. when there are more potential values
listed, or when there is a value and a descriptive comment.
Some of these issues could be fixed by human intervention,
but the correct input values are not always obvious to guess
from the provided data.

It has to be noted that with re-executing workflows, we
just laid the foundation for assessing whether the result
was actually repeatable, i.e. whether the same results were
achieved. Such a verification can be then performed e.g.
with the methods proposed in [15], [16], if there is sufficient
information on the expected output of the workflow.

VII. RECOMMENDATIONS

After inspecting and analysing a large number of
workflows and identifying patterns for failure in repetition,
we can draw a couple of recommendations that could
help alleviate the problem in the future. We can tackle
the issues from several angles, including the workflow
definition language, the completeness of specification and
bundle, the publishing and the monitoring processes. While
there are several proposals for best-practices for workflow
authors, e.g. in [17] or by the Workflow4Ever project13, we
want to give recommendations also towards the technical
infrastructure.

Capabilities of workflow engines: Regarding the
implementation of logic in the workflows, we can observe
that a rather large number of workflows use, in one way
or another, scripting code that is run outside the workflow
engine itself, e.g. by using the local tool invocation to
execute a local Python interpreter with a specific script.
While Taverna provides Beanshell, which basically allows
for any Java ctool invocation ode to be run, the effort
for authoring each script in this language might be too
cumbersome. This is especially be the case when existing
code is to be reused in a workflow implementation.
Therefore, by extending the capabilities of Workflow

13http://www.wf4ever-project.org/bestpractices, archived at http://www.
webcitation.org/6ZNgmtWVA



engines towards other popular languages, one source
of error can be reduced. As an example, the workflow
management software Activiti14 allows the user to work
with all languages available for the “Scripting for the Java
Platform”15, which includes JavaScript, Python, Perl, and
others. If Taverna provides similar capabilities, many calls
to local tool invocations could be replaced with native
workflow engine scripts.

Expressiveness of workflow definition language:
Regarding the verbosity of workflow definitions, the use
of auxiliary descriptive languages, such as the Research
Objects (RO) or the Context Model (CM) allows for
resolving some of the issues identified, for example, the
lack of external dependencies being defined, or the lack of
matching input and output data to verify that a workflow
execution actually produced the required results. However,
integrating some of these aspects directly in the workflow
language might be of advantage and foster use and uptake,
as it requires less additional effort to the workflow authors.

Tool Invocations: Regarding the local tool invocation,
it can be observed that many calls to the local system
are in a platform dependent way, i.e. they are tailored to
Linux or Windows, and will not work on other platforms.
We propose two different solutions to this issue. On the
one hand, making such indirect dependencies of a tool
invocation to an execution environment explicit would be
beneficial for chosing the correct platform for re-execution.
A simple extension to the descriptive metadata that can
be provided for the tool invocation in Taverna would be
sufficient. On the other hand, workflow engines could
provide a mechanism to workflow authors to provide
alternative scripts for different platforms, thus making the
workflow more platform independent, and thus simplifying
re-execution in different environments.

External dependencies: External available definitions
that help understanding the functionality, e.g. a WSDL
specification for a web service, should be archived and
published together with the workflow, before it becomes
unavailable. Such meta-data is required to enable approaches
such as automatic service substitution, as described in [10].

Quality check and monitoring: Publication platforms
such as myExperiment need to further enforce certain checks
when workflows are uploaded, similar to, but extending
on the “Checklist Evaluation Service” provided by the
Workflow4Ever project [4], [6]. Such a service could easily
identify missing input parameter examples. This is partly
done already e.g. in the Research Object Digital Library

14http://activiti.org/
15https://www.jcp.org/en/jsr/detail?id=223

(ROHub)16 developed by Workflow4Ever. However, such
quality checks should also be extended to verify e.g. whether
required Java libraries are provided alongside the workflow
definition, among others.

Finally, monitoring for external services needs to be
improved. Current approaches are often limited to WSDL
definitions only, not considering the many options of how
external functionality is utilised in workflows, e.g. via REST,
Soaplab, remote R servers, or simply SSH invocations.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we provided an extensive study on a data set
of publicly shared workflows, namely the ones authored in
the Taverna 2 language and published on the myExperiment
platform. We identified vulnerabilities for the different types
of processing elements that are used in Taverna, followed
by a static analysis of the typical use of processors and
their configuration in the data set. We then attempted to
re-execute each workflow in an automated fashion, with
manual inspections where problems occurred. From these
experiences, we provide a set of recommendations that can
enhance the reproducibility of workflows. We identified
several angles from which the problems can be addressed,
from the workflow definition and the use of auxiliary meta-
data such as Research Objects, to an improved publishing
and monitoring process.

The majority of workflows are not re-executable, and
often the cause is in rather trivial shortcomings. The lack
of example values needed as workflow input parameters,
as well as missing libraries for Java programs are frequent
causes for failures in workflow execution.

Future work will focus on extending our database to also
include the Taverna 1 workflow definitions, and performing a
more fine-grained manual analysis of the problems encoun-
tered during execution. We also want to investigate whether
there is a well supported correlation between the “age” of
a workflow, and its ability to be repeated. Finally, we will
focus on proposing technical drafts and implementations for
the recommendations given in Section VII.
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